

HIGH-TEK HARNESS ENTERPRISE

Antenna Testing Report

CLEVO 5600

Prepared by

Charles Teng

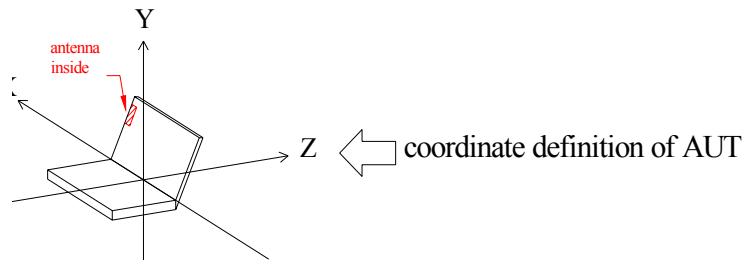
Approved by

David Su

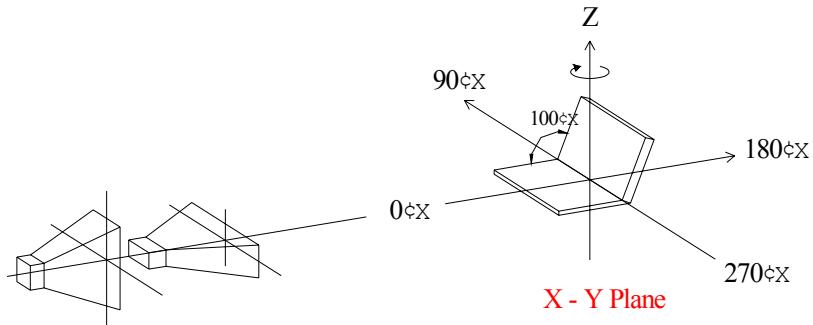
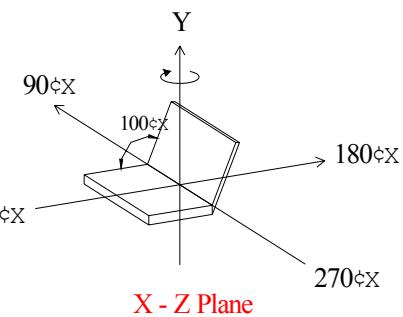
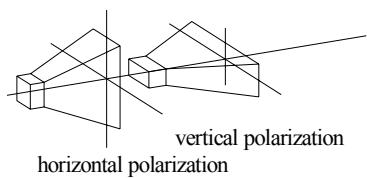
General Information

- *Measurement Resume*

Date	Engineer	2.4~2.5 GHz	5.15~5.35 GHz	5.47~5.725 GHz	5.725~5.825 GHz
91/03/22	Charles Teng	.			

