

Choose certainty.
Add value.

# Report On

FCC and Industry Canada Testing of the Kohler Co. KARING 2.0 INTELLIGENT TOILET K-77780 10.525GHz In accordance with FCC CFR 47 Part 15C & Industry Canada RSS-210 and Industry Canada RSS-GEN

COMMERCIAL-IN-CONFIDENCE

FCC ID: N82-KOHLER020 IC ID: 4554A-KOHLER020

Document 708881622804-00 Report 01 Issue 1

Aug 2016



#### **Product Service**

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch No.88 Heng Tong Road, Shanghai 200070, P.R. China Tel: +86-(0)21 6141 0123. Website: <a href="https://www.tuv-sud.cn">www.tuv-sud.cn</a>

COMMERCIAL-IN-CONFIDENCE

**REPORT ON** FCC and INDUSTRY CANADA Testing of the

Kohler Co.

KARING 2.0 INTELLIGENT TOILET K-77780

In accordance with FCC CFR 47 Part 15C & Industry Canada RSS-

210 and Industry Canada RSS-GEN

Document 708881550725-00 Report 01 Issue 1

Aug 2016

PREPARED FOR Kohler Co.

PREPARED BY

Wenwen Cheng Project Engineer

**APPROVED BY** 

Hui TONG
Project Engineer

**DATED** Aug 26, 2016

#### **ENGINEERING STATEMENT**

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 15C & Industry Canada RSS-210 and Industry Canada RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s);

Wenwen Cheng

Document 708881622804-00 Report 01 Issue 1



# Product Service

## **CONTENTS**

| Section |                                          | Page No |
|---------|------------------------------------------|---------|
| 1       | REPORT SUMMARY                           | 3       |
| 1.1     | Introduction                             | 4       |
| 1.2     | Brief Summary of Results                 | 5       |
| 1.3     | Application Form                         | 6       |
| 1.4     | Product Information                      |         |
| 1.5     | Test Conditions                          |         |
| 1.6     | Deviations from the Standard             |         |
| 1.7     | Modification Record                      | 7       |
| 2       | TEST DETAILS                             | 8       |
| 2.1     | AC Line Conducted Emissions              | ç       |
| 2.2     | Field Strength of Fundamental            |         |
| 2.3     | Field Strength of Spurious Emissions     |         |
| 2.4     | Occupied Bandwidth                       |         |
| 3       | TEST EQUIPMENT USED                      | 22      |
| 3.1     | Test Equipment Used                      | 23      |
| 3.2     | Measurement Uncertainty                  |         |
| 4       | DISCLAIMERS AND COPYRIGHT                | 25      |
| 4.1     | Accreditation, Disclaimers and Copyright | 26      |
|         |                                          |         |



#### **SECTION 1**

## **REPORT SUMMARY**

FCC & INDUSTRY CANADA Testing of the
Kohler Co.
KARING 2.0 INTELLIGENT TOILET
K-77780
In accordance with FCC CFR 47 Part 15C & Industry Canada RSS-210 and Industry Canada RSS-GEN



#### 1.1 INTRODUCTION

The information contained in this report is intended to show verification of the FCC and INDUSTRYCANADA Testing of the Kohler Co. KARING 2.0 INTELLIGENT TOILET K-77780 to the requirements of FCC CFR 47 Part 15C & Industry Canada RSS-210 and Industry Canada RSS-GEN.

Objective To perform FCC Testing to determine the Equipment Under

Test's (EUT's) compliance with the Test Specification, for

the series of tests carried out.

Manufacturer Kohler Co.

