

**FCC CFR47 PART 18 SUBPART C
ISM EQUIPMENT**

**TEST REPORT
FOR
MICROWAVE OVEN**

**MODEL: WP550L12, WP550J12, WP550SJ12,
WP550SL12, WP550AL12, WP550ASL12**

FCC ID: NVZ9803550N

REPORT NUMBER: 98C0096-1

ISSUE DATE: FEBRUARY 05, 1999

Prepared for
GUANGDONG GALANZ ENTERPRISE (GROUP) CO., LTD.
328 GUIZHONG ROAD
SHUNDE, GUANGDONG P.R.C. 528305 CHINA

Prepared by
COMPLIANCE CERTIFICATION SERVICES, INC.
1366 BORDEAUX DRIVE
SUNNYVALE, CA 94089, USA
TEL: (408) 752-8166
FAX: (408) 752-8168

NVLAP[®]
LAB CODE:200065-0

TABLE OF CONTENTS

PAGE

1. VERIFICATION OF COMPLIANCE.....	1
2. PRODUCT DESCRIPTION.....	2
3. TEST FACILITY.....	2
4. ACCREDITATION AND LISTING.....	2
5. RADIO NOISE EMISSIONS MEASUREMENTS PROCEDURE/RESULTS.....	2
5.1 RADIATION HAZARD MEASUREMENT.....	2
5.2 INPUT POWER	3
5.3 RF OUPUT POWER MEASUREMENT.....	3
5.4 OPERATING FREQUENCY MEASUREMENTS	4
5.5 VARIATION IN OPERATING FREQUENCY WITH TIME.....	5
5.6 VARIATION IN OPERATING FREQUENCY WITH VOLTAGE.....	5
5.7 RADIATION EMISSIONS	6
6. EUT SETUP PHOTOS.....	8
7. MEASUREMENT EQUIPMENT LIST.....	9

ATTACHMENTS:

- .RADIATED EMISSION DATA
- .VARIATION IN OPERATING FREQUENCY WITH TIME PLOTS
- .VARIATION IN OPERATING FREQUENCY WITH VOLTAGE PLOTS
- .USER MANUAL AND SCHEMATICS
- .PROPOSED FCC ID LABEL
- .EUT PHOTOGRAPHS

1. VERIFICATION OF COMPLIANCE

COMPANY NAME : GUANGDONG GALANZ ENTERPRISE(GROUP) CO., LTD.
328 GUIZHONG ROAD
SHUNDE, GUANGDONG P.R.C. 528305
CHINA

CONTACT PERSON : HU YANG / MANAGER

TELEPHONE NO : 765-888-6389

EUT DESCRIPTION: MICROWAVE OVEN

MODEL NO/NAME : WP550AL12, WP550L12, WP550J12, WP550SJ12,
WP550SL12 and WP550ASL12

DATE TESTED : FEBRUARY 05, 1999

TYPE OF EQUIPMENT:	CONSUMER ISM EQUIPMENT
TECHNICAL LIMIT:	SUBPART C
FCC RULES:	PART 18
MEASUREMENT PROCEDURE	FCC/MP-5/1986
EQUIPMENT AUTHORIZATION PROCEDURE	CERTIFICATION
MODIFICATIONS MADE ON EUT	<input type="checkbox"/> YES <input checked="" type="checkbox"/> NO

The above equipment was tested by Compliance Certification Services for compliance with the requirements set forth in the FCC CFR 47, PART 18. This said equipment in this configuration described in this report shows that maximum emission levels emanating from equipment are within the compliance requirements.

