

Test Report

FOR

FCC Part 15 Subpart B & C

of

802.11b WLAN USB Adapter

Model

USB-400

(Brand: Wistron NeWeb)

Applied by:

Wistron NeWeb Corporation
No. 10-1, Li-hsin Road I,
Science-based Industrial Park Hsinchu 300,
Taiwan, R. O. C.

Test Performed by:

(NVLAP Lab. Code: 200234-0)

International Standards Laboratory

No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd.
Lung-Tan Hsiang, Tao Yuan County 325
Taiwan, R.O.C.
Tel:(03)407-1718 Fax:(03)407-1738

Report Number: ISL-03LR001FC

Test Date: 2003/01/21

NVLAP Lab. Code: 200234-0; VCCI: R-1435, C-1440; NEMKO Aut. No: ELA 113; BSMI Lab. Code: SL2-IN-E-0013

Contents of Report

1. . . General	3
1.1 Certification of Accuracy of Test Data.....	3
1.2 Description of Equipment Under Test (EUT)	4
1.3 Test Standards and Procedure	5
1.4 Frequency and Channel.....	5
1.5 General Test Conditions.....	5
2. Powerline Conducted Emissions [Section 15.207].....	6
2.1 Configuration and Procedure.....	6
2.1.1 EUT Configuration	6
2.1.2 Test Procedure	6
2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested).....	6
2.2 Test Data:.....	7
3. Bandwidth for DSSS [Section 15.247 (a)(2)].....	9
3.1 Test Procedure	9
3.2 Test Setup	9
4. DSSS Maximum Peak Output Power [Section 15.247 (b)(1)].....	13
4.1 Test Procedure	13
4.2 Test Setup	13
5. RF Exposure Measurement [Section 15.247(b)(4) & 1.1307(b)(1) MPE]	14
Refer to SAR Test Report	14
6. Radiated Emission Measurement [Section [15.247(c)(4)]	15
6.1 EUT Configuration.....	15
6.2 Test Procedure	15
6.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested).....	15
6.4 Test Data:.....	16
7. DSSS Peak Power Spectral Density [Section 15.247(d)].....	22
7.1 Test Procedure	22
7.2 Test Setup	22
7.3 Test Data:.....	22
8. Band Edge Measurement.....	26
8.1 Test Procedure (Conducted).....	26
8.2 Test Setup (Conducted).....	26
8.3 Test Data:.....	26
8.4 Test Procedure (Radiated)	29
8.5 Test Setup (Radiated)	29
8.6 Test Data:.....	29

9. Appendix	32
9.1 Appendix A: Warning Labels	32
9.2 Appendix B: Measurement Procedure for Powerline Conducted Emissions	33
9.3 Appendix C: Test Procedure for Radiated Emissions	34
9.4 Appendix D: Test Equipment.....	35
9.4.1 Test Equipment List.....	35
9.4.2 Software for Controlling Spectrum/Receiver and Calculating Test Data.....	36
9.5 Appendix E: Layout of EUT and Support Equipment	37
9.5.1 General Conducted Test Configuration	37
9.5.2 General Radiation Test Configuration.....	38
9.6 Appendix F: Description of Support Equipment	39
9.6.1 Description of Support Equipment	39
9.6.2 Software for Controlling Support Unit	40
9.6.3 I/O Cable Condition of EUT and Support Units	41
9.7 Appendix G: Accuracy of Measurement	42
9.8 Appendix H: Photographs of EUT Configuration Test Set Up	44
9.9 Appendix I: Antenna Spec.	47

1. . General

1.1 Certification of Accuracy of Test Data

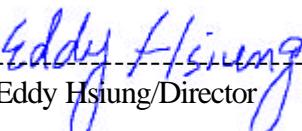
The electromagnetic interference tests which this report describes were conducted by an independent electromagnetic compatibility consultant, International Standards Laboratory in accordance with the test procedure specified in CFR 47 Part 15 Subpart C (Section 15.247), Subpart B and ANSI C63.4 Rules.

The test results contained in this report accurately represent the measurements of the EMC characteristics and the energy generated by sample equipment under test at the time of the test.

Equipment Tested 802.11b WLAN USB Adapter
Model:USB-400
Applied by Wistron NeWeb Corp.

Sample received Date: 2003/1/14

Final test Date : 2003/1/21


Test Site: OATS02, Conduction 02

Temperature 23°C(Conduction Test); 23°C (Radiation Test)
Humidity: 52% (Conduction Test); 51% (Radiation Test)

Test Engineer: Jerry Chiou

The results show that the sample equipment tested as described in this report is in compliance with the Class B conducted and radiated emission limits of FCC Rules Part 15 Subpart B; and the limits of FCC Part 15 Subpart C (Section 15.247).

Approve & Signature

Eddy Hsiung
Director

Test results given in this report apply only to the specific sample(s) tested under stated test conditions. This report shall not be reproduced other than in full without the explicit written consent of ISL. This report totally contains 36 pages, including 1 cover page , 1 contents page, and 34 pages for the test description. This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government.

This test data shown below is traceable to NIST or national or international standard. International Standards Laboratory certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

1.2 Description of Equipment Under Test (EUT)

Description: 802.11b WLAN USB Adapter

Model No.: USB-400

FCC ID: NKRUSB400

Frequency Range: 2.412~2.462 GHz

Support channel: 11 Channels

Modulation Skill DBPSK(1Mbps), DQPSK(2Mbps), CCK(5.5/11Mbps)

Style Interface: USB

Antennas Type: Meander IFA Type in Metal
made by Wistron NeWeb Corp.

Antenna Connected: The antenna is soldered on the PCB of the 802.11b WLAN USB Adapter. The user is not possible to change the antenna without disassembling the 802.11b WLAN USB Adapter.

Antenna peak Gain: 2.86dBi

Power Type: 5V DC (from Notebook PC)

Brand Name: Wistron NeWeb Corp.

Applicant: Wistron NeWeb Corporation
No. 10-1, Li-hsin Road I,
Science-based Industrial Park Hsinchu 300,
Taiwan, R. O. C.

This device is a 802.11b WLAN USB Adapter, and its operation frequency is from 2412MHz to 2462MHz. DSSS modulation is used, and there are 11 channels for data communication. The data rate is 1Mbps(DBPSK), 2Mbps(DQPSK), 5.5Mbps(CCK),and 11Mbps(CCK). The channel and the operation frequency listed below:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
01	2412	07	2442
02	2417	08	2447
03	2422	09	2452
04	2427	10	2457
05	2432	11	2462
06	2437		

1.3 Test Standards and Procedure

Test Specification: FCC Part 15 subpart C (Section 15.247) and subpart B and/or CISPR 22/EN55022, RSS210

Test Procedure: ANSI C63.4, CFR 47 Sec. 15.247, as detailed in Appendices

1.4 Frequency and Channel

Channel	Frequency (GHz)
1	2.412
2	2.417
3	2.422
4	2.427
5	2.432
6	2.437
7	2.442
8	2.447
9	2.452
10	2.457
11	2.462

Note: The operating frequencies are in 2.412 GHz to 2.462GHz. According to FCC Part 15 Sec. 15.31 (m), all the items as followed in this testing report are need to test three frequencies: top: channel 1; middle: channel 6; bottom: channel 11.

1.5 General Test Conditions

During the test, the EUT was set in high power and continuously transmitting mode that Controlled by notebook computer. The channel 1, 6, 11 of EUT were all tested.

2. Powerline Conducted Emissions [Section 15.207]

2.1 Configuration and Procedure

2.1.1 EUT Configuration

The conducted emission test setups are in accordance with Figs 9, 10(a) and 10(b) of ANSI C63.4-1992, CFR 47 Part 15 Subpart B; or EN55022: 1994/ A1: 1995/A2:1997; CISPR 22:1993/A1: 1995/A2: 1996.

The EUT was set up on the non-conductive table that is 1.0 by 1.5 meter, 80cm above ground. The wall of the shielded room was located 40cm to the rear of the EUT.

Power to the EUT was provided through the LISN. The impedance vs. frequency characteristic of the LISN is complied with the limit shown on the figure 1 of ANSI C63.4-1992.