Model Number(s) K-77780

Serial Number(s) Engineering sample

Number of Samples Tested 1

Test Specification/Issue/Date FCC CFR 47 Part 15C (2014)

Industry Canada RSS-210 Issue 9 (2016) Industry Canada RSS-GEN Issue 4 (2014)

Incoming Release Application Form Date April 07, 2016

Order Number Quote Acceptance Form

Date April 07, 2016

Start of Test January 25, 2016

Finish of Test June 21, 2016

Name of Engineer(s) Hui TONG

Related Document(s) ANSI C63.10: 2009



## 1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC CFR 47 Part 15C & RSS-210 and RSS-GEN are shown below.

| Section     | FCC                          | RSS -210        | RSS-GEN |                                      |      | Comments/Base Standard |
|-------------|------------------------------|-----------------|---------|--------------------------------------|------|------------------------|
| Short range | e device wireless video trar | nsmitter DCS500 | Т       |                                      |      |                        |
| 2.1         | 15.207                       | -               | 7.2.4   | AC Line Conducted Emissions          | Pass | Test Site 1            |
| 2.2         | 15.245 (a)                   | A2.9            | -       | Field Strength of Fundamental        | Pass | Test Site 1            |
| 2.3         | 15.245 (a), 15.209           | A2.9            | -       | Field Strength of Spurious Emissions | Pass | Test Site 1            |



## 1.3 APPLICATION FORM

APPLICANT'S DETAILS

COMPANY NAME : Kohler Co.

ADDRESS: 444 Highland Drive Wisconsin United States

NAME FOR CONTACT PURPOSES : Timothy Stessman

TELEPHONE NO: 920-457-4441 Extension: 2122 FAX NO: E-MAIL: timothy.stessman@kohler.com

| EQUIP                                                                         | MENT INFORMATION                                                                                  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| MANUFACTURING DESCRIPTION                                                     | KARING 2.0 INTELLIGENT TOILET                                                                     |
| MANUFACTURER                                                                  | Kohler Co.                                                                                        |
| ТҮРЕ                                                                          | K-77780                                                                                           |
| SERIAL NUMBER                                                                 | Engineering sample                                                                                |
| TRANSMITTER OPERATING RANGE                                                   | 10.525GHz                                                                                         |
| COUTRY OF ORIGIN                                                              | USA                                                                                               |
| Channel Number                                                                | 1                                                                                                 |
| Modulation Type                                                               | No modulation                                                                                     |
| Antenna Gain                                                                  | 8dbi                                                                                              |
| FCC ID                                                                        | N82-KOHLER020                                                                                     |
| IC ID                                                                         | 4554A-KOHLER020                                                                                   |
| TECHNICAL DESCRIPTION (a brief description of the intended use and operation) | K-77780 is a Intelligent Toilet with 10.525GHz microwave detector function and 2.4GHz Transceiver |
| MANUFACTURING DESCRIPTION                                                     | The KARING 2.0 INTELLIGENT TOILET K-77780 was powered by 120V AC / 60Hz                           |



#### 1.4 PRODUCT INFORMATION

## 1.4.1 Technical Description

The Equipment Under Test (EUT) K-5402 was a Kohler Co. KARING 2.0 INTELLIGENT TOILET K-77780. A full technical description can be found in the manufacturer's documentation.

#### 1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure.

The EUT was powered from 120VAC, 60Hz.

Test Site 1:

FCC Accreditation 809388 IC Accreditation 11384A-1

Test Firm Name: MRT Technology (Suzhou) Co., Ltd

Location: D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou,

China

Test Site 2: FCC Accreditation 904822 TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch No.16 Lane, 1951 Du Hui Road, Shanghai 201108, P.R. China

#### 1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standard were made during testing.

#### 1.7 MODIFICATION RECORD

Modification 0 - No modifications were made to the test sample during testing.



#### **SECTION 2**

## **TEST DETAILS**

FCC & INDUSTRY CANADA Testing of the Kohler Co.
KARING 2.0 INTELLIGENT TOILET K-77780
In accordance with FCC CFR 47 Part 15C & Industry Canada RSS-210 and Industry Canada RSS-GEN



#### 2.1 AC LINE CONDUCTED EMISSIONS

## 2.1.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.207 / Industry Canada RSS-GEN, Clause 7.2.4

#### 2.1.2 Equipment Under Test and Modification State

KARING 2.0 INTELLIGENT TOILET K-77780 set up the 10.525GHz detector distance and 2.4G TX maximum - Modification State 0

#### 2.1.3 Date of Test

May 23, 2016

#### 2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.1.5 Test Procedure

The EUT is set up on a test table 800mm above a horizontal ground plane. A vertical ground plane is also required and is placed 400mm from the EUT. Where a EUT is floor standing it will be stood on but insulated from the ground plane by up to 12mm.