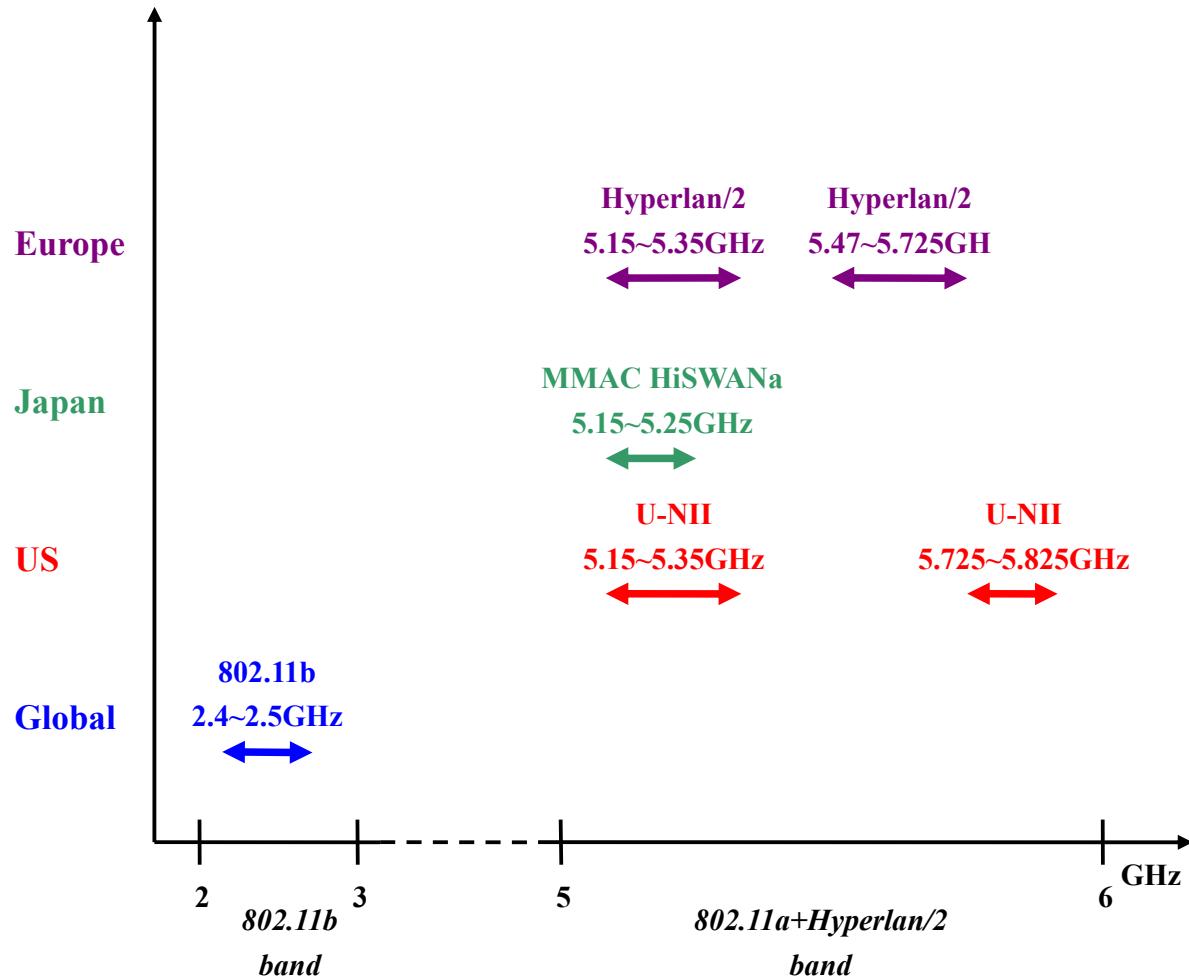

- *Antenna specifications:* maximum size, unit: mm

DIPOLE Type	Length	Width	Height	Cable length
Right Side	64.0	5.8	4.5	536
Left Side	64.0	5.8	4.5	709




- *Measurement Setup & Environment*

Temp.	Humidity	Instrument	System	Entry
20°C	50%	VNA HP8753ES, 7x4x4 m anechoic chamber	NSI antenna measurement system	VSWR, Return, Radiation pattern

Coordinate Definition



IORN ANTENNA

Antenna Drawing

ITEM	DESCRIPTION
1	Coaxial Cable
2	Coaxial
3	共轴线(BLK)
4	共轴线(BLK)
5	共轴线(GREY)
6	Antennas (PIR)
7	34466避雷针面
8	SPONGE
9	34466避雷针面
10	共轴线(BLK)

Spectrum Allocation in worldwide WLAN

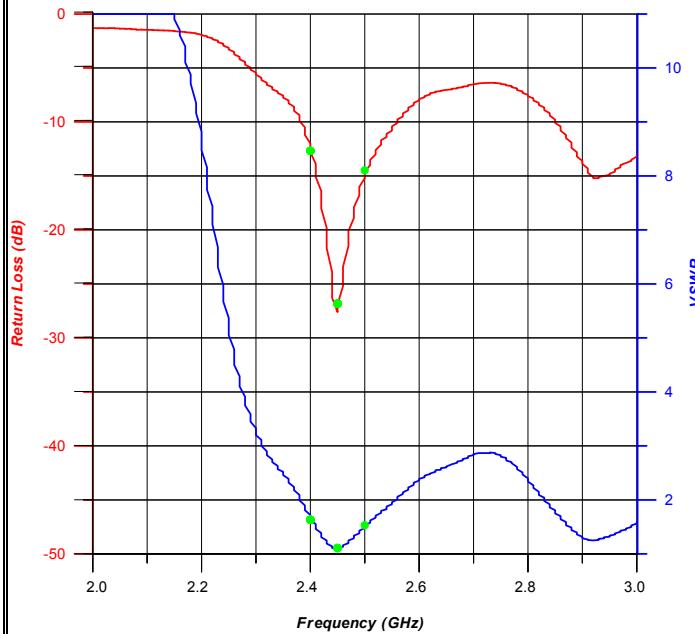
Typical Performance of Antenna

I. Typical Performance Table

	2.4~2.5GHz	5.15~5.25GHz	5.15~5.35GHz	5.47~5.825GHz
VSWR	1.80			
Peak Gain	-0.45 dBi			
Average Gain	-4.32 dBi			