Both lines (neutral and hot) were connected to the LISN in series at testing. A coaxial-type connector which provides one 50 ohms terminating impedance was provided for connecting the test instrument. The excess length of the power cord was folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

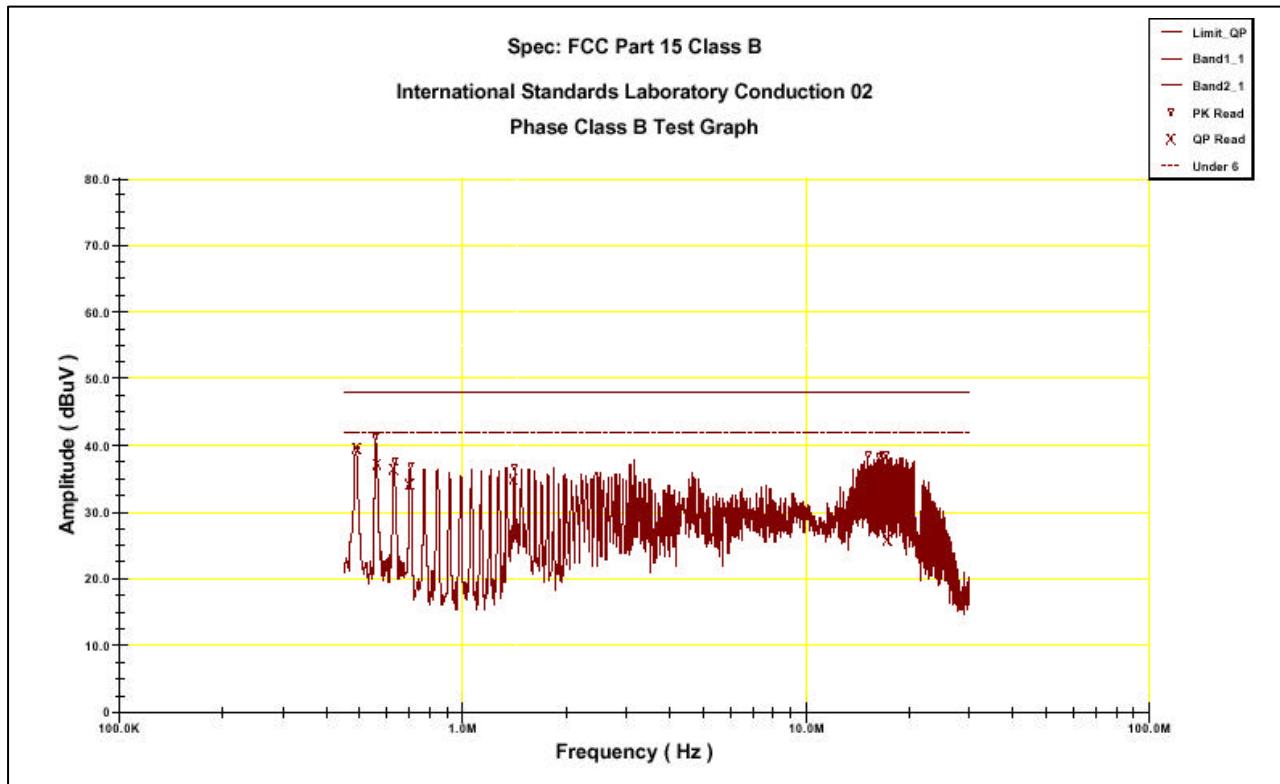
If the EUT is a Personal Computer or a peripheral of personal computer, and the personal computer has an auxiliary AC outlet which can be used for providing power to an external monitor, then all measurements will be made with the monitor power from first the computer-mounted AC outlet and then a floor-mounted AC outlet.

2.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The main power line conducted EMI tests were run on the hot and neutral conductors of the power cord and the results were recorded. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

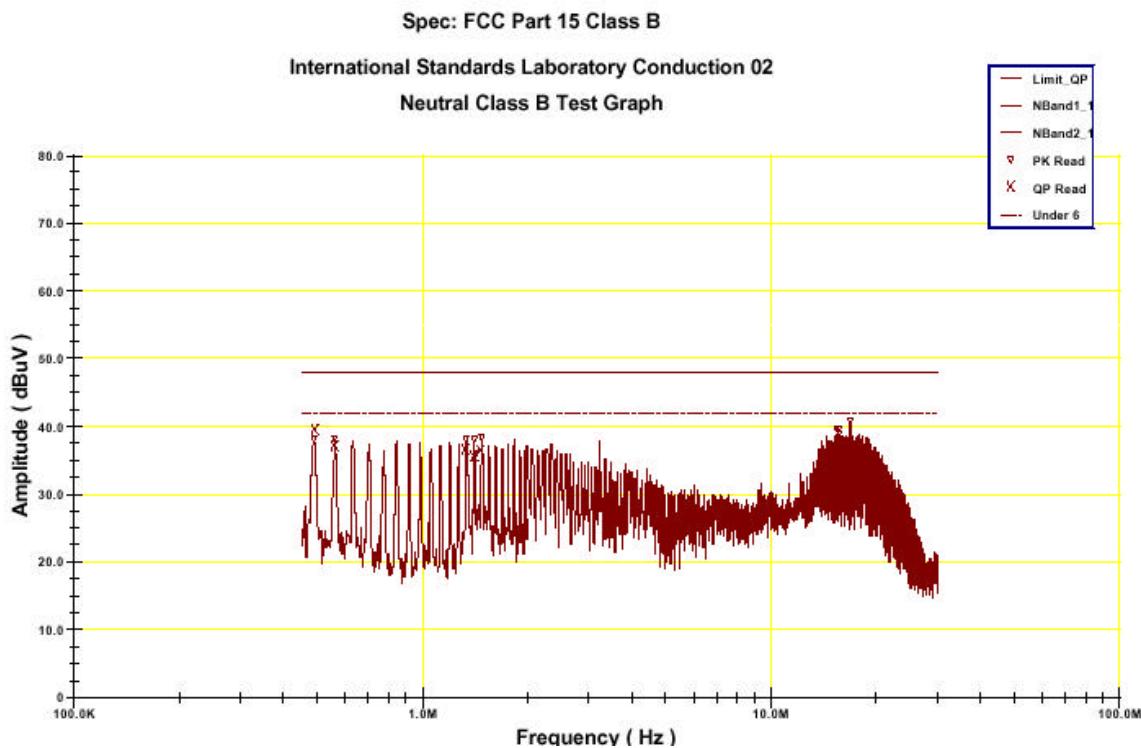
At the frequencies where the peak values of the emissions were higher than 6dB below the applicable limits, the emissions were also measured with the quasi-peak detectors. At the frequencies where the quasi-peak values of the emissions were higher than 6dB below the applicable average limits, the emissions were also measured with the average detectors.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.


2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	150KHz-30MHz
Detector Function:	Quasi-Peak / Average Mode
Bandwidth (RBW):	9KHz

2.2 Test Data:


Table 2.2.1 Power Line Conducted Emissions (Hot) Channel 1, 6, 11

Frequency (MHz)	Corrective Factor		Quasi-Peak		
	LISN Loss (dB)	Cable Loss (dB)	Corrected Amplitude (dBuV)	Limit (dBuV)	Margin (dB)
0.49018,	0.62,	0.32,	39.63,	47.96,	-8.33
0.56128,	0.59,	0.32,	37.18,	47.96,	-10.78
0.63086,	0.57,	0.33,	36.37,	47.96,	-11.59
0.69991,	0.55,	0.33,	34.04,	47.96,	-13.92
1.40363,	0.44,	0.35,	34.85,	47.96,	-13.11
15.1642,	0.94,	0.63,	34.34,	47.96,	-13.62
16.2284,	0.98,	0.63,	28.41,	47.96,	-19.55
16.6373,	1.00,	0.64,	29.37,	47.96,	-18.59
16.7780,	1.01,	0.64,	33.91,	47.96,	-14.05
17.1699,	1.03,	0.64,	25.72,	47.96,	-22.24

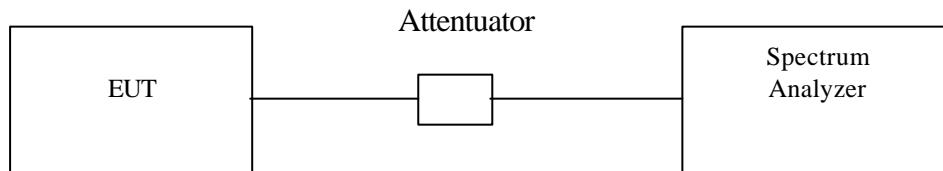
Table 2.2.2 Power Line Conducted Emissions (Neutral) Channel 1, 6, 11