The EUT is powered through a Line Impedance Stabilisation Network (LISN) which is bonded to the ground plane. The EUT is located so that the distance between the EUT and the LISN is no less than 800mm. Where possible the cable between the mains input of the EUT and the LISN is 1m. Where this is not possible the cable is non inductively bundled with the bundle not exceeding 400mm in length.

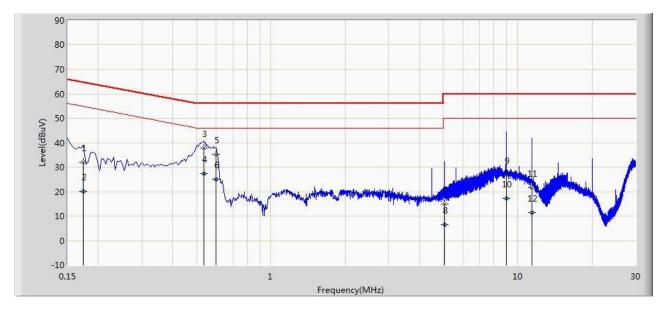
A preliminary profile of the Conducted Emissions is obtained over the frequency range 150kHz to 30MHz. Any points of interest are noted for formal measurements.

During formal measurements, the measuring receiver is tuned to the emission of interest where Quasi – Peak and Average measurements are performed in a 9kHz Video and Resolution Bandwidth.

#### 2.1.6 Environmental Conditions

Ambient Temperature 23.4°C Relative Humidity 52.8%




## 2.1.7 Test Results

Product Type : KARING 2.0 INTELLIGENT TOILET

M/N : K-77780

Operating Condition : Transmit at 10.525GHz and 2.4G Test Specification : FCC\_Part15.207\_CE\_AC Power

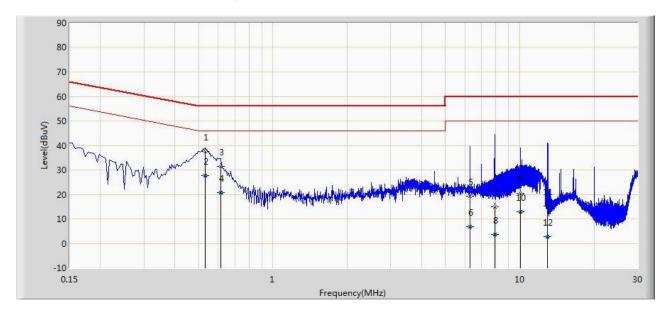
Comment : AC 120V/60Hz, Line



| No | Flag | Mark | Frequency | Measure | Reading | Over    | Limit  | Factor | Туре |
|----|------|------|-----------|---------|---------|---------|--------|--------|------|
|    |      |      | (MHz)     | Level   | Level   | Limit   | (dBuV) | (dB)   |      |
|    |      |      |           | (dBuV)  | (dBuV)  | (dB)    |        |        |      |
| 1  |      |      | 0.174     | 32.057  | 21.989  | -32.710 | 64.767 | 10.068 | QP   |
| 2  |      |      | 0.174     | 20.237  | 10.169  | -34.530 | 54.767 | 10.068 | AV   |
| 3  |      | *    | 0.534     | 37.775  | 27.626  | -18.225 | 56.000 | 10.149 | QP   |
| 4  |      |      | 0.534     | 27.475  | 17.326  | -18.525 | 46.000 | 10.149 | AV   |
| 5  |      |      | 0.598     | 35.346  | 25.230  | -20.654 | 56.000 | 10.116 | QP   |
| 6  |      |      | 0.598     | 24.957  | 14.841  | -21.043 | 46.000 | 10.116 | AV   |
| 7  |      |      | 5.042     | 14.826  | 4.790   | -45.174 | 60.000 | 10.037 | QP   |
| 8  |      |      | 5.042     | 6.655   | -3.382  | -43.345 | 50.000 | 10.037 | AV   |
| 9  |      |      | 8.986     | 26.685  | 16.532  | -33.315 | 60.000 | 10.153 | QP   |
| 10 |      |      | 8.986     | 17.273  | 7.120   | -32.727 | 50.000 | 10.153 | AV   |
| 11 |      |      | 11.438    | 21.560  | 11.463  | -38.440 | 60.000 | 10.097 | QP   |
| 12 |      |      | 11.438    | 11.437  | 1.340   | -38.563 | 50.000 | 10.097 | AV   |