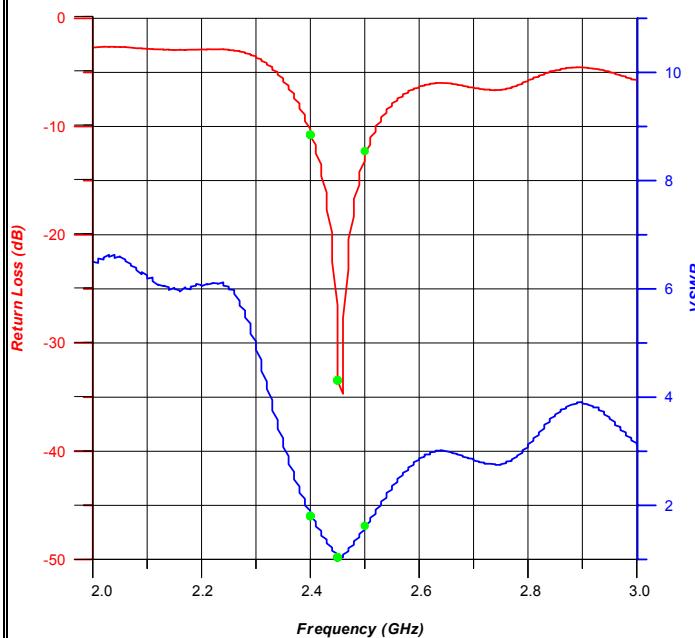
II. Antenna Type

Position	Main Antenna (Right-side Antenna)	Aux Antenna (Left-side Antenna)
Antenna Type	PIFA	PIFA
Material	METAL SHEET	METAL SHEET


III. VSWR

	2.4GHz ISM 2.4~2.5GHz			JAPAN 5.15~5.25GHz		U-NII,Hyperlan/2 5.150~5.35GHz			U-NII+HiperLAN/2 5.47~5.825GHz		
Freq (GHz)	2.40	2.45	2.50	5.15	5.25	5.15	5.25	5.35	5.47	5.6	5.825
MAIN	1.63	1.11	1.53								
AUX	1.80	1.04	1.62								

IV. Peak Gain and Average Gain


Freq (GHz)		2.4GHz ISM 2.4~2.5GHz			JAPAN 5.15~5.25GHz		U-NII,Hyperlan/2 5.150~5.350GHz			U-NII+HiperLAN/2 5.470~5.825GHz		
		2.40	2.45	2.50	5.15	5.25	5.15	5.25	5.35	5.47	5.6	5.825
MAIN	Peak	-0.86	0	1.51								
	Avg	-4.34	-4.32	-3.45								
AUX	Peak	-3.73	-3.16	-1.58								
	Avg	-6.89	-6.51	-5.52								