Frequency (MHz)	Corrective Factor		Quasi-Peak		
	LISN Loss (dB)	Cable Loss (dB)	Corrected Amplitude (dBuV)	Limit (dBuV)	Margin (dB)
0.49086,	0.61 ,	0.32 ,	39.54 ,	47.96 ,	-8.42
0.56140 ,	0.59 ,	0.32 ,	37.14 ,	47.96 ,	-10.82
1.33438 ,	0.41 ,	0.35 ,	36.72 ,	47.96 ,	-11.24
1.40493 ,	0.41 ,	0.35 ,	35.57 ,	47.96 ,	-12.39
1.47368 ,	0.41 ,	0.35 ,	36.49 ,	47.96 ,	-11.47
15.4401 ,	0.83 ,	0.63 ,	36.34 ,	47.96 ,	-11.62
15.5843 ,	0.83 ,	0.63 ,	33.89 ,	47.96 ,	-14.07
15.6490 ,	0.84 ,	0.63 ,	35.95 ,	47.96 ,	-12.01
15.7175 ,	0.84 ,	0.63 ,	33.63 ,	47.96 ,	-14.33
16.8441 ,	0.89 ,	0.64 ,	36.65 ,	47.96 ,	-11.31

* NOTE: During the test, the EMI receiver was set to Max. Hold then switch the EUT Channel between 1 , 6, 11 to get the maximum reading of all these channels.

Margin = Amplitude + Insertion Loss- Limit

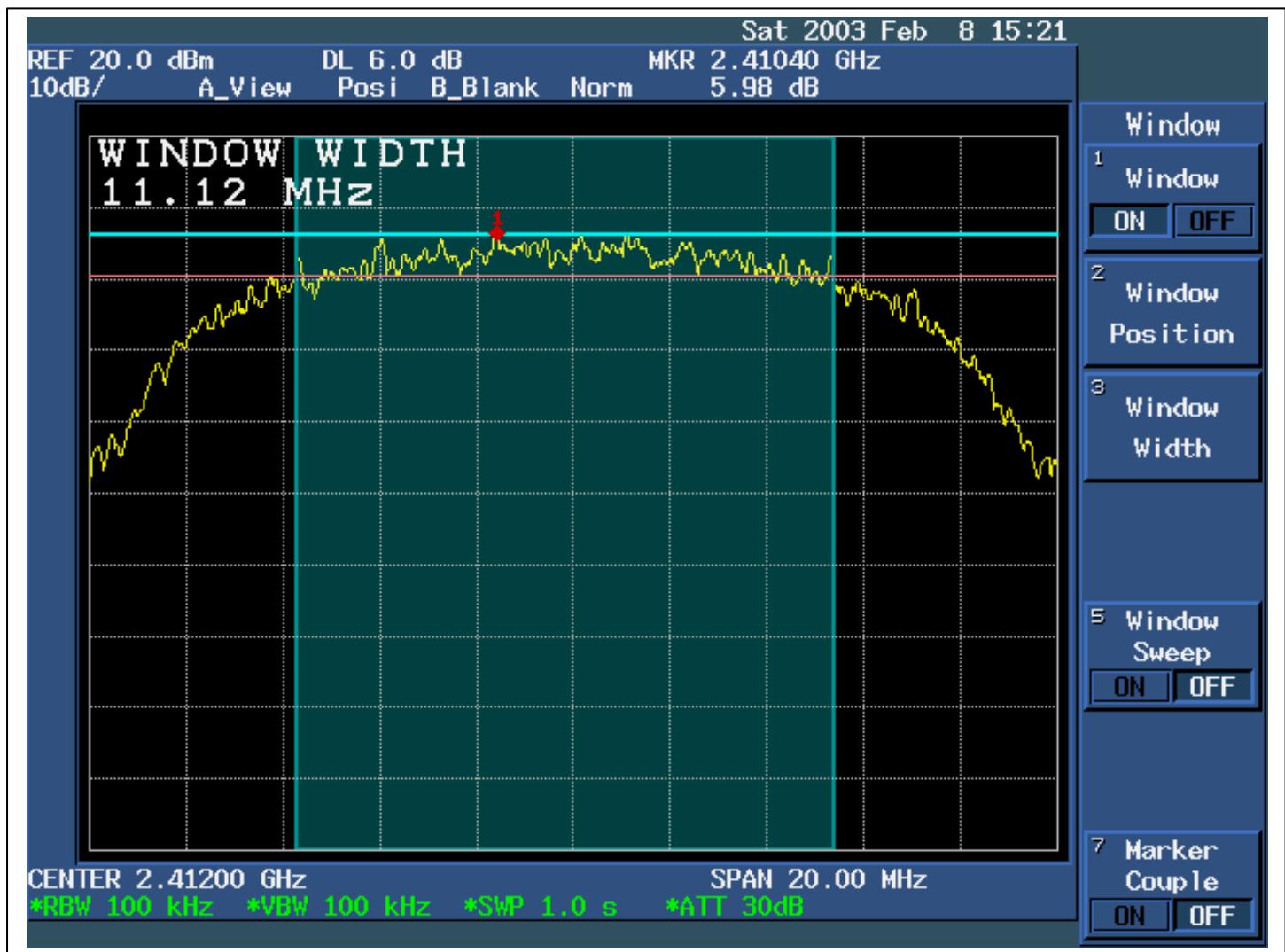
A margin of -8dB means that the emission is 8dB below the limit

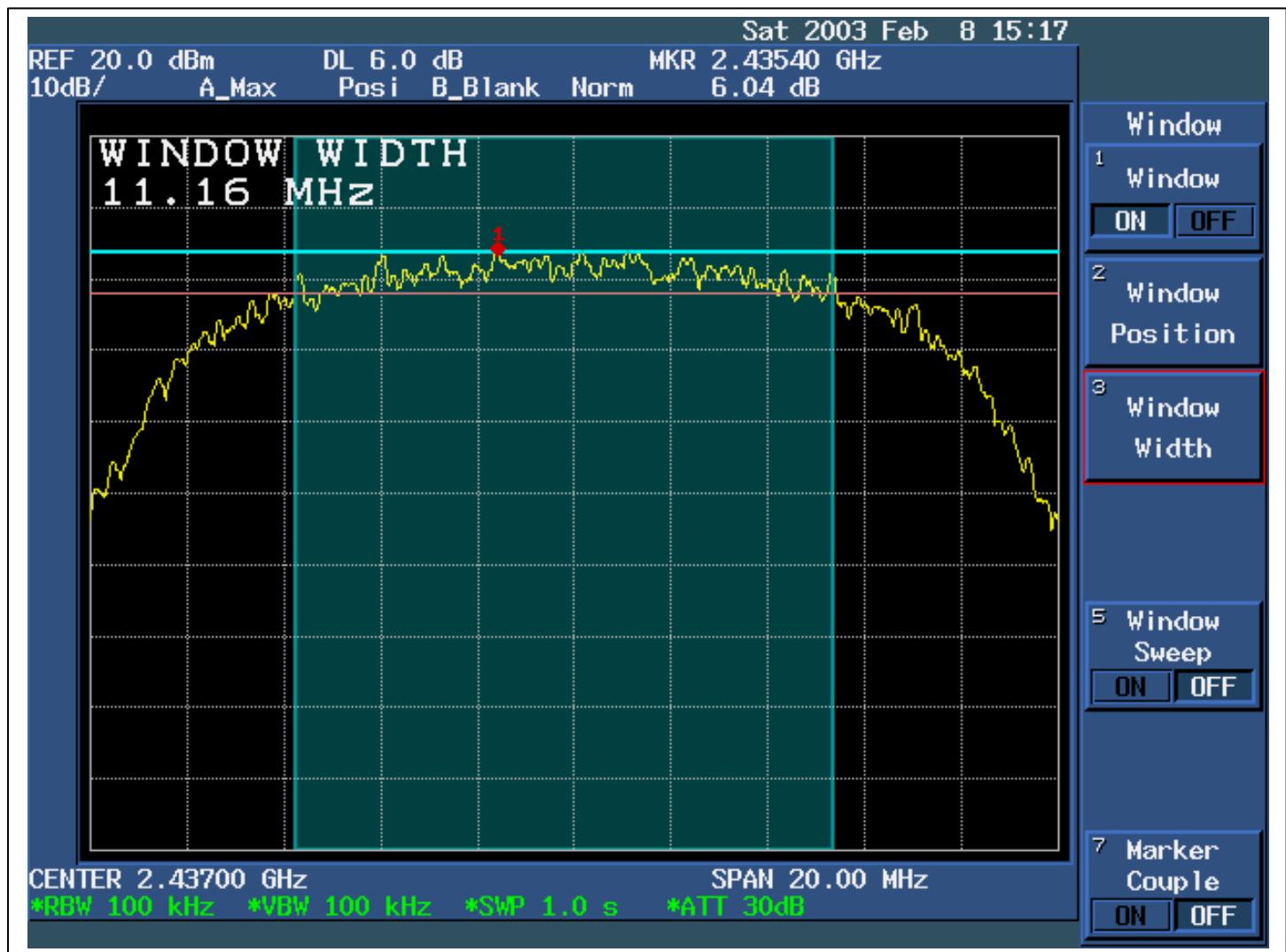

3. Bandwidth for DSSS [Section 15.247 (a)(2)]

3.1 Test Procedure

The Transmitter output of EUT was connected to the spectrum analyzer through an attenuator. The 6 dB bandwidth of the fundamental frequency was measured. The setting of spectrum analyzer is as follows