Note: Measure Level (dBµV) = Reading Level (dBµV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB).




Product Type : KARING 2.0 INTELLIGENT TOILET

M/N : K-77780

Operating Condition : Transmit at 10.525GHz and 2.4G
Test Specification : FCC\_Part15.207\_CE\_AC Power

Comment : AC 120V/60Hz, Neutral



| No | Flag | Mark | Frequency | Measure | Reading | Over    | Limit  | Factor | Туре |
|----|------|------|-----------|---------|---------|---------|--------|--------|------|
|    |      |      | (MHz)     | Level   | Level   | Limit   | (dBuV) | (dB)   |      |
|    |      |      |           | (dBuV)  | (dBuV)  | (dB)    |        |        |      |
| 1  |      |      | 0.530     | 37.436  | 27.267  | -18.564 | 56.000 | 10.169 | QP   |
| 2  |      | *    | 0.530     | 27.757  | 17.588  | -18.243 | 46.000 | 10.169 | AV   |
| 3  |      |      | 0.614     | 31.570  | 21.446  | -24.430 | 56.000 | 10.124 | QP   |
| 4  |      |      | 0.614     | 20.606  | 10.483  | -25.394 | 46.000 | 10.124 | AV   |
| 5  |      |      | 6.286     | 19.400  | 9.258   | -40.600 | 60.000 | 10.142 | QP   |
| 6  |      |      | 6.286     | 6.706   | -3.436  | -43.294 | 50.000 | 10.142 | AV   |
| 7  |      |      | 7.902     | 15.018  | 4.833   | -44.982 | 60.000 | 10.185 | QP   |
| 8  |      |      | 7.902     | 3.763   | -6.423  | -46.237 | 50.000 | 10.185 | AV   |
| 9  |      |      | 10.050    | 20.430  | 10.263  | -39.570 | 60.000 | 10.167 | QP   |
| 10 |      |      | 10.050    | 13.008  | 2.841   | -36.992 | 50.000 | 10.167 | AV   |
| 11 |      |      | 12.958    | 15.182  | 5.082   | -44.818 | 60.000 | 10.101 | QP   |
| 12 |      |      | 12.958    | 2.664   | -7.437  | -47.336 | 50.000 | 10.101 | AV   |

Note: Measure Level (dBμV) = Reading Level (dBμV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB).



#### 2.2 FIELD STRENGTH OF FUNDAMENTAL

#### 2.2.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.245 (b) / Industry Canada RSS-210, Clause A2.9

## 2.2.2 Equipment Under Test and Modification State

KARING 2.0 INTELLIGENT TOILET K-77780 set up the 10.525GHz detector distance maximum - Modification State 0

#### 2.2.3 Date of Test

May 27, 2016

#### 2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.2.5 Test Procedure

The EUT is placed on 12mm above the ground plane.

During formal measurement the spectrum analyser is tuned to the frequency of the fundamental. The turntable azimuth is adjusted from 0 to 360 degrees to determine the point at which the maximum level occurs. Then the height of the measuring antenna is adjusted from a height of 1m to 4m to determine the height at which the maximum level occurs. Once the point of maximum emission has been determined the emission is measured.