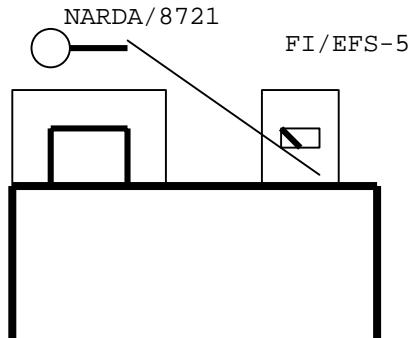
Approved By

MIKE C.I. KUO / VICE PRESIDENT
COMPLIANCE CERTIFICATION SERVICES

2. PRODUCT DESCRIPTION

The equipment under test is a microwave oven sold for consumer use. Models: WP550L12, WP550J12, WP550SJ12, WP550SL12, WP550AL12 and WP550ASL12 are 550W microwave oven. Model with A or B is a digital control, with S is rust proof, with L is to pull handle to open door and with J is no window on door. Magnetron: Toshiba, Type: 2M231H(JT).

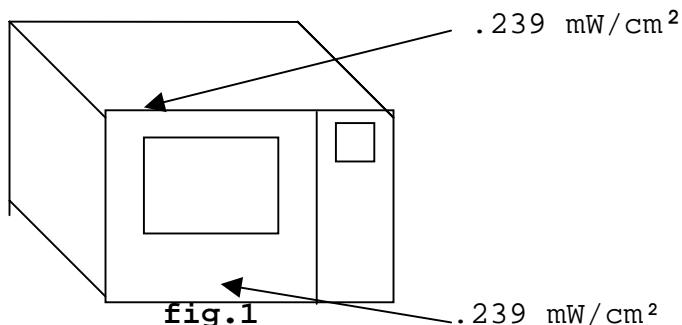
3. TEST FACILITY


The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

4. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code:200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT(1300F2))

5. RADIO NOISE EMISSION MEASUREMENTS PROCEDURES/RESULTS


5.1 RADIATION HAZARD MEASUREMENT

Radiation Hazard Measurements

A 1000-ml water load was placed in the center of the oven. The power setting was set to 10(100%) maximum power. While the oven

was operating, the STE probe was moved slowly around the door seams to check for leakage.

<u>LOCATION</u>	<u>MAXIMUM LEAKAGE</u> (mW/cm ²)	<u>LIMIT</u> (mW/cm ²)
Fig.1 shows the locations of maximum leakage	.239	1.0
All others	.068	1.0

Power density is calculated from field strength E , V/m using the relationship.

$$S, \text{ mW/cm}^2 = (E, \text{ V/m})^2 / 3770$$

5.2 INPUT POWER

Input power and current were measured using a wattmeter and a ammeter. A 700 ml water load was placed in the center of the oven and the oven was set to 10(100%) maximum power. A 700-ml water load was chosen for its compatibility. Manufacturers to determine their input ratings commonly use this procedure.

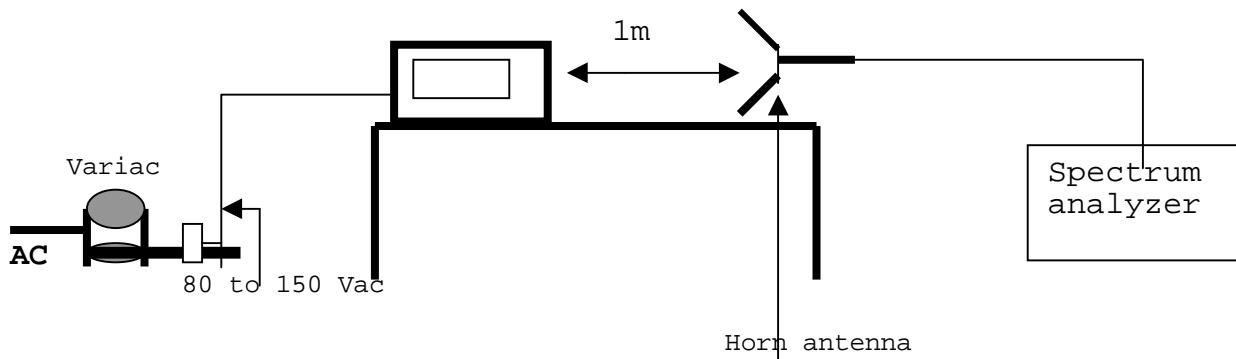
<u>Input Voltage (Vac)</u>	<u>Input Current (amps)</u>	<u>Measured Input power (watts)</u>
550W: 120	7.95	884

Based on the measured input power, the EUT was found to be operating within the intended specifications.