Equipment mode: Spectrum analyzer
Detector function: Peak mode
RBW: 100KHz
VBW: 100KHz

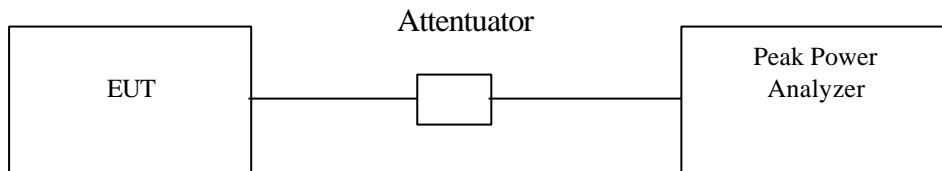

3.2 Test Setup



3.3 Test Data:

Table 3.3.1 6dB Bandwidth

Chennel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Pass/Fail
1	2412	11.12	0.5	Pass
6	2437	11.16	0.5	Pass
11	2462	11.12	0.5	Pass



4. DSSS Maximum Peak Output Power [Section 15.247 (b)(1)]

4.1 Test Procedure

1. The Transmitter output of EUT was connected to the peak power analyzer through an attenuator.

4.2 Test Setup

4.3 Test Data:

Table 4.3.1 Maximum Peak Output Power

Chennel	Frequency (MHz)	Peak Power Output (mW)	Peak Power Output (dBm)	Limit (dBm)	Pass/Fail
1	2412	29.24	14.66	30	Pass
6	2437	30.69	14.87	30	Pass
11	2462	30.41	14.83	30	Pass

**5. RF Exposure Measurement [Section 15.247(b)(4) & 1.1307(b)(1)
MPE]**

Referto SAR Test Report

6. Radiated Emission Measurement [Section [15.247(c)(4)]]

6.1 EUT Configuration

The equipment under test was set up on the 10 meter chamber with measurement distance of 3 meters. The EUT was placed on a non-conductive table 80cm above ground.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

6.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. We found the maximum readings by varying the height of antenna and then rotating the turntable. Both polarization of antenna, horizontal and vertical, are measured.

30M to 1GHz: The highest emissions between 30 MHz to 1000 MHz were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission.

Above 1GHz: The highest emissions were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in peak mode to determine the precise amplitude of the emission. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission. For the harmonic frequency, RBW and VBW were set to the 100KHz.

6.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz~1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth (RBW):	120KHz
Frequency Range:	Above 1GHz
Detector Function:	Peak Mode
Resolution Bandwidth (RBW):	1MHz

6.4 Test Data:.

Table 6.4.1 30M – 1GHz Open Field Radiated Emissions (Horizontal) Channel 1

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntable
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Ampl. (dB)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin* (dB)	Height (cm)	Position (°)
194.9	24.9	8.85	2.59	0	36.33	43.5	-7.17	153	144
298.69	22.18	13.57	3.21	0	38.96	46	-7.04	115	187
300.63	22.05	13.61	3.22	0	38.88	46	-7.12	125	160
325.85	23.2	14.01	3.37	0	42.58	46	-5.42	184	270
390.84	21.4	15.79	3.75	0	40.93	46	-5.07	152	22
782.72	15.54	20.13	5.55	0	41.22	46	-4.78	136	187

Table 6.4.2 30M – 1GHz Open Field Radiated Emissions (Vertical) Channel 1

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntable
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Ampl. (dB)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin* (dB)	Height (cm)	Position (°)
199.75	24.1	8.99	2.63	0	35.72	43.5	-7.78	196	227
260.86	25.88	12.89	2.99	0	41.76	46	-4.24	149	242
300.63	22.92	13.61	3.22	0	42.75	46	-6.25	123	215
325.85	22.59	14.01	3.37	0	42.97	46	-6.03	137	215
677.96	13.19	19	5.07	0	37.26	46	-8.74	100	283
782.72	14.41	20.13	5.55	0	40.09	46	-5.91	112	215

* NOTE: Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss -
Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Table 6.4.3 30M – 1GHz Open Field Radiated Emissions (Horizontal) Channel 6

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntable
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Ampl. (dB)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin* (dB)	Height (cm)	Position (°)
199.75	20.69	8.99	2.63	0	40.31	43.5	-11.19	150	228
260.86	25.86	12.89	2.99	0	41.74	46	-4.26	115	90
455.83	20.41	16.46	4.06	0	40.93	46	-5.07	125	117
716.76	16.51	19.4	5.25	0	41.16	46	-4.84	184	78
782.72	13.42	20.13	5.55	0	43.11	46	-6.89	152	188
847.71	11.23	20.58	5.79	0	37.59	46	-8.41	136	271

Table 6.4.4 30M – 1GHz Open Field Radiated Emissions (Vertical) Channel 6

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntable
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Ampl. (dB)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin* (dB)	Height (cm)	Position (°)
199.75	23.48	8.99	2.63	0	35.1	43.5	-8.4	198	325
298.69	22.39	13.57	3.21	0	39.17	46	-6.83	149	215
325.85	22.86	14.01	3.37	0	40.24	46	-5.76	123	215
586.78	15.62	18.83	4.65	0	39.1	46	-6.9	137	282
716.76	14.55	19.4	5.25	0	39.2	46	-6.8	100	215
782.72	14.52	20.13	5.55	0	40.21	46	-5.79	112	215

* NOTE: Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss -
Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Table 6.4.5 30M – 1GHz Open Field Radiated Emissions (Horizontal) Channel 11

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntabl e
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Am pl. (dB)	Ampl. (dBuV/ m)	Limit (dBuV/ m)	Margin*	Height (cm)	Position (°)
199.75	25.17	8.99	2.63	0	39.79	43.5	-6.71	155	200
260.86	20.87	12.89	2.99	0	36.74	46	-9.26	115	188
597.45	14.04	18.81	4.7	0	37.55	46	-8.45	125	337
716.76	15.67	19.4	5.25	0	42.32	46	-5.68	184	243
847.71	15.47	20.58	5.79	0	41.84	46	-4.16	152	270
912.7	9.86	20.68	6.01	0	36.54	46	-9.46	124	270

Table 6.4.6 30M – 1GHz Open Field Radiated Emissions (Vertical) Channel 11

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntabl e
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Am pl. (dB)	Ampl. (dBuV/ m)	Limit (dBuV/ m)	Margin*	Height (cm)	Position (°)
400.54	23.35	16.1	3.8	0	43.26	46	-2.74	190	117
455.83	17.56	16.46	4.06	0	38.08	46	-7.92	149	117
521.79	16.21	18.22	4.36	0	38.79	46	-7.21	123	172
651.77	15.35	19	4.95	0	39.3	46	-6.7	137	90
716.76	17.52	19.4	5.25	0	42.17	46	-3.83	100	145
847.71	11.28	20.58	5.79	0	37.65	46	-8.35	115	117

* NOTE: Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss -
Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Table 6.4.7 1GHz~ 25GHz Open Field Radiated Emissions (Horizontal) Channel 1

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntable
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Ampl. (dB)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin*	Height (cm)	Position (°)
*2412.2	62.88	30.24	5.90	0	99.02	--	--	125	112
4824.9	49.3	33.9	8.80	49.21	42.79	54	-11.21	125	123
7236.8	39.29	39.88	11.30	48.01	42.46	54	-11.54	100	117