#### 2.2.6 Environmental Conditions

Ambient Temperature 24.1°C Relative Humidity 52.9%



## 2.2.7 Test Results

## 10525 MHz

## **Fundamental**

| Fundamental<br>Frequency | Polarisation<br>(Vertical/ | Reading<br>Level | Factor | Field<br>Strength | Over Limit | Lim      | nit   | Туре  |
|--------------------------|----------------------------|------------------|--------|-------------------|------------|----------|-------|-------|
| (MHz)                    | Horizontal)                | (dBµV/)          | (dB)   | dBµV/m            | (dB)       | (dBµV/m) | mV/m  | AV/PK |
| 10519.287                | Н                          | 49.561           | 48.216 | 97.777            | -50.223    | 148.0    | 25000 | PK    |
| 10518.890                | V                          | 52.751           | 48.216 | 100.966           | -47.034    | 148.0    | 25000 | PK    |

Remark: Form the peak reading test found the emission below the AV limit, so the average (AV) test doesn't need to be performed.

## Limit Clause 15.245 (b)

| Fundamental Frequency (MHz) | Field Strength of Fundamental (millivolts/meter) |
|-----------------------------|--------------------------------------------------|
| 902 to 928                  | 500                                              |
| 2435 to 2465                | 500                                              |
| 5785 to 5815                | 500                                              |
| 10500 to 10550              | 2500                                             |
| 24075 to 24175              | 2500                                             |



#### 2.3 FIELD STRENGTH OF SPURIOUS EMISSIONS

#### 2.3.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.245 (b)(3), 15.209 / Industry Canada RSS-210 and Industry Canada RSS-GEN

## 2.3.2 Equipment Under Test and Modification State

KARING 2.0 INTELLIGENT TOILET K-77780 set up the 10.525GHz detector distance maximum - Modification State 0

#### 2.3.3 Date of Test

June 20, 2016

#### 2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

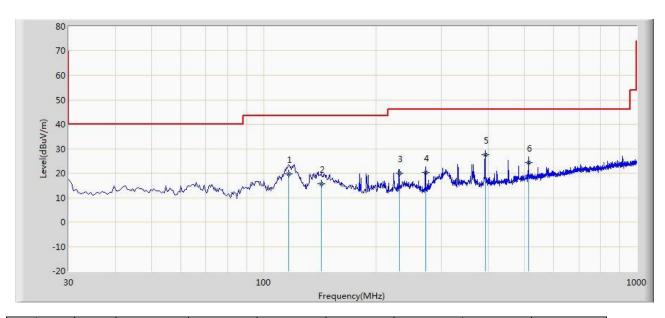
#### 2.3.5 Test Procedure

A preliminary profile of the Spurious Radiated Emissions is obtained up to the 10th harmonic of the EUT's fundamental frequency. For frequencies from 30MHz to 18GHz the EUT is placed on 100mm above the ground plane. For frequencies above 18GHz, the EUT height is increased by 200mm to a height of 1000mm. This is to ensure the beam width of the measuring antenna gives sufficient vertical coverage of the EUT.

During characterisation the turntable azimuth is adjusted from 0 to 360 degrees with the measuring antenna in one polarity. It is then repeated for the other polarity. Any frequencies of interest are noted for formal measuring later. The distance from the measuring antenna to the boundary of the EUT is 3m. Above 18GHz this distance may be reduced to 1m.

During formal measurement the spectrum analyser is tuned to the frequency of the emission. The turntable azimuth is adjusted from 0 to 360 degrees to determine the point at which the maximum emission level occurs. Then the height of the measuring antenna is adjusted from a height of 1m to 4m to determine the height at which the maximum emission level occurs. Once the point of maximum emission has been determined the emission is measured. Emissions in the 30MHz to 1GHz range are measured using a CISPR Quasi – Peak detector function in a 120kHz bandwidth. Emissions in the range 1GHz to 60GHz require Peak and Average measurements. The Peak measurements are made using oa peak detector with 1MHz Resolution and Video bandwidths. The average measurements employ a peak detector with a Resolution bandwidth of 1MHz and a Video bandwidth of 10Hz. If measurements are made at a 1m measuring distance, then 10dB is added to the specification limit.