5.3 RF OUTPUT POWER MEASUREMENT

The Caloric Method was used to determine maximum output power. The initial temperature of a 1000-ml water load was measured.

The water load was placed in the center of the oven. The oven was operated at maximum output power for 120 seconds. Then the temperature of the water was re-measured.


Quantity of water (ml)	Starting Temperature (C°)	Final Temperature (C°)	Elapsed Time (seconds)	RF Power (watts)
1000	8.9	20.5	120	406.0
1000	8.3	20.0	120	409.5
1000	8.9	20.0	120	388.5

Average of 3 Trials: 401.3 W

Power = $\frac{(4.2 \text{ Joules/Cal}) \times (\text{Volume in ml}) \times (\text{Temp. Rise})}{\text{Time in seconds}}$

The measured output was found to be LESS than 500 Watts. Therefore, in accordance with section 18.305 of Subpart B, the measured out-of-band emissions were compared to the 25 uV/m @ 300m limit.

5.4 OPERATING FREQUENCY MEASUREMENTS

Figure 1. Operating Frequency Measurement Set-up

5.5 VARIATION IN OPERATING FREQUENCY WITH TIME

The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 1000-ml water load was placed in the center of the oven and the oven was operated at maximum output power.

The fundamental operating frequency was monitor until the water load was reduced to 20% of the original load.

The results of this test are as follows.

Initial load: 1000 ml
Load at completion of test: 200 ml

Maximum frequency observed: 2479 MHz
Maximum frequency allowed: 2500 MHz

Minimum frequency observed: 2423 MHz
Minimum frequency allowed: 2400 MHz

Refer to spectrum analyzer plot under ATTACHMENTS: **VARIATION IN OPERATING FREQUENCY WITH TIME PLOT** for details of frequency variation with operating time.

5.6 VARIATION IN OPERATING FREQUENCY WITH VOLTAGE

Following the above test, after operating the oven long enough to assure that stable operating temperature were obtained, the operating frequency was monitored as the input voltage was varied between 80 to 125 percent of the nominal rating.

The water load was maintained at 200 ml for the duration of the test.

The results of this test are as follows:

Line voltage varied from 96Vac to 150Vac.

150Vac Maximum frequency observed: 2485 MHz
 Maximum frequency allowed: **2500** MHz

 Minimum frequency observed: 2437 MHz
 Minimum frequency allowed: **2400** MHz

120Vac Maximum frequency observed: 2483 MHz
 Maximum frequency allowed: **2500** MHz

 Minimum frequency observed: 2422 MHz
 Minimum frequency allowed: **2400** MHz

96Vac Maximum frequency observed: 2482 MHz
 Maximum frequency allowed: **2500** MHz