“*” : Fundamental Frequency

Table 6.4.8 1GHz~25GHz Open Field Radiated Emissions (Vertical) Channel 1

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntable
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Ampl. (dB)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin*	Height (cm)	Position (°)
*2412.2	67.47	30.24	5.90	0	103.61	--	--	125	110
4824.9	48.59	33.9	8.80	49.21	42.08	54	-11.92	125	109
7236.9	37.45	39.88	11.30	48.01	40.62	54	-13.38	100	120

“*” : Fundamental Frequency

* NOTE: Margin = Corrected Amplitude – Limit
Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Table 6.4.9 1GHz~ 25GHz Open Field Radiated Emissions (Horizontal) Channel 6

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntable
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Ampl. (dB)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin*	Height (cm)	Position (°)
*2437.2	64.27	30.22	5.95	0	100.44	--	--	125	122
4874.9	47.73	34.14	8.90	49.24	41.53	54	-12.47	125	120
7311.2	37.64	39.98	11.40	47.88	41.14	54	-12.86	100	112

“*” : Fundamental Frequency

Table 6.4.10 1GHz~25GHz Open Field Radiated Emissions (Vertical) Channel 6

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntable
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Ampl. (dB)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin*	Height (cm)	Position (°)
*2437.1	68.55	30.22	5.95	0	104.72	--	--	125	132
4874.9	48.10	34.14	8.90	49.24	41.90	54	-12.10	125	118
7311.2	38.68	39.98	11.40	47.88	42.18	54	-11.82	100	105

“*” : Fundamental Frequency

* NOTE: Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss -
Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Table 6.4.11 1GHz~ 25GHz Open Field Radiated Emissions (Horizontal) Channel 11

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntable
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Ampl. (dB)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin* (dB)	Height (cm)	Position (°)
*2462.2	62.26	30.22	5.98	0	98.46	--	--	125	128
4924.6	46.38	34.3	8.95	49.26	40.37	54	-13.63	125	115
7386.9	38.53	39.55	11.45	47.79	41.74	54	-12.26	100	110

“ * ” : Fundamental Frequency

Table 6.4.12 1GHz~25GHz Open Field Radiated Emissions (Vertical) Channel 11

Meter Reading		Correction Factor			Corrected Emissions			Antenna	Turntable
Freq. (MHz)	Ampl. (dBuV)	Ant. (dB/m)	Cable (dB)	Pre-Ampl. (dB)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin* (dB)	Height (cm)	Position (°)
*2462.2	67.22	30.22	5.98	0	103.42	--	--	125	130
4924.6	47.78	34.3	8.95	49.26	41.77	54	-12.23	125	118
7387.1	40.08	39.55	11.45	47.79	43.29	54	-10.21	100	108

“ * ” : Fundamental Frequency

* NOTE: Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss -
Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

7. DSSS Peak Power Spectral Density [Section 15.247(d)]

7.1 Test Procedure

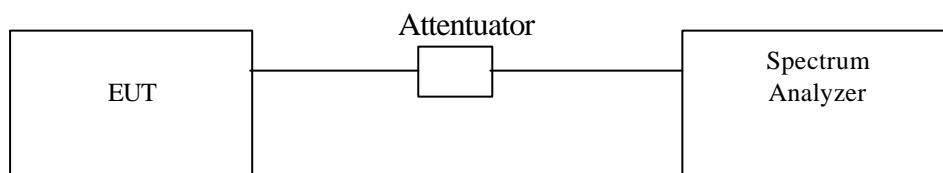
1. The Transmitter output of EUT was connected to the spectrum analyzer.

Equipment mode: Spectrum analyzer

Detector function: Peak mode

SPAN:300KHz

RBW: 3KHz


VBW: 30KHz

Center frequency: fundamental frequency tested.

Sweep time= 100 sec.

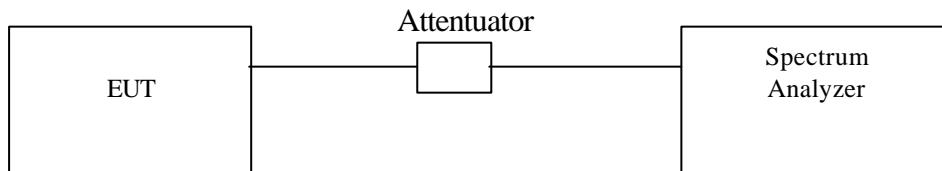
2. Using Peak Search to read the peak power after Maximum Hold function is completed.

7.2 Test Setup

7.3 Test Data:

Table 7.3.1 Maximum Peak Output Power Density

Chennel	Frequency (MHz)	Peak Power Output (dBm/3KHz)	Limit (dBm/3KHz)	Pass/Fail
1	2412.3	-8.93	8	Pass
6	2435.4	-8.98	8	Pass
11	2460.4	-8.92	8	Pass



8. Band Edge Measurement

8.1 Test Procedure (Conducted)

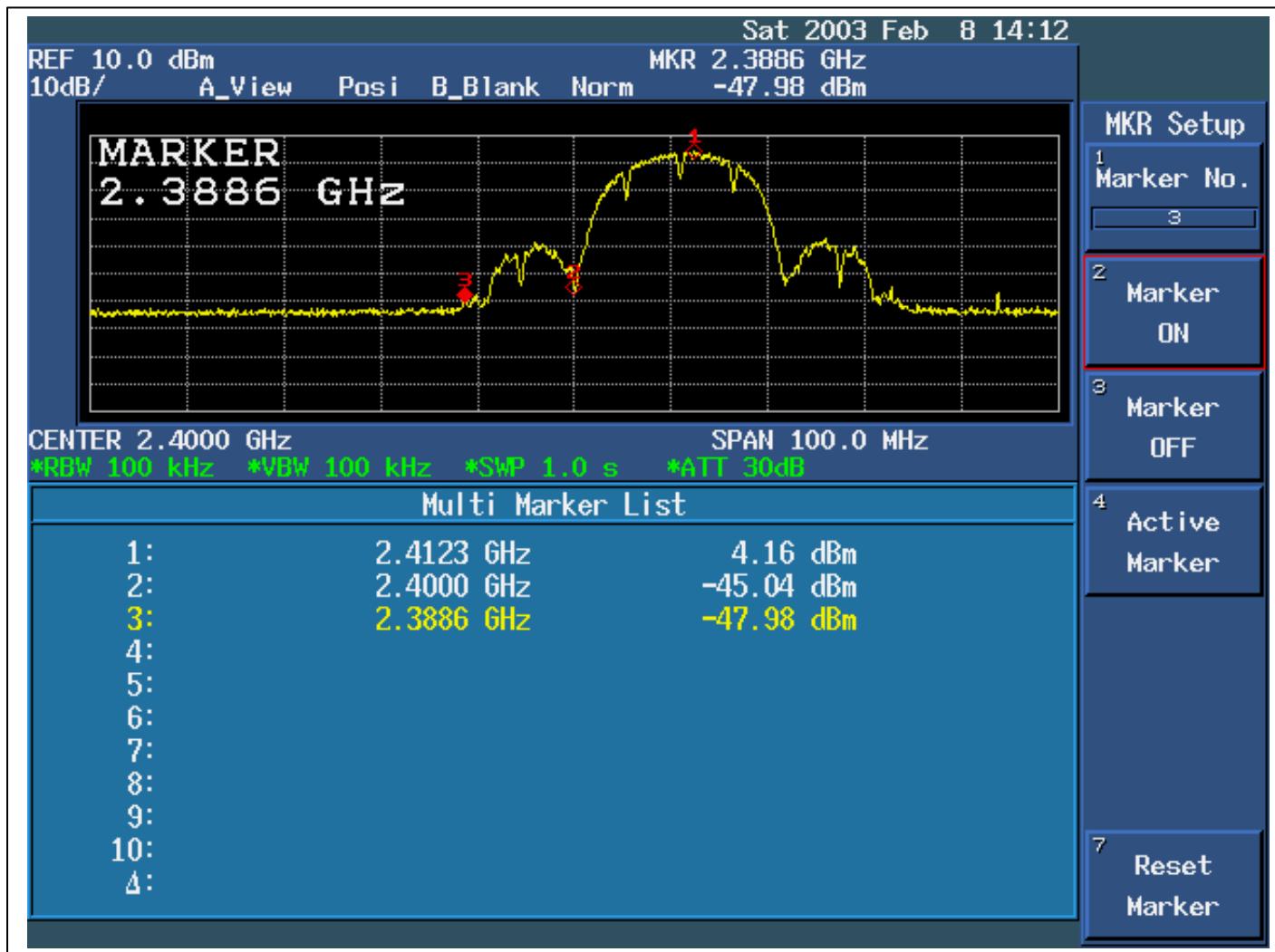
1. The Transmitter output of EUT was connected to the spectrum analyzer.
Equipment mode: Spectrum analyzer
Detector function: Peak mode
SPAN: 100MHz
RBW: 100KHz
VBW: 100KHz
Center frequency: 2.4GHz, 2.4835GHz.
Sweep time= 1 sec.
2. Using Peak Search to read the peak power of Carrier frequencies after Maximum Hold function is completed.
3. Find the next peak frequency outside the operation frequency band.