Return Loss & VSWR***L-Antenna***

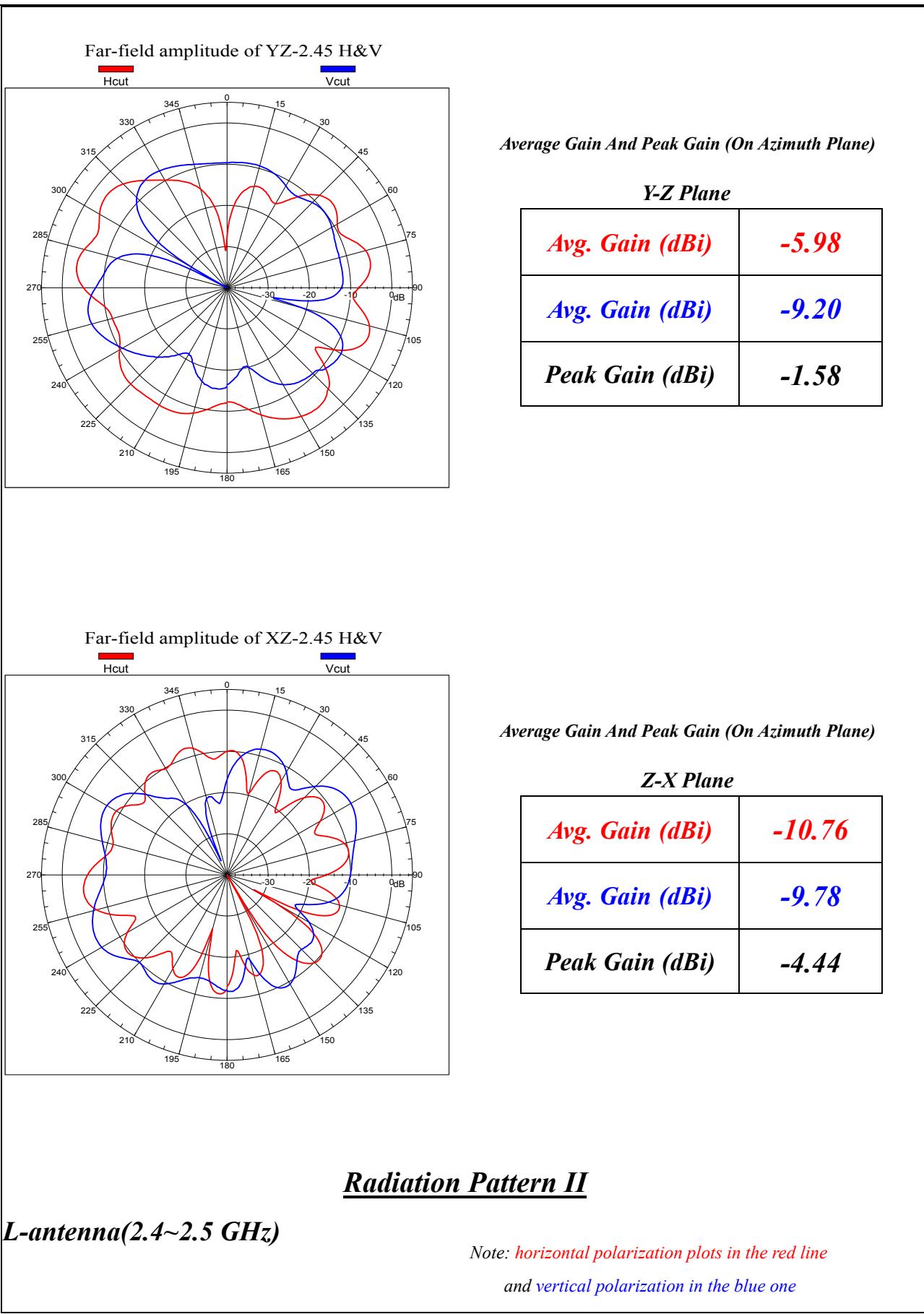
2.4~2.5 GHz Center freq.	2450	
Beam Width @MHz	120	
freq.	Return Loss(dB)	VSWR
2.4 GHz	-12.8	1.63
2.45 GHz	-26.9	1.11
2.5 GHz	-14.6	1.53

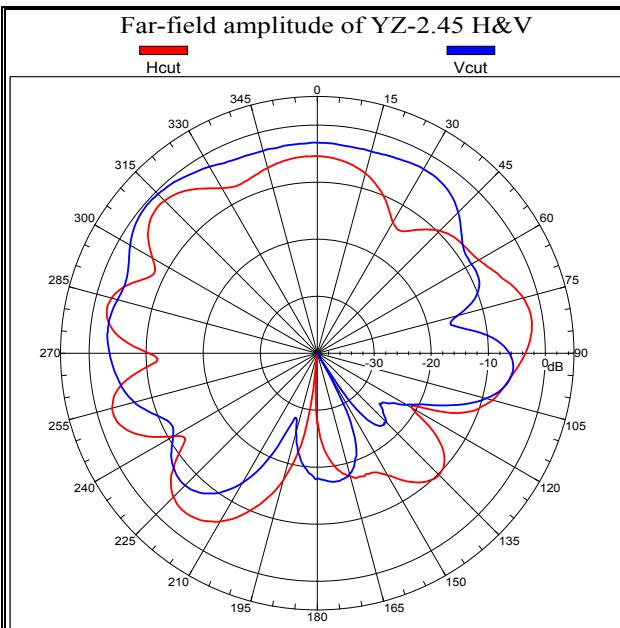
R-Antenna

2.4~2.5 GHz Center freq.	2450	
Beam Width @MHz	120	
freq.	Return Loss(dB)	VSWR
2.4 GHz	-10.9	1.80
2.45 GHz	-33.5	1.04
2.5 GHz	-12.4	1.62