 Minimum frequency observed: 2414 MHz
 Minimum frequency allowed: **2400** MHz

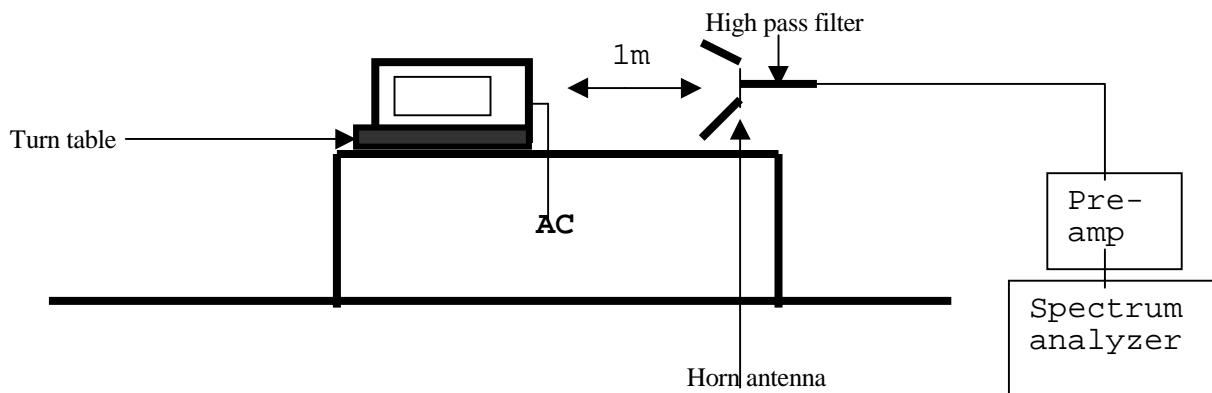
Refer to spectrum analyzer plots under ATTACHMENTS: **VARIATION IN OPERATING FREQUENCY WITH VOLTAGE PLOTS** for details of Frequency variation with operating voltage.

5.7 RADIATED EMISSIONS

Radiated emissions were measured over an inclusive frequency range to 30MHz through the sixth harmonic of the operating frequency. For this test, a 1-meter high wooden table in an open laboratory area supported the device under test. The table was placed on a turntable.

The measurement antenna was placed 3 meters for measurements from 30 - 1000MHz and 1 meter for measurements from 1000 - 14,700MHz, respectively, for the device under test. The indicated frequency range was swept as the device under test was rotated along its vertical axis in 90° increments.

During the preliminary tests, the load consisted of 700-ml tap water placed in the center of the oven. The emissions were observed while the device under test was operated at maximum output power.


The level of the emissions near the edge of the designated ISM frequency band was measured. For this test, the load consisted of 700-ml water load located in the center of the oven.

The levels of the second and third harmonic were measured inclusively with a 300 ml and 700 ml water load alternately placed in the center and right front corner of the oven. Harmonics beyond the third were measured with a 700-ml load placed in the center of the oven. The data obtained during these tests is contained on the attached spreadsheet.

The maximum of all other out-of-band emissions were measured while a 700-ml load was placed in the center of the oven. Maximum readings were recorded after variations in antenna polarizations, height, device orientation, load position, and size. For frequencies above 1 GHz, the video bandwidth of the spectrum analyzer was set to simulate a linear average detection mode (10Hz).

For all emissions the equivalent 300 meters intensity was calculated assuming a linear decrease in the intensity of the

RFI field with increased distance. In the operating modes and conditions described, there were no over-limit emissions discovered.

Figure 2. Radiated Emissions Configuration

There were no emissions detected from the EUT in the 30 - 1000 MHz region. Emissions detected in the 1000 - 14,700 MHz region are reported in a spreadsheet under ATTACHMENTS: **RADIATION EMISSION DATA**.

6. EUT SETUP PHOTOS

7. MEASUREMENT EQUIPMENT LIST

Equipment	Manufacturer	Model No.	Serial No.	Site	Cal Date	Due Date
EMI Receiver	H.P.(9KHz-6.5GHz)	8546A	3520A00259	A	03/98	03/99
RF Filter Section	H.P.	85460A	3448A00232	A	03/98	03/99
Per-Amp	H.P.(0.1-1300MHz)	8447D	2944A06833	A	10/98	10/99
BILOG Antenna	Chase	CBL6112	2049	A/F	05/98	05/99
EMC Receiver	H.P.(9KHz-26.5GHz)	8593EM	3710A00205	F	05/98	05/99
Pre-Amp	H.P. (1-26.5GHz)	8449B	3008A00369	A	04/98	04/99
Horn Antenna	EMCO(1-18GHz)	3115	9001-3245	A	12/98	12/99
Digital Multimeter	Fluke	87	4035173	A	11/98	11/99

Wattmeter	Valhalla	2111A	33-386	A	10/98	10/99
Variac(0 – 280Vac)	Powerstat	N/A	N/A	A	N/A	N/A