8.2 Test Setup (Conducted)

8.3 Test Data:

Table 8.3.1 Band Edge measurement (Conducted)

Channel	Frequency (MHz)	Spectrum Reading (dBm)	Carrier - Outsideband Limit: > 20dB (dB)	Pass/Fail
1	2412.3	4.16	---	
Outside band	2388.6	-47.98	52.14	Pass
11	2462.6	4.47	---	
Outside band	2484.26	-47.85	52.32	Pass


Note: The emission strength of Carrier Channel 11 is 103.42dB_V/m (refer to page 21)

The emission of 2484.26MHz is $103.42 - 52.32 = 51.10$ dB_V/m < 54dB_V/m

The emission strength of Carrier Channel 1 is 103.61dB_V/m (refer to page 19)

The emission of 2484.26MHz is $103.61 - 52.14 = 51.28$ dB_V/m < 54dB_V/m

Band Edge Conducted measurement

Band Edge Conducted Measurement

8.4 Test Procedure (Radiated)

1. Antenna and Turntable test procedure same as Para. 6.2.
Equipment mode: Spectrum analyzer
Detector function: Peak mode
SPAN: 100MHz
RBW: 100KHz
VBW: 100KHz
Center frequency: 2.381GHz, 2.481GHz.
Sweep time= 1 sec.
2. Using Peak Search to read the peak power of Carrier frequencies after Maximum Hold function is completed.
3. Find the next peak frequency outside the operation frequency band.
4. For peak frequency emission level measurement in Restricted Band ,
Change RBW: 1MHz ,
VBW: 100Hz,
Sweep time: 5 Sec.
Span: 100MHz.
5. Get the spectrum reading after Maximum Hold function is completed.

8.5 Test Setup (Radiated)

Same as para. 9.5.2

8.6 Test Data:

Table 8.3.1 Band Edge measurement (Radiated)

Channel	Frequency (MHz)	Spectrum Reading (dBm)	Emission Level (dBuV/m)	Limit: > 20dB (dBC)	Limit (dBuV/m)	Equip. Setup VBW	Pass/Fail
1	2412.3	-5.1	94.96	---		100KHz	
Outside band	2396.5	-40.93	59.13	35.83	-----	100KHz	Pass
Outside band	2390.0	-62.23	37.83	57.13	-----	100KHz	Pass
Restricted band	2390.0	-66.45	33.61	-----	54	100Hz	Pass
11	2462.6	-4.84	95.25	-----		100KHz	
Outside band	2484.5	-56.56	43.54	51.71	-----	100KHz	Pass
Restricted band	2484.5	-60.19	39.91	-----	54	100Hz	Pass

Note: The Spectrum plot of emission level measurement in Restricted band is attached.

Band Edge measurement for radiated emission in Restricted Band(Radiated)

Band Edge measurement for radiated emission in Restricted Band(Radiated)

9. Appendix

9.1 Appendix A: Warning Labels

Label Requirements

An intentional radiator device subject to certification by the FCC shall carry a warning label which includes the following statement: (Due to space limitation, this statement will be place on the users' manual.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The sample label shown shall be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

FCC ID: NKRUSB400

9.2 Appendix B: Measurement Procedure for Powerline Conducted Emissions

The EUT is set up in accordance with the suggested configuration given in ANSI C63.4-1992, CFR 47 Part 15 Subpart B; or EN55022: 1994/ A1: 1995/A2:1997; CISPR 22:1993/A1: 1995/A2: 1996 or AS/NZS 3548:1995 /A1:1997 /A2:1997. The measurements are performed in a 3.5m x 3.4m x 2.5m shielded room, which referred as Conduction 01 test site, or a 3m x 3m x 2.3m test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the Figure 1 of the ANSI C63.4-1992 or CISPR16. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

If the EUT is supplied with a flexible power cord, the power cord length in excess of the distance separating the EUT from the LISN shall be folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length. If the EUT is provided with a permanently coiled power cord, bundling of the cord is not required. If the EUT is supplied without a power cord, the EUT shall be connected to the LISN by a power cord of the type specified by the manufacturer which shall not be longer than 1 meter. The excess power cord shall be bundled as described above. If a non-flexible power cord is provided with the EUT, it shall be cut to the length necessary to attach the EUT to the LISN and shall not be bundled.

The interconnecting cables were arranged and moved to get the maximum according to ANSI C63.4-1992, CFR 47 Part 15 Subpart B; or EN55022: 1994/ A1: 1995/A2:1997; CISPR 22:1993/A1: 1995/A2: 1996. Both the line of power cord, hot and neutral, were measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

9.3 Appendix C: Test Procedure for Radiated Emissions

Preliminary Measurements in the Anechoic Chamber

The radiated emissions are initially measured in the anechoic chamber at a measurement distance of 3 meters. Desktop EUT are placed on a wooden stand 0.8 meter in height. The measurement antenna is 3 meters from the EUT. The test setup in anechoic chamber is the same as open site. The turntable rotated 360°C. The antenna height is varied from 1-2.5m. The primary objective of the radiated measurements in the anechoic chamber is to identify the frequency spectrum in the absence of the electromagnetic environment existing on the open test site. The frequencies can then be pre-selected on the open test site to obtain the corresponding amplitude. The initial scan is made with the spectrum analyzer in automatic sweep mode. The spectrum peaks are then measured manually to determine the exact frequencies.

Measurements on the Open Site or 10m EMC Chamber

The radiated emissions test will then be repeated on the open site or 10m EMC chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of the 3 or 10 meter open field sites. Desktop EUT are set up on a wooden stand 0.8 meter above the ground.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. Both reading are recorded with the quasi-peak detector with 120KHz bandwidth. For frequency between 30 MHz and 1000MHz, the reading is recorded with peak detector or quasi-peak detector. For frequency above 1 GHz, the reading is recorded with peak detector or average detector with 1 MHz bandwidth.