Radiation Pattern I

R-antenna(2.4~2.5 GHz)

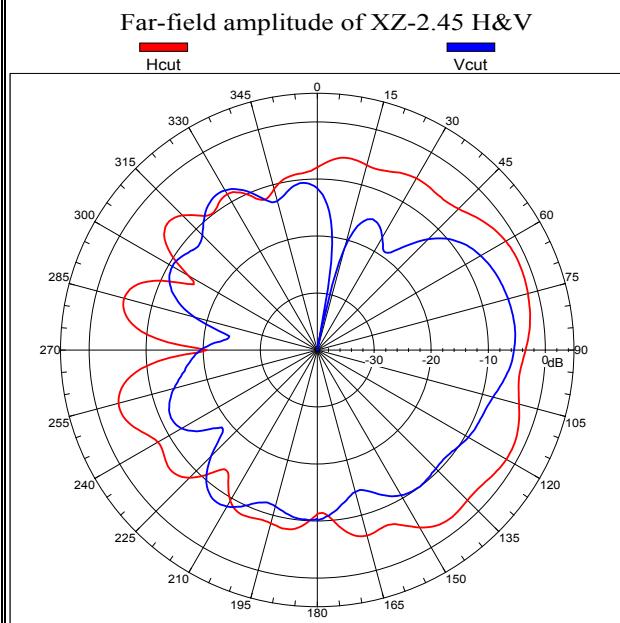

Note: horizontal polarization plots in the red line


and vertical polarization in the blue one

2002/03/22

REV. A

page:7



Average Gain And Peak Gain (On Azimuth Plane)

Y-Z Plane

Avg. Gain (dBi)	-6.62
Avg. Gain (dBi)	-5.70
Peak Gain (dBi)	0

Average Gain And Peak Gain (On Azimuth Plane)

Z-X Plane

Avg. Gain (dBi)	-5.42
Avg. Gain (dBi)	-10.26
Peak Gain (dBi)	-1.49

Appendix

VSWR : *Voltage standing wave ratio on a transmission line in an antenna system. The ratio of the forward to reflected voltage on the line, and not a power ratio. A VSWR of 1:1 occurs when all parts of the antenna system are*

matched correctly.

Return Loss : When the load is mismatched, then, not all of the available power from the generator is delivered to the load. This 'loss' is called return loss(RL).

Radiation pattern : The radiation characteristics of an antenna as a function of spatial coordinates. Normally, the pattern is measured in the far-field region and is represented graphically.

Polarization : The sense of the wave radiated by an antenna. This can be horizontal, vertical, elliptical , or circular (left or right hand circularity), depending on the design and application. The polarization of the antenna is based on the orientation of the electric or E field component. The polarization must be matched between two antennas to receive the maximum field intensity. Dependent on the antenna type, it is possible to radiate linear, elliptical and circular polarizations.

Gain value : The increase in effective radiated power in the desired direction of the major lobe.

Peak gain : The highest gain value in 360 degrees, which means the antenna efficiency at this angle is the best.

Cable loss : When RF signal transmitting in the coaxial cable, due to the material of the cable, the power may dissipate into the air in the form of heat. So when we try to measure the gain of an antenna, we have to offset the cable loss. The power loss of coaxial cable($\Phi=1.13$ mm) at 2.4~2.5 GHz is 3dB per 1000 mm . In this case, the cable length of the right antenna is about 536 mm , so the cable loss when RF signal transmitting at 2.4~2.5 GHz is about 1.61 dB . For the same reason , the cable length of the left antenna is about 709 mm , so the cable loss when RF signal transmitting at 2.4~2.5 GHz is about 2.13 dB . Which means we have to offset the cable loss to the gain value that we measure from the radiation pattern and that is the true antenna gain (G_a) we want .