#### 2.3.6 Environmental Conditions


Ambient Temperature 22.3°C Relative Humidity 54.2%

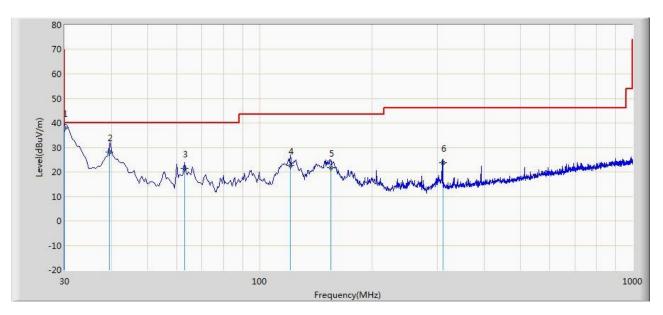


## 2.3.7 Test Results

## 30 MHz to 1 GHz

Horizontal Polarisation




| No | Flag | Mark | Frequency | Measure  | Reading | Over    | Limit    | Factor | Туре |
|----|------|------|-----------|----------|---------|---------|----------|--------|------|
|    |      |      | (MHz)     | Level    | Level   | Limit   | (dBuV/m) |        |      |
|    |      |      |           | (dBuV/m) | (dBuV)  | (dB)    | ,        |        |      |
| 1  |      |      | 116.930   | 19.683   | 7.920   | -23.817 | 43.500   | 11.762 | QP   |
| 2  |      |      | 142.630   | 15.540   | 6.090   | -27.960 | 43.500   | 9.450  | QP   |
| 3  |      |      | 230.840   | 20.089   | 6.980   | -25.911 | 46.000   | 13.109 | QP   |
| 4  |      |      | 271.480   | 20.399   | 6.310   | -25.601 | 46.000   | 14.088 | QP   |
| 5  |      | *    | 392.310   | 27.629   | 11.060  | -18.371 | 46.000   | 16.569 | QP   |
| 6  |      |      | 513.080   | 24.371   | 5.850   | -21.629 | 46.000   | 18.522 | QP   |

Note: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)



## Vertical Polarisation



| No | Flag | Mark | Frequency | Measure  | Reading | Over    | Limit    | Factor | Туре |
|----|------|------|-----------|----------|---------|---------|----------|--------|------|
|    |      |      | (MHz)     | Level    | Level   | Limit   | (dBuV/m) |        |      |
|    |      |      |           | (dBuV/m) | (dBuV)  | (dB)    |          |        |      |
| 1  |      | *    | 30.000    | 37.867   | 25.800  | -2.133  | 40.000   | 12.067 | QP   |
| 2  |      |      | 39.620    | 28.141   | 14.350  | -11.859 | 40.000   | 13.791 | QP   |
| 3  |      |      | 63.010    | 21.513   | 8.310   | -18.487 | 40.000   | 13.203 | QP   |
| 4  |      |      | 120.700   | 22.520   | 11.340  | -20.980 | 43.500   | 11.179 | QP   |
| 5  |      |      | 155.210   | 21.717   | 12.050  | -21.783 | 43.500   | 9.667  | QP   |
| 6  |      |      | 309.920   | 23.664   | 8.840   | -22.336 | 46.000   | 14.824 | QP   |

Note: Measure Level (dBμV/m) = Reading Level (dBμV) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)