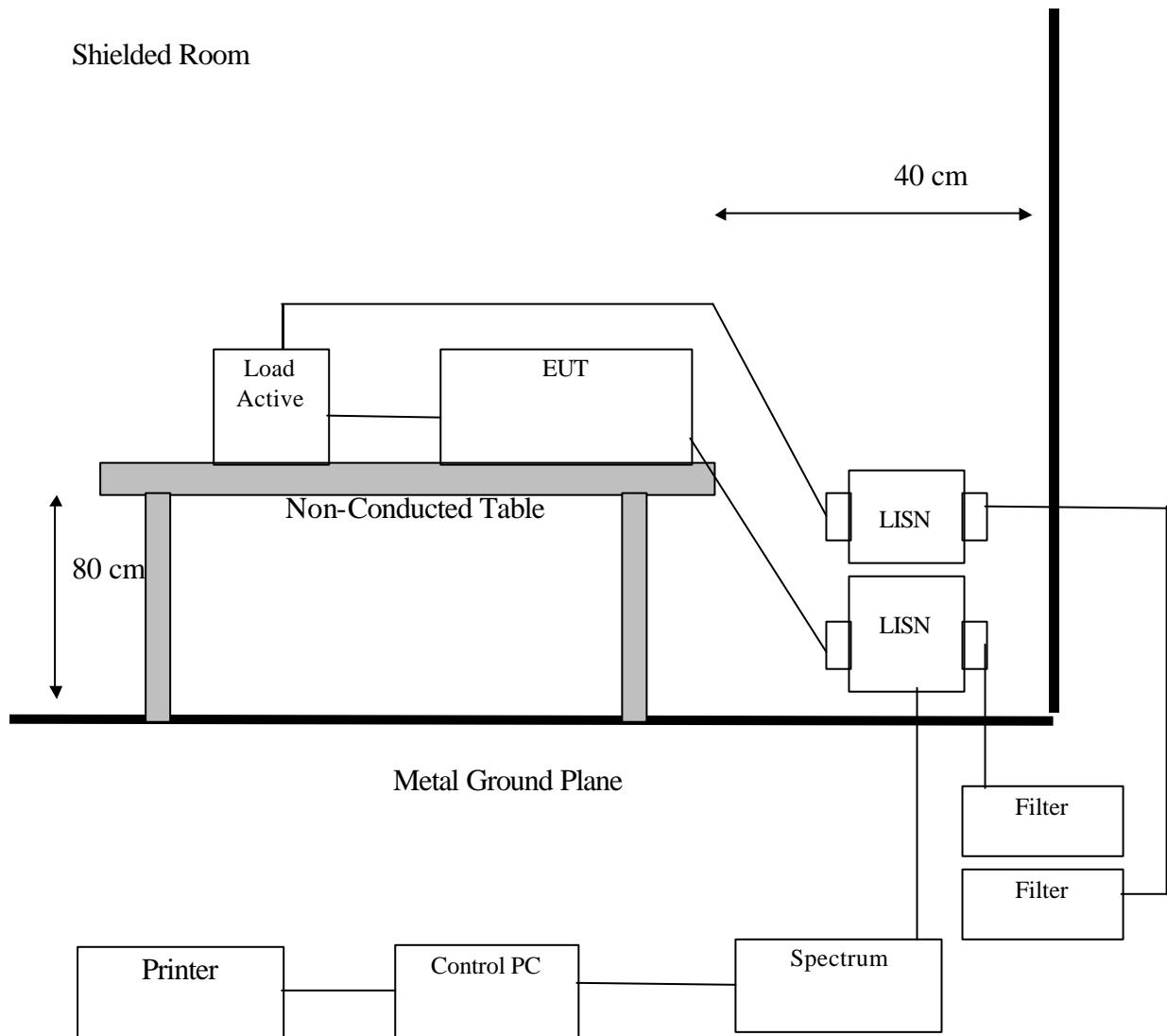
At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum according to ANSI C63.4-1992, CFR 47 Part 15 Subpart B; or EN55022: 1994/ A1: 1995/A2:1997; CISPR 22:1993/A1: 1995/A2: 1996. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

9.4 Appendix D: Test Equipment

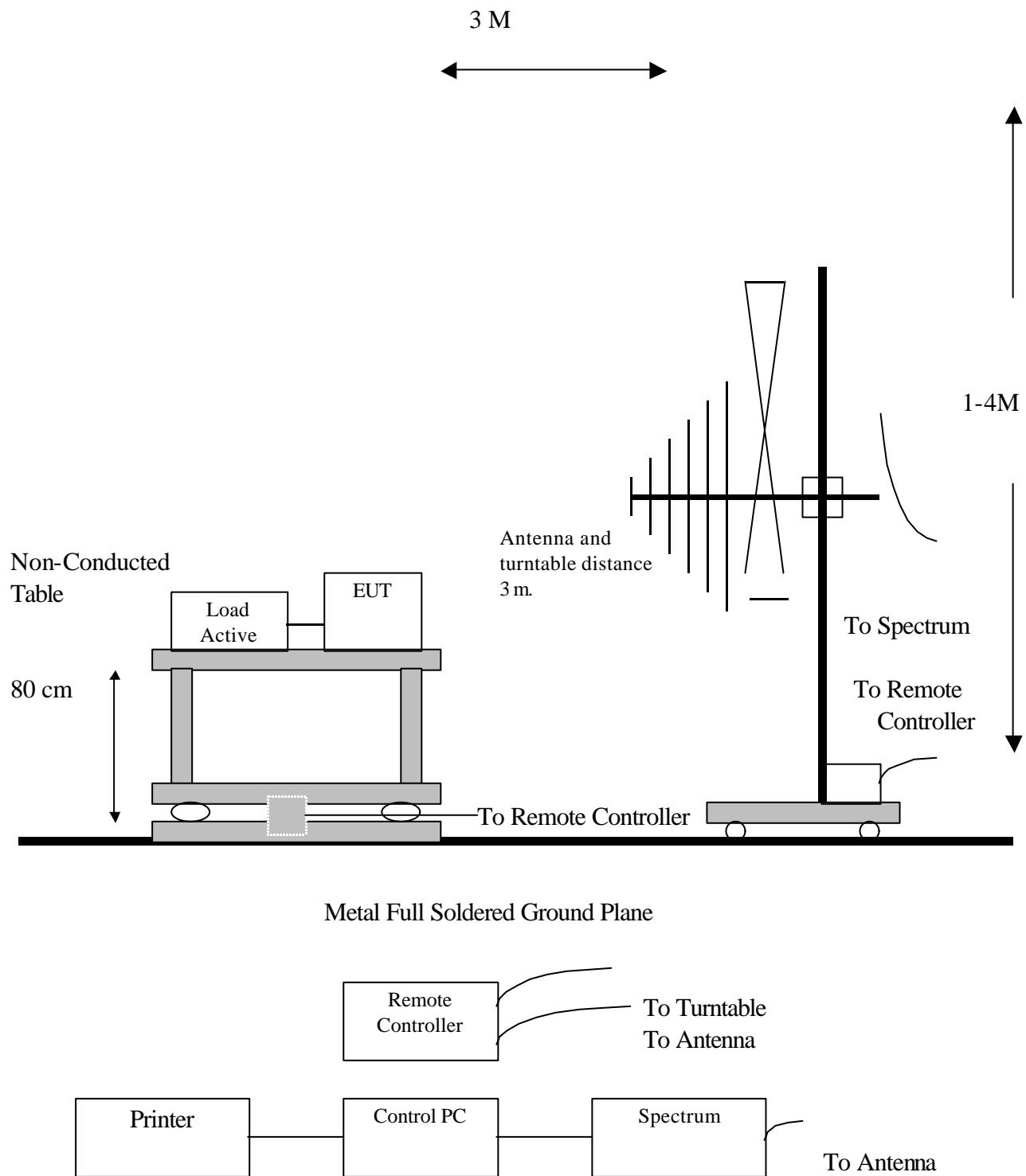
9.4.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction	50 Ohms Load Conduction 02	EMCO	N/A	ISL-50ohms conduction 02	11/21/2002	11/21/2003
Conduction	Coaxial Cable 1F-C2	Harbourindu stries	RG400	1F-C2	06/03/2002	06/03/2003
Conduction	Digital Hygro-Thermometer Conduct	MicroLife	HT-2126G	ISL-Conducti on02	12/16/2001	12/16/2003
Conduction	EMI Receiver 02	HP	85460A	3448A00183	08/21/2002	08/21/2003
Conduction	ISN T4	Schaffner	ISN T400	16593	08/20/2002	08/20/2004
Conduction	LISN 01	R&S	ESH2-Z5	890485/013	05/07/2002	05/07/2003
Conduction	LISN 03	R&S	ESH3-Z5 831.5518.52	828874/D10	10/31/2002	10/31/2003
Radiation	Spectrum Analyzer 06	Advantest	R3162	91700295	09/25/2002	09/24/2003
Radiation	EMI Receiver 05	AFJ	ER 55CR	55390143234	11/07/2002	11/07/2003
Radiation	BILOG Antenna 08	Schaffner	CBL6112B	2756	06/04/2002	06/04/2003
Radiation	Microwave Cable Chmb 02 3M	HUBER+SU HNER AG.	Sucoflex 103	42731/3 & 42729/3	03/21/2002	03/21/2003
Radiation	Coaxial Cable Chmb 02-10M	Belden	RG-8/U	Chmb 02-10M	01/14/2002	01/14/2003
Radiation	Digital Hygro-Thermometer Chmb 02	MicroLife	HT-2126G	Chmb 02	02/07/2002	02/07/2003
Rad. Above 1Ghz	Horn Antenna 02	Com-Power	AH-118	10088	02/25/2002	02/25/2003
Rad. Above 1Ghz	Horn Antenna 04	Com-Power	AH-826	081-001	10/17/2002	10/17/2003
Rad. above 1Ghz	Horn Antenna 05	Com-Power	AH-640	100A	09/13/2001	09/13/2003
Rad. above 1Ghz	Microwave Cable Chmb 05	HUBER+SU HNER AG.	Sucoflex 103	42726/3 & 42727/3	09/11/2002	09/11/2003
Rad. Above 1Ghz	Preamplifier 02	MITEQ	AFS44-00102 650-40-10P-4 4	728229	05/07/2002	05/07/2003
Rad. Above 1Ghz	Preamplifier 09	MITEQ	AFS44-00102 650-40-10P-4 4	858687	02/28/2002	02/28/2003

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
RF	Peak Power Analyzer	HP	8990A	3621A01269	11/05/2001	11/05/2004
Rad. Above 1Ghz	Preamplifier 10	MITEQ	JS-26004000-27-5A	818471	02/28/2002	02/28/2004
Rad. Above 1Ghz	Signal Generator 03	Anritsu	MG3642A	6200162550	02/05/2002	02/05/2003
Rad. Above 1Ghz	Signal Generator 04	Anritsu	MG3692A	020311	02/06/2002	02/06/2004
Rad. Above 1Ghz	Spectrum Analyzer 07	Advantest	R3182	110600649	10/17/2002	10/17/2003


Note: Calibration traceable to NIST or national or international standards.

9.4.2 Software for Controlling Spectrum/Receiver and Calculating Test Data


Radiation/Conduction	Filename	Version	Issued Date
Conduction	Tile.exe	1.12E	7/7/2000
Radiation	Tile.exe	1.12C	6/16/2000

9.5 Appendix E: Layout of EUT and Support Equipment

9.5.1 General Conducted Test Configuration

9.5.2 General Radiation Test Configuration

9.6 Appendix F: Description of Support Equipment

9.6.1 Description of Support Equipment

Support Unit 1.

Description :	Notebook PC
Condition:	Pre-Production
Model :	MS2101
Serial Number :	N/A
AC-DC Adaptor :	LiteOn (Model: PA-1500-02) 2 Pins
Hard Disk Driver:	IBM (Model: IC25N010ATDF80199) 10.0 GB
SDRAM:	INFINEON (Model: HYS64V16220GDL-7.5) 128MB
CD-ROM Driver:	AOpen(Model:SC-924U) (Optional module)
FDD Driver:	Y-E Data(Model:YD-8U10 B-Color) (Optional module)
Modem Module:	Ambit (Model: T60M283.00 3A)
USB Connector:	two 4-pin
VGA Port:	one 15-pin
LAN Connector:	one 8-pin
Modem Connector:	one 4-pin
1394 Port:	one 4-pin
PCMCIA Slot:	one 68-pin
Line Out Port:	one
Line In Port:	one
Power Jack:	one AC-IN port
LCD:	TOSHIBA 10.4" (Model: TLM10C321K)
Display:	LCD & CRT (1024 X 768)
Maximum Resolution:	LCD & CRT (1024 X 768)
Battery:	SANYO (Model: BTP-42C1)
Power Cord:	Shielded, Detachable (3 pins)
Speed & CPU	CPU
Speed	Pentium III 850MHz
100MHz	

Support Unit 2.

Description:	Coson radio cassette player
Model Number:	C-2087
Serial Number:	N/A
Power Supply Type:	N/A
Power Cord:	N/A

Support Unit 3.

Description:	Acer Monitor
Model:	G781
Serial Number:	999007101214400445T7AA31T
Power Cord:	Non-shielded, Detachable
FCC ID:	(Comply with FCC Standards)

Support Unit 4.

Description: Logitech USB Mouse
Model Number: M-u48a
Serial Number: LZE02050204
Power Supply Type: N/A
Power Cord: N/A
FCC ID: JNZ211360

9.6.2 Software for Controlling Support Unit

A test program which generates a complete line of continuously repeating "H" pattern is used as the software test program. The program was executed as follows:

- A. Read and write to the disk drives.
- B. Receive audio signal from walkman.
- C. Send H pattern to the video port device (Monitor).
- D. Repeat the above steps.

	Filename	Issued Date
Monitor	HH.bat	8/20/1991

9.6.3 I/O Cable Condition of EUT and Support Units

Description	Path	Cable Length	Cable Type	Connector Type
AC Power Cord	110V (~240V) to AC Power Cord Inlet (3-pin)	1.8M	Nonshielded, Detachable	Plastic Head Plastic Hood
USB Mouse Data Cable	USB Mouse to PC USB port	1.8M	Shielded, Un-detachable	Metal Head
Monitor Data Cable	Monitor to PC VGA port	1.6M	Shielded, Un-detachable	Metal Head
Audio-in Data Cable	Walkman to PC Line In Port	2M	Non-shielded, Detachable	Plastic Head

9.7 Appendix G: Accuracy of Measurement

Test Site: Conduction 02

Item	Source of Uncertainty	Probability Distribution	Total Uncertainties (dB)		Standard Uncertainty (dB)	
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.104	k=1	0.052
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.330	k=1	0.165
3	Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
4	LISN Factor Calibration	Normal	k=2	1.200	k=1	0.600
5	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
6	Combined Standard Uncertainty $U_c(y)$	Normal			k=1	0.850
7	Total Uncertainty @95% min. Confidence Level	Normal	k=2	1.701		

Measurement Uncertainty Calculations:

$$U_c(y) = \text{square root} (u_1(y)^2 + u_2(y)^2 + \dots + u_n(y)^2)$$

$$U = 2 * U_c(y)$$

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

Test Site: OATS 02

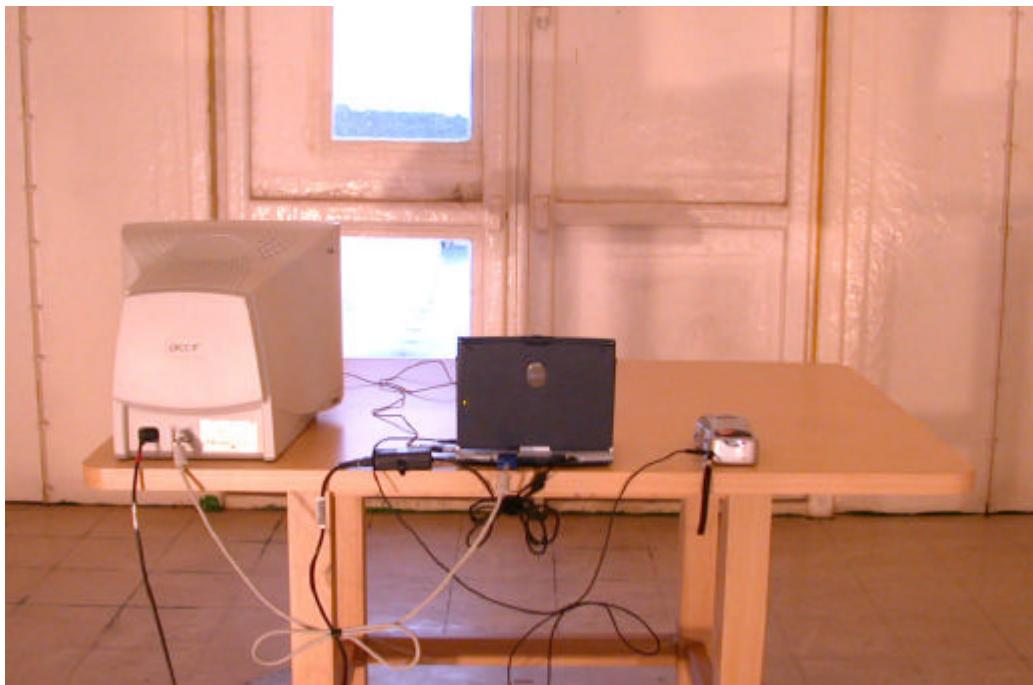
Item	Source of Uncertainty	Probability Distribution	Total Uncertainties (dB)		Standard Uncertainty (dB)	
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.735	k=1	0.367
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.539	k=1	0.270
3	Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
4	Antenna Factor Calibration	Normal	k=2	1.000	k=1	0.500
5	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
6	Combined Standard Uncertainty $U_c(y)$	Normal			k=1	0.889
7	Total Uncertainty @95% mim. Confidence Level	Normal	k=2	1.779		


Measurement Uncertainty Calculations:

$$U_c(y) = \text{square root} (u_1(y)^2 + u_2(y)^2 + \dots + u_n(y)^2)$$
$$U = 2 * U_c(y)$$

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

9.8 Appendix H: Photographs of EUT Configuration Test Set Up


The Front View of Highest Conducted Set-up For EUT

The Front View of Highest Radiated Set-up For EUT

The Back View of Highest Radiated Set-up For EUT

9.9 Appendix I: Antenna Spec.

Please refer to the attached file.