#### Above 1GHz

| Frequency<br>(MHz) | Polarisation<br>(Vertical/ | Field Strength | Over Limit | Limit    | Туре  |
|--------------------|----------------------------|----------------|------------|----------|-------|
| (1411 12)          | Horizontal)                | dBμV/m         | (dB)       | (dBµV/m) | AV/PK |
| 21047.00*          | Н                          | 84.760         | -23.240    | 108.00   | PK    |
| 31563.00*          | Н                          | 85.717         | -22.283    | 108.00   | PK    |

| Frequency<br>(MHz) | Polarisation<br>(Vertical/ | Field Strength | Over Limit | Limit    | Туре  |
|--------------------|----------------------------|----------------|------------|----------|-------|
| (1011 12)          | Horizontal)                | dBµV/m         | (dB)       | (dBµV/m) | AV/PK |
| 21047.00*          | V                          | 86.224         | -21.776    | 108.00   | PK    |
| 31563.00*          | V                          | 85.563         | -22.437    | 108.00   | PK    |

Note: Emission was scanned up to 60GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

Remark: Form the peak reading test found the emission below the AV limit, so the average (AV) test doesn't need to be performed.

Remark:"\*" is marked as harmonic frequency.

## 15.245(b)(1)

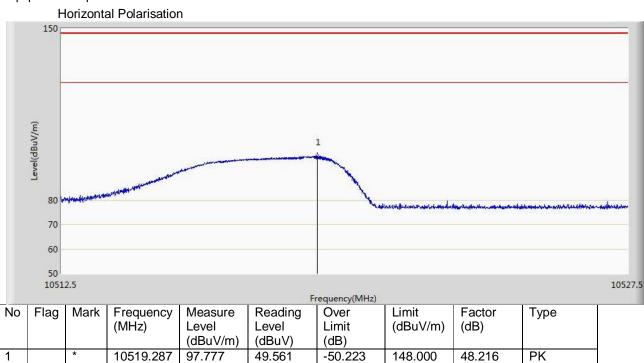
- (1) Regardless of the limits shown in the above table, harmonic emissions in the restricted bands below 17.7 GHz, as specified in §15.205, shall not exceed the field strength limits shown in §15.209. Harmonic emissions in the restricted bands at and above 17.7 GHz shall not exceed the following field strength limits:
- (i) For the second and third harmonics of field disturbance sensors operating in the 24075-24175 MHz band and for other field disturbance sensors designed for use only within a building or to open building doors, 25.0 mV/m.



# Limit Clause

# 15.245 (b)

| Fundamental Frequency (MHz) | Field Strength of Harmonics (microvolts/meter) |
|-----------------------------|------------------------------------------------|
| 902 to 928                  | 500                                            |
| 2435 to 2465                | 500                                            |
| 5785 to 5815                | 500                                            |
| 10500 to 10550              | 2500                                           |
| 24075 to 24175              | 2500                                           |


# 15.209

| Frequency (MHz) | Field Strength (microvolts/meter) |
|-----------------|-----------------------------------|
| 0.009 to 0.490  | 2400/F (kHz)                      |
| 0.490 to 1.705  | 24000/F (kHz)                     |
| 1.705 to 30.0   | 30                                |
| 30 to 88        | 100                               |
| 88 to 216       | 150                               |
| 216 to 960      | 200                               |
| Above 960       | 500                               |



## **Band Edge Emissions**

The requirement is to ensure the 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified, is contained within the frequency band designated in the rule section under which the equipment is operated.



#### Vertical Polarisation 150 Level(dBuV/m) 80 70 60 50 10512.5 10527.5 Frequency(MHz) No Flag Mark Frequency Measure Reading Over Limit Facto r Туре (dB) (MHz) Level Level Limit (dBuV/m) (dBuV/m) (dBuV) (dB)

-47.034

148.000

48.216

10518.890

100.966

1

PΚ

52.751



#### 2.4 OCCUPIED BANDWIDTH

#### 2.4.1 Specification Reference

FCC CFR 47 Part 2: 2008, Clause 2.1049(h) / RSS 210 Issue 9

#### 2.4.2 Equipment Under Test and Modification State

KARING 2.0 INTELLIGENT TOILET K-77780 set up the 10.525GHz detector distance maximum - Modification State 0

#### 2.4.3 Date of Test

January 25, 2016

#### 2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.4.5 Test Procedure

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 2: 2008.

Connect EUT's antenna terminal to the spectrum analyser via a low loss cable with transmitting mode.

Adjust the centre frequency of the spectrum analyser on the frequency be measured, and set for peak detector mode; max hold trace mode RBW=100 KHz and VBW=300 KHz.

The span of the analyzer approximately 2 to 3 times the channel bandwidth shall be set to capture all products of the modulation process, including the emission skirts. Use the marker-to-peak function to set the marker to the peak of the emission.

Use the OBW function to measure -20db bandwidth and 99% emission bandwidth...

#### 2.4.6 Environmental Conditions

Ambient Temperature 23.6°C Relative Humidity 56.0%



## 2.4.7 Test Results

| Frequency (GHz) | 20dB Occupied Bandwidth (MHz) |  |
|-----------------|-------------------------------|--|
| 10.525          | 2.13                          |  |
|                 |                               |  |
| Frequency (GHz) | 99% Occupied Bandwidth (MHz)  |  |
| 10.525          | 2.99                          |  |





## **SECTION 3**

# **TEST EQUIPMENT USED**



## 3.1 TEST EQUIPMENT USED

# **List of Test Instruments**

## **Conducted Emissions**

| Instrument                 | Manufacturer | Type No. | Asset No.   | Cali. Interval | Cali. Due Date |
|----------------------------|--------------|----------|-------------|----------------|----------------|
| EMI Test Receiver          | R&S          | ESR7     | MRTSUE06001 | 1 year         | 2016/11/03     |
| Two-Line V-Network         | R&S          | ENV216   | MRTSUE06002 | 1 year         | 2016/11/03     |
| Two-Line V-Network         | R&S          | ENV216   | MRTSUE06003 | 1 year         | 2016/11/03     |
| Temperature/Humidity Meter | Ouleinuo     | N/A      | MRTSUE06114 | 1 year         | 2016/11/20     |

# Radiated Emission

| Instrument                 | Manufacturer | Type No.  | Asset No.   | Cali. Interval | Cali. Due Date |
|----------------------------|--------------|-----------|-------------|----------------|----------------|
| Spectrum Analyzer          | Agilent      | E4447A    | MRTSUE06028 | 1 year         | 2016/12/08     |
| EMI Test Receiver          | R&S          | ESR7      | MRTSUE06001 | 1 year         | 2016/11/03     |
| Preamplifier               | Schwarzbeck  | BBV 9721  | MRTSUE06121 | 1 year         | 2017/04/16     |
| Preamplifier               | Agilent      | 83017A    | MRTSUE06076 | 1 year         | 2017/03/29     |
| Loop Antenna               | Schwarzbeck  | FMZB1519  | MRTSUE06025 | 1 year         | 2016/12/14     |
| TRILOG Antenna             | Schwarzbeck  | VULB9162  | MRTSUE06022 | 1 year         | 2016/11/07     |
| Broad-Band Horn Antenna    | Schwarzbeck  | BBHA9120D | MRTSUE06023 | 1 year         | 2016/11/07     |
| Broadband Horn Antenna     | Schwarzbeck  | BBHA9170  | MRTSUE06024 | 1 year         | 2017/01/05     |
| Temperature/Humidity Meter | Ouleinuo     | N/A       | MRTSUE06115 | 1 year         | 2016/11/20     |



## 3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

| System Measurement Uncertainty                                   |                      |  |  |
|------------------------------------------------------------------|----------------------|--|--|
| Test Items                                                       | Extended Uncertainty |  |  |
| Uncertainty for Radiated Emission in 3m chamber 9kHz-1000MHz     | 4.18dB               |  |  |
| Uncertainty for Radiated Emission in 3m chamber 1000MHz-40000MHz | 4.76dB               |  |  |
| Uncertainty for Conducted Emission 150KHz-30MHz                  | 3.46dB               |  |  |



## **SECTION 4**

**DISCLAIMERS AND COPYRIGHT** 



## 4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

© 2016 TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch