

FCC RADIO TEST REPORT

FCC ID : N7NEM92

Equipment : Wireless Module Brand Name : Sierra Wireless

Model Name : EM9293

Applicant : Sierra Wireless, ULC

13811 Wireless Way, Richmond, BC, Canada V6A 3A4

Manufacturer : Sierra Wireless, ULC

13811 Wireless Way, Richmond, BC, Canada V6A 3A4

Standard : FCC 47 CFR Part 2, 27

The product was received on Nov. 22, 2024 and testing was performed from Dec. 04, 2024 to Dec. 07, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu
Sporton International Inc. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

Report Template No.: BU5-FGLTE Version 1.0

Report Version : 01

Table of Contents

Hi	History of This Test Report					
Su	mmar	ry of Test Result	4			
1	Gen	eral Description	6			
	1.1	Product Feature of Equipment Under Test				
	1.2	Modification of EUT				
	1.3	Testing Location	7			
	1.4	Applied Standards	7			
2	Test	Configuration of Equipment Under Test	8			
	2.1	Test Mode	8			
	2.2	Connection Diagram of Test System	9			
	2.3	Support Unit used in test configuration and system	10			
	2.4	Measurement Results Explanation Example	10			
	2.5	Frequency List of Low/Middle/High Channels	10			
3	Con	ducted Test Items	11			
	3.1	Measuring Instruments	11			
	3.2	Conducted Output Power and ERP/EIRP	12			
	3.3	Peak-to-Average Ratio	13			
	3.4	Occupied Bandwidth	14			
	3.5	Conducted Band Edge	15			
	3.6	Conducted Spurious Emission				
	3.7	Frequency Stability	17			
4	Radi	iated Test Items	18			
	4.1	Measuring Instruments	18			
5	List	of Measuring Equipment	20			
6	Moa	surament Uncertainty	21			

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FGLTE Version 1.0

Page Number : 2 of 21

Issue Date : Dec. 13, 2024

Report No. : FG4N2211

Report Version : 01

Appendix A. Test Results of Conducted Test

	•	Conducted Output Power(Average power and ERP)	A1-1
	•	Peak-to-Average Ratio	A2-1
	•	26dB Bandwidth	A2-2
	•	Occupied Bandwidth	A2-5
	•	Conducted Band Edge	A2-8
	•	Conducted Spurious Emission	A2-13
	•	Frequency Stability	A2-15
Appendix B.	Tes	t Results of Radiated Test	B1
Appendix C.	Tes	st Setup Photographs	C1

Report No. : FG4N2211

TEL: 886-3-327-3456 Page Number : 3 of 21
FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

History of this test report

Report No. : FG4N2211

Report No.	Version	Description	Issue Date
FG4N2211	01	Initial issue of report	Dec. 13, 2024

TEL: 886-3-327-3456 Page Number : 4 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

Summary of Test Result

Report No.: FG4N2211

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.2	§2.1046	Conducted Output Power	Reporting only	-
3.3	§2.1051 §27.1507 (d)	Peak-to-Average Ratio	Reporting only	-
3.4	§2.1049 §27.1506	Occupied Bandwidth	Reporting only	-
3.5	§2.1051 §27.1509 (a)	Conducted Band Edge Measurement	Pass	-
3.6	§2.1051 §27.1509 (a)	Conducted Spurious Emission	Pass	-
3.7	§2.1055	Frequency Stability Temperature & Voltage	Pass	-
4.1	§2.1053 §27.1509 (a)	Radiated Spurious Emission	Pass	27.84 dB under the limit at 2696.00 MHz

Conformity Assessment Condition:

- 1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Danny Lee

Report Producer: Michelle Chen

TEL: 886-3-327-3456 Page Number : 5 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

Report No.: FG4N2211

General Specs

WCDMA/LTE/5G NR, and GNSS.

Antenna Type

WWAN: Dipole Antenna

GPS / Glonass / Galileo / BeiDou : Dipole antenna

Antenna Gain Band 106: 10.5 dBi

Remark:

- **1.** The above EUT's information was declared by manufacturer. Please refer to Disclaimer in report summary.
- 2. Maximum allow antenna Gain: refer MPE Report FA4N2211.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 886-3-327-3456 Page Number : 6 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
Test Site No.	TH03-HY		
Test Engineer	Wei Shun		
Temperature (°C)	22.6~24.1		
Relative Humidity (%)	53.2~55.4		

Report No.: FG4N2211

Test Site	Sporton International Inc. Wensan Laboratory			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.			
rest Site No.	03CH12-HY (TAF Code: 3786)			
Test Engineer	Jack Cheng, Tim Lee and Wilson Wu			
Temperature (°C)	20~25			
Relative Humidity (%)	50~60			
Remark	The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory.			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW3786

1.4 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR Part 2, 27
- ANSI C63.26-2015
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- FCC KDB 414788 D01 Radiated Test Site v01r01

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 886-3-327-3456 Page Number : 7 of 21
FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

2 Test Configuration of Equipment Under Test

2.1 Test Mode

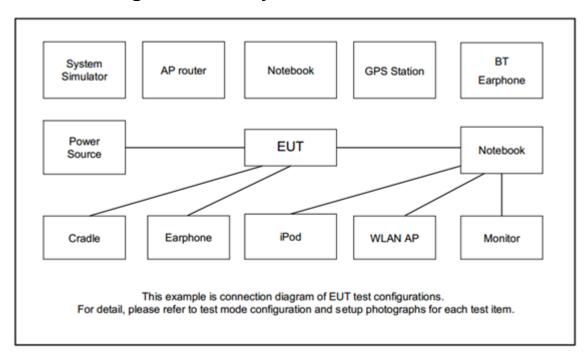
Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

Report No.: FG4N2211

For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in two config (Ant. Horizontal and Ant. Vertical), and adjusting the measurement antenna orientation, following C63.26 exploratory test procedures and only the worst case emissions were reported in this report..

Modulation Type	Modulation
Α	QPSK
В	16QAM
С	64QAM
D	256QAM

Test Item	Modulation Type	Bandwidth	RB Size	Channel
Conducted Power	A, B, C, D	All	All 1, Half, Full	
EIRP	A, B, C, D	All	1, Half, Full	L, M, H
PAR	A, B, C, D	3 MHz	Full	M
Bandwidth	A, B, C, D	All	Full	M
CBE	A, B, C, D	All	1RB, Full	L, H
CSE	Α	All	1RB	L, M, H
Frequency Stability A		1.4 MHz	Full	M
RSE	Α	1.4 MHz	1RB	L, M, H


Remark

TEL: 886-3-327-3456 Page Number : 8 of 21
FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

Evaluated all the transmitter signal and reporting worst-case configuration among all modulation types.

^{2.} The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst-case emissions are reported.

2.2 Connection Diagram of Test System

Report No. : FG4N2211

TEL: 886-3-327-3456 Page Number : 9 of 21
FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

2.3 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m

Report No.: FG4N2211

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

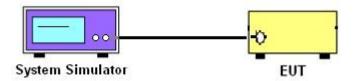
Example:

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

2.5 Frequency List of Low/Middle/High Channels

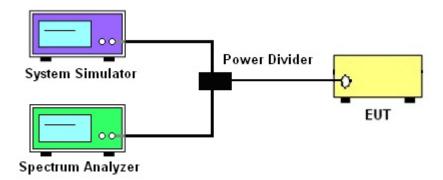
Band 106 Channel and Frequency List							
BW [MHz] Channel/Frequency(MHz) Lowest Middle High							
2	Channel	-	134322	-			
3	Frequency	-	899	-			
1.4	Channel	134314	134322	134330			
1.4	Frequency	898.2	899	899.8			

TEL: 886-3-327-3456 Page Number : 10 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

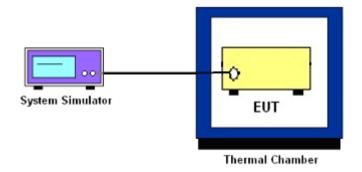

3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.


3.1.1 Test Setup

3.1.2 Conducted Output Power



Report No.: FG4N2211

3.1.3 Peak-to-Average Ratio, Occupied Bandwidth ,Conducted Band-Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 11 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

3.2 Conducted Output Power and

3.2.1 Description of the Conducted Output Power Measurement and Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Report No.: FG4N2211

The ERP of portable stations. Portable stations must not exceed 3 watts ERP.

According to KDB 412172 D01 Power Approach,

EIRP = P_T + G_T – L_C , ERP = EIRP -2.15, where

 P_T = transmitter output power in dBm

G_T = gain of the transmitting antenna in dBi

L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

TEL: 886-3-327-3456 Page Number : 12 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Report No.: FG4N2211

3.3.2 Test Procedures

- 1. The EUT was connected to spectrum and system simulator via a power divider.
- Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio.

TEL: 886-3-327-3456 Page Number : 13 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

3.4 Occupied Bandwidth

3.4.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

Report No.: FG4N2211

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.4.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.
 The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 4. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace.
 (this is the reference value)
- 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "–X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

TEL: 886-3-327-3456 Page Number : 14 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

3.5 Conducted Band Edge

3.5.1 Description of Conducted Band Edge Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

Report No.: FG4N2211

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.5.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used.
- 5. Set spectrum analyzer with RMS detector.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. Checked that all the results comply with the emission limit line.

TEL: 886-3-327-3456 Page Number : 15 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

3.6 Conducted Spurious Emission

3.6.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

Report No.: FG4N2211

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- Make the measurement with the spectrum analyzer's RBW = 100 kHz if the authorized frequency band/block is at or below 1 GHz and 1 MHz if the authorized frequency band/block is above 1 GH, VBW = 3 * RBW.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

TEL: 886-3-327-3456 Page Number : 16 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

3.7 Frequency Stability

3.7.1 Description of Frequency Stability Measurement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Report No.: FG4N2211

3.7.2 Test Procedures for Temperature Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

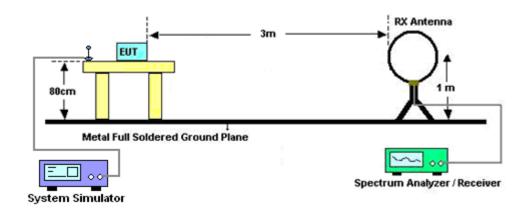
- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.7.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

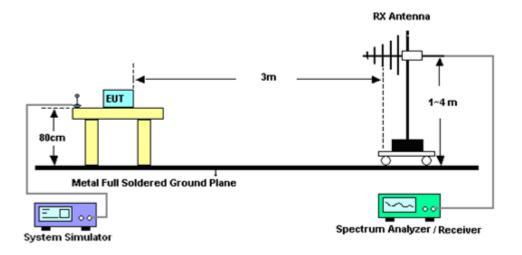
- 4. The EUT was placed in a temperature chamber at 20±5° C and connected with the system simulator.
- 5. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 6. The variation in frequency was measured for the worst case.

TEL: 886-3-327-3456 Page Number : 17 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

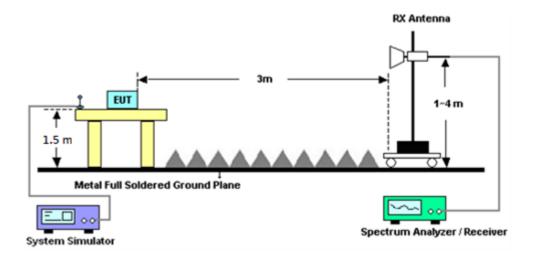

4 Radiated Test Items

4.1 Measuring Instruments

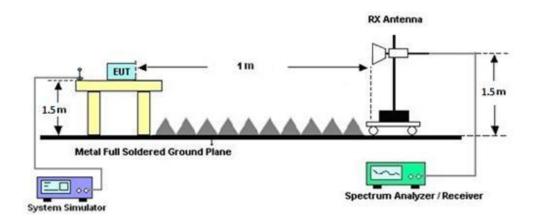
See list of measuring instruments of this test report.


4.1.1 Test Setup

For radiated test below 30MHz


Report No.: FG4N2211

For radiated test from 30MHz to 1GHz


TEL: 886-3-327-3456 Page Number : 18 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

For radiated test from 1GHz to 18GHz

Report No.: FG4N2211

For radiated test above 18GHz

4.1.2 Test Result of Radiated Test

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

TEL: 886-3-327-3456 Page Number : 19 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

5 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Feb. 23, 2024	Dec. 04, 2024~ Dec. 05, 2024	Feb. 22, 2025	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	37059 & 01	30MHz~1GHz	Nov. 27, 2024	Dec. 04, 2024~ Dec. 05, 2024	Nov. 26, 2025	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-0211 4	1GHz~18GHz	Jul. 11, 2024	Dec. 04, 2024~ Dec. 05, 2024	Jul. 10, 2025	Radiation (03CH12-HY)
Preamplifier	E-INSTRUME NT TECH LTD.	ERA-100M-18 G-56-01-A70	EC1900249	1GHz-18GHz	Dec. 20, 2023	Dec. 04, 2024~ Dec. 05, 2024	Dec. 19, 2024	Radiation (03CH12-HY)
Spectrum Analyzer	Agilent	N9010A	MY53470118	10Hz~44GHz	Aug. 09, 2024	Dec. 04, 2024~ Dec. 05, 2024	Aug. 08, 2025	Radiation (03CH12-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290053	20Hz~26.5GHz	Sep. 09, 2024	Dec. 04, 2024~ Dec. 05, 2024	Sep. 08, 2025	Radiation (03CH12-HY)
Notch Filter	Wainwright	WHKX12-900- 1000-15000-60 SS	SN11	1GHz High Pass Filter	Mar. 13, 2024	Dec. 04, 2024~ Dec. 05, 2024	Mar. 12, 2025	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9kHz~30MHz	Mar. 06, 2024	Dec. 04, 2024~ Dec. 05, 2024	Mar. 05, 2025	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30MHz~18GHz	Dec. 18, 2023	Dec. 04, 2024~ Dec. 05, 2024	Dec. 17, 2024	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Dec. 18, 2023	Dec. 04, 2024~ Dec. 05, 2024	Dec. 17, 2024	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803953/2	30MHz~40GHz	Dec. 18, 2023	Dec. 04, 2024~ Dec. 05, 2024	Dec. 17, 2024	Radiation (03CH12-HY)
Hygrometer	TECPEL	DTM-303B	TP210090	N/A	Aug. 29, 2024	Dec. 04, 2024~ Dec. 05, 2024	Aug. 28, 2025	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Dec. 04, 2024~ Dec. 05, 2024	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Dec. 04, 2024~ Dec. 05, 2024	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Dec. 04, 2024~ Dec. 05, 2024	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-000989	N/A	N/A	Dec. 04, 2024~ Dec. 05, 2024	N/A	Radiation (03CH12-HY)
Radio Communication Analyzer	Anritsu	MT8821C	6262025353	LTE FDD/TDD LTE-2CC DLCA/ULCA	Oct. 01, 2024	Dec. 04, 2024~ Dec. 07, 2024	Sep. 30, 2025	Conducted (TH03-HY)
Thermal Chamber	ESPEC	SH-641	92013720	-40°C ~90°C	Sep. 06, 2024	Dec. 04, 2024~ Dec. 07, 2024	Sep. 05, 2025	Conducted (TH03-HY)
DC Power Supply	GW Instek	GPP-2323	GES906037	0V~64V ; 0A~6A	Nov. 27, 2024	Dec. 04, 2024~ Dec. 07, 2024	Nov. 26, 2025	Conducted (TH03-HY)
Coupler+10dB+ RFcable	Warison + WoKen + E-Instument	20dB 25W SMA Directional Coupler+ 10dB 18GHz_5W+S FL405_1.5M	#A+#1+#1+# 7	1-18GHz	Jan. 02, 2024	Dec. 04, 2024~ Dec. 07, 2024	Jan. 01, 2025	Conducted (TH03-HY)
Power divider	Anritsu	K241C	2143398	9KHz~40GHz	Jun. 13, 2024	Dec. 04, 2024~ Dec. 07, 2024	Jun. 12, 2025	Conducted (TH03-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101905	10Hz~40GHz	Jul. 11, 2024	Dec. 04, 2024~ Dec. 07, 2024	Jul. 10, 2025	Conducted (TH03-HY)
Software	Sporton	LTE Conducted Test Tools	N/A	Conducted Test Item	N/A	Dec. 04, 2024~ Dec. 07, 2024	N/A	Conducted (TH03-HY)
Hygrometer	TECPEL	DTM-303B	TP210073	-10 ~ 50°C / 20 ~ 95%RH	Jun. 05, 2024	Dec. 04, 2024~ Dec. 07, 2024	Jun. 04, 2025	Conducted (TH03-HY)

Report No. : FG4N2211

TEL: 886-3-327-3456 Page Number : 20 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

6 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

	-
Measuring Uncertainty for a Level of	3.291 dB
Confidence of 95% (U = 2Uc(y))	3.291 UB

Report No.: FG4N2211

<u>Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)</u>

Measuring Uncertainty for a Level of	2.072.40
Confidence of 95% (U = 2Uc(y))	2.073 dB

<u>Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)</u>

Measuring Uncertainty for a Level of	2.082 dB
Confidence of 95% (U = 2Uc(y))	2.002 UB

TEL: 886-3-327-3456 Page Number : 21 of 21 FAX: 886-3-328-4978 Issue Date : Dec. 13, 2024

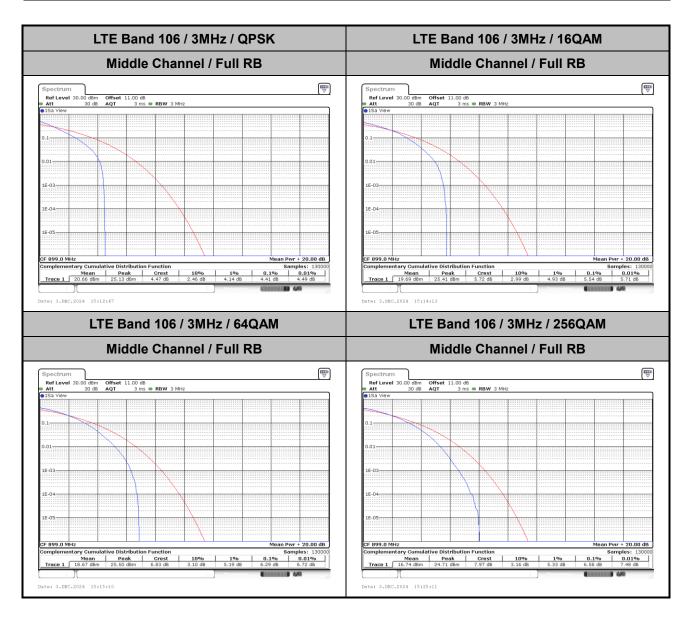
Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power & ERP/EIRP)

Report No. : FG4N2211

F	Part 27P LT	E Band 10	6 Maximui	m Average	Power [dB	m] (GT - L	C = 10.5 dB)	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	ERP (dBm)	ERP (W)	
3	1	0		-	22.66	-			
3	1	8		-	22.82	-			
3	1	14		-	22.64	-			
3	8	0	QPSK	-	21.82	-	31.17	1.3092	
3	8	4		-	21.83	-			
3	8	7		-	21.74	-			
3	15	0		-	21.74	-			
3	1	0		-	21.95	-			
3	1	8		-	22.11	-		1.1117	
3	1	14		-	22.02	-			
3	8	0	16-QAM	-	20.85	-	30.46		
3	8	4	_	-	20.88	-]		
3	8	7		-	20.80	-			
3	15	0		-	20.82	-			
3	1	0		-	20.98	-			
3	1	8		-	20.93	-			
3	1	14		-	20.90	-]		
3	8	0	64-QAM	•	19.85	-	29.33	0.8570	
3	8	4		-	19.90	-	1		
3	8	7		-	19.77	-			
3	15	0		-	19.86	-			
3	1	0		-	17.91	-			
3	1	8		-	18.04	-			
3	1	14		-	17.93	-]		
3	8	0	256-QAM	-	17.87	-	26.39	0.4355	
3	8	4		-	17.88	-]		
3	8	7		-	17.91	-]		
3	15	0		-	17.89	-			
Limit		Limit ERP < 3W			Result		Pass		

F	Part 27P L1	E Band 10	6 Maximur	n Average	Power [dB	m] (GT - L	C = 10.5 dB)
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	ERP (dBm)	ERP (W)
1.4	1	0		22.58	22.61	22.57		
1.4	1	3		22.78	22.79	22.73		
1.4	1	5		22.58	22.55	22.61		
1.4	3	0	QPSK	21.77	21.73	21.79	31.14	1.3002
1.4	3	1		21.73	21.80	21.81		
1.4	3	3		21.68	21.69	21.64		
1.4	6	0		21.64	21.67	21.72		
1.4	1	0		21.94	21.87	21.87		
1.4	1	3		22.10	22.04	22.01		1.1092
1.4	1	5		21.96	21.92	22.01	30.45	
1.4	3	0	16-QAM	20.82	20.76	20.79		
1.4	3	1		20.84	20.79	20.82		
1.4	3	3		20.75	20.77	20.75		
1.4	6	0		20.80	20.80	20.77		
1.4	1	0		20.93	20.95	20.96	29.31	0.8531
1.4	1	3		20.84	20.89	20.87		
1.4	1	5	64-QAM	20.81	20.88	20.89		
1.4	3	0		19.81	19.83	19.83		
1.4	3	1		19.87	19.88	19.88		
1.4	3	3		19.75	19.69	19.76		
1.4	6	0		19.84	19.84	19.78		
1.4	1	0		17.94	17.83	17.84		
1.4	1	3		18.04	17.94	17.92		
1.4	1	5		17.91	17.86	17.79		
1.4	3	0	256-QAM	17.89	17.89	17.79	26.39	0.4355
1.4	3	1		17.88	17.88	17.85		
1.4	3	3		17.86	17.74	17.86		
1.4	6	0		17.82	17.73	17.70		
Limit		ERP < 3W			Result		Pa	ISS

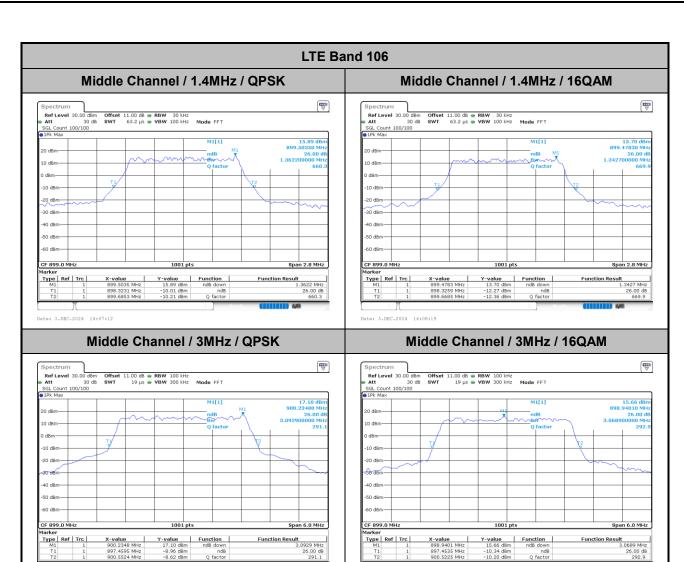


CC RADIO TEST REPORT Report No. : FG4N2211

LTE Band 106

Peak-to-Average Ratio

Mode					
Mod.	QPSK	16QAM	64QAM	256QAM	Limit: 13dB
RB Size	Full RB	Full RB	Full RB	Full RB	Result
Middle CH	4.41	5.54	6.29	6.58	PASS

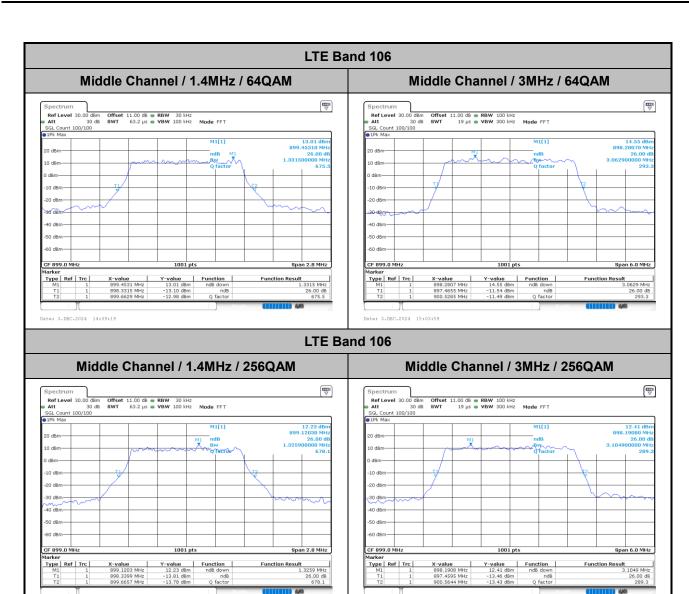

TEL: 886-3-327-3456 Page Number: A2-1 of 15

26dB Bandwidth

Mode	LTE Band 106 : 26dB BW(MHz)									
BW	1.41	MHz	3MHz							
Mod.	QPSK	16QAM	QPSK	16QAM						
Middle CH	1.36	1.34	3.09 3.06							
Mode		LTE Band 106 : 26dB BW(MHz)								
BW	1.41	MHz	3MI	Hz						
Mod.	64QAM	256QAM	64QAM	256QAM						
Middle CH	1.33	1.32	3.06	3.10						

Report No.: FG4N2211

TEL: 886-3-327-3456 Page Number : A2-2 of 15


Date: 3.DEC.2024 15:02:44

Report No.: FG4N2211

TEL: 886-3-327-3456 Page Number : A2-3 of 15

FAX: 886-3-328-4978

Date: 3.DEC.2024 15:01:34

Date: 3.DEC.2024 15:11:34

Report No.: FG4N2211

TEL: 886-3-327-3456 Page Number : A2-4 of 15 FAX: 886-3-328-4978

Occupied Bandwidth

Mode	LTE Band 106 : 99%OBW(MHz)									
BW	1.41	ИНz	3MHz							
Mod.	QPSK	16QAM	QPSK 16QAM							
Middle CH	1.09	1.11	2.72	2.71						
Mode		LTE Band 106 : 99%OBW(MHz)								
BW	1.41	1.4MHz 3MHz								
Mod.	64QAM	256QAM	64QAM	256QAM						
Middle CH	1.08	1.10	2.71	2.74						

Report No. : FG4N2211

TEL: 886-3-327-3456 Page Number : A2-5 of 15

LTE Band 106 Middle Channel / 1.4MHz / QPSK Middle Channel / 1.4MHz / 16QAM | Spectrum | Ref Level 30.00 dBm | Offset 11.00 db @ RBW 30 kHz | Att | SGL Count 100/100 | SWT | 63.2 µs @ VBW 100 kHz | Mode FFT | SGL Count 100/100 | SWT | SGL Count 100/1 -10 dBm--40 dBm--50 dBm CF 899.0 MHz Marker Span 2.8 MHz CF 899.0 MHz
 X-value
 Y-value
 Function

 899.45187 MHz
 14.85 dBm
 0

 898.455454 MHz
 7.42 dBm
 Occ Bw

 899.552105 MHz
 7.05 dBm

 X-value
 Y-value
 Function

 898.79142 MHz
 14.45 dBm

 898.433897 MHz
 5.09 dBm
 Occ Bw

 899.549305 MHz
 6.78 dBm
 Type Ref Trc Function Result Function Result 1.115408459 MHz Date: 3.DEC.2024 13:49:47 Date: 3.DEC.2024 13:50:58 Middle Channel / 3MHz / QPSK Middle Channel / 3MHz / 16QAM Spectrum

Reflevel 30.00 d8m Offset 11.00 d8 • RBW 100 kHz

Att 30 d8 SWT 18.9 µs • VBW 300 kHz Mode FFT

SGL Count 100/100

10° Max 16.18 dBr 898.173280 MH 2.726727327 MH 10 dBm--10 dBm--20 dBm 40 dBm -50 dBm-

Date: 3.DEC.2024 14:57:21

X-value 900.17348 MHz 897.652535 MHz 900.368463 MHz

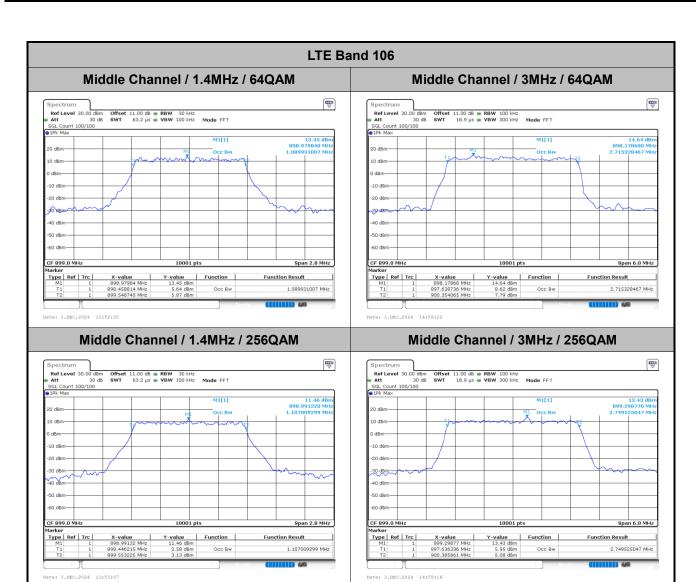
Y-value Function
15.63 dBm
8.94 dBm Occ Bw
10.08 dBm

Function Result

2.715928407 MHz

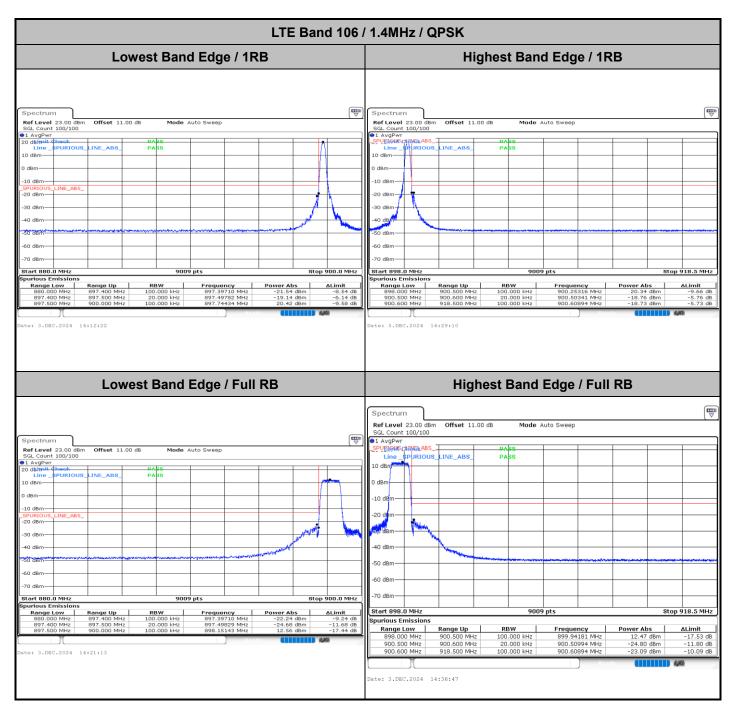
Report No.: FG4N2211

TEL: 886-3-327-3456 Page Number : A2-6 of 15

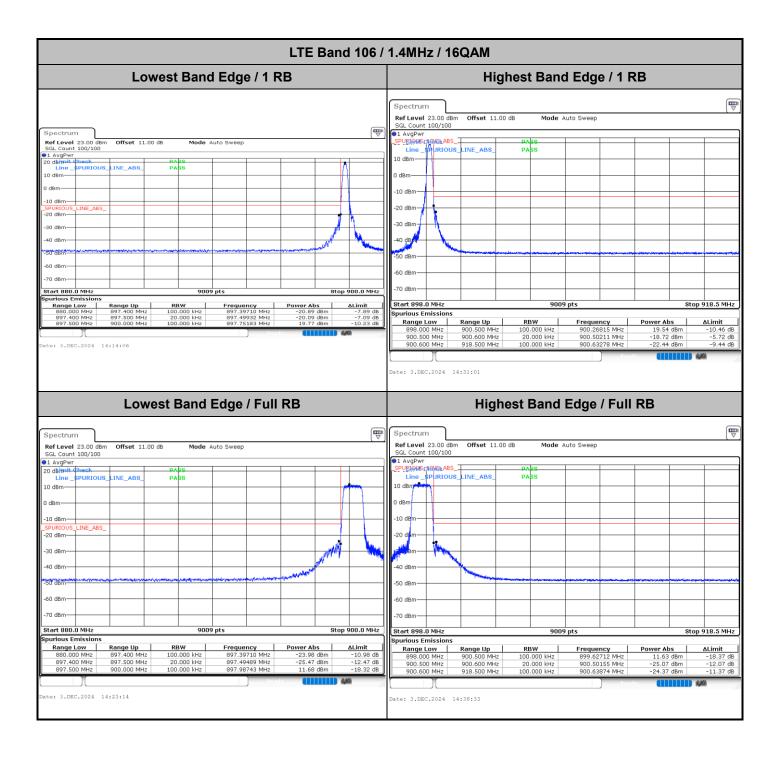

FAX: 886-3-328-4978

X-value 898.17328 MHz 897.639936 MHz 900.366663 MHz

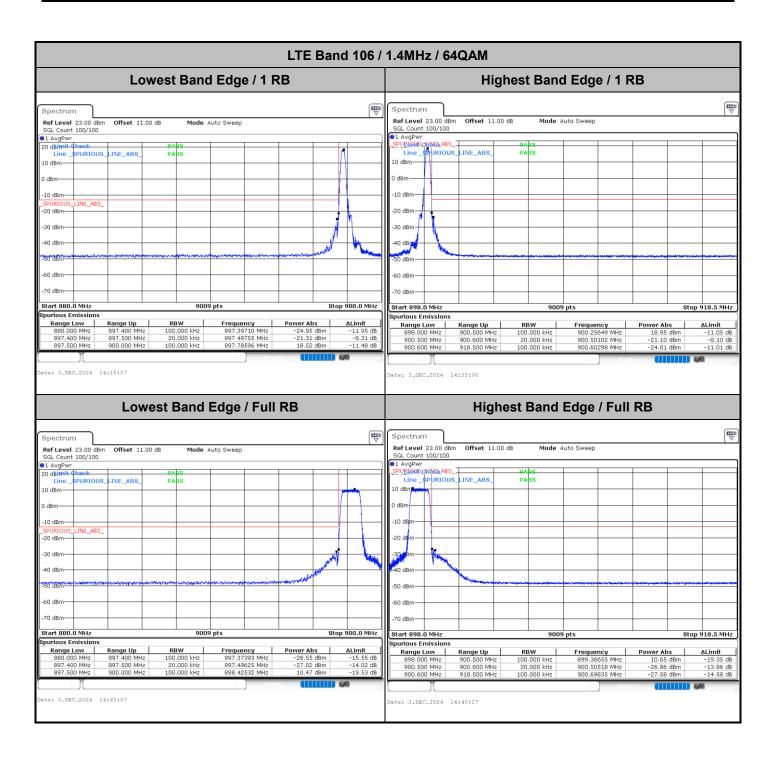
Date: 3.DEC.2024 14:56:07


Function Result

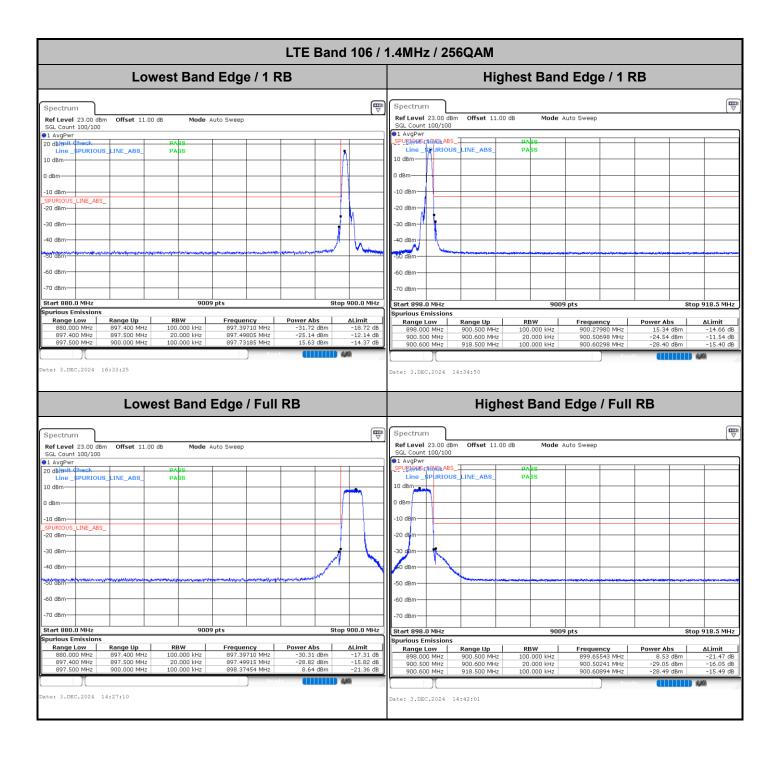
2.726727327 MHz

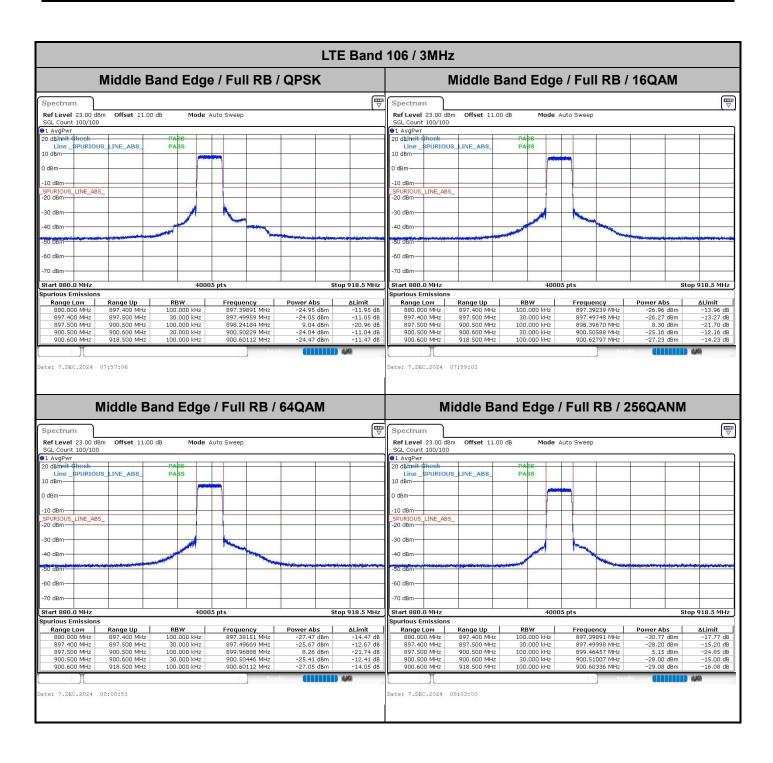

TEL: 886-3-327-3456 Page Number : A2-7 of 15

Conducted Band Edge

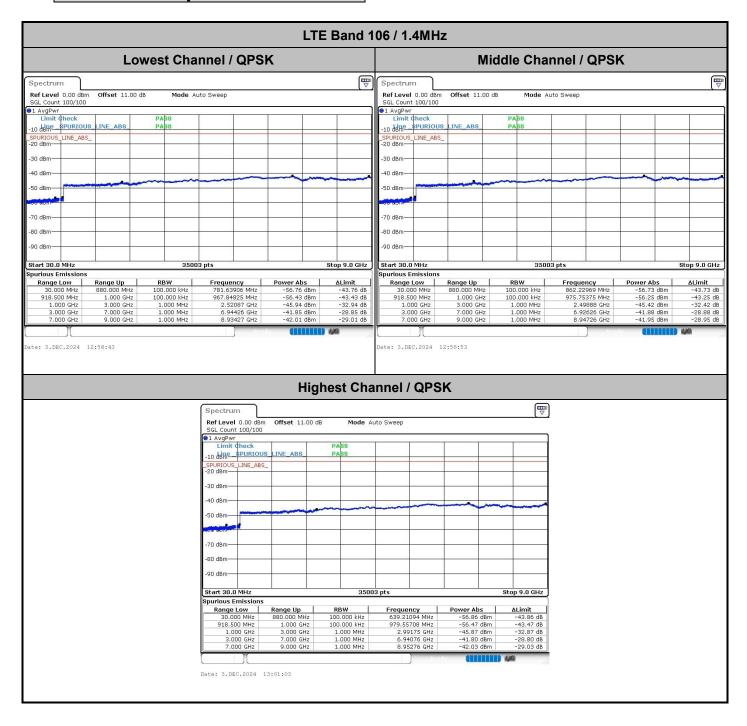


Report No.: FG4N2211

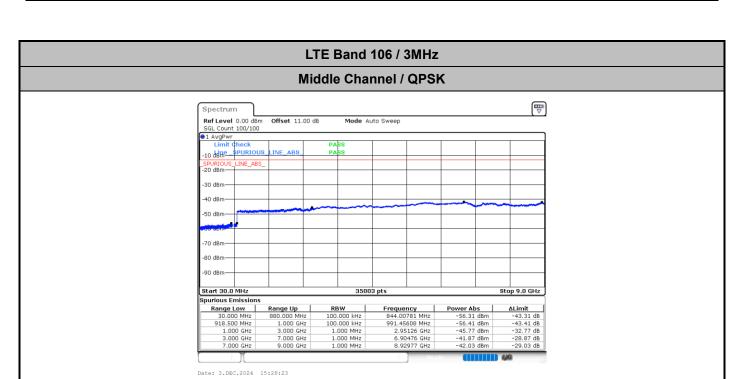

TEL: 886-3-327-3456 Page Number: A2-8 of 15


TEL: 886-3-327-3456 Page Number : A2-9 of 15

TEL: 886-3-327-3456 Page Number : A2-10 of 15



TEL: 886-3-327-3456 Page Number: A2-11 of 15


TEL: 886-3-327-3456 Page Number : A2-12 of 15

Conducted Spurious Emission

Report No.: FG4N2211

TEL: 886-3-327-3456 Page Number : A2-13 of 15

TEL: 886-3-327-3456 Page Number : A2-14 of 15

Frequency Stability

Test 0	Conditions	LTE Band 106 (QPSK) / Middle Channel	Limit
_		BW 1.4MHz	Note 2.
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0016	
40	Normal Voltage	0.0026	
30	Normal Voltage	0.0010	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0020	
0	Normal Voltage	0.0043	
-10	Normal Voltage	0.0024	PASS
-20	Normal Voltage	0.0014	
-30	Normal Voltage	0.0006	
20	Maximum Voltage	0.0048	
20	Normal Voltage	0.0000	
20	Minimum Voltage	0.0027	

Report No.: FG4N2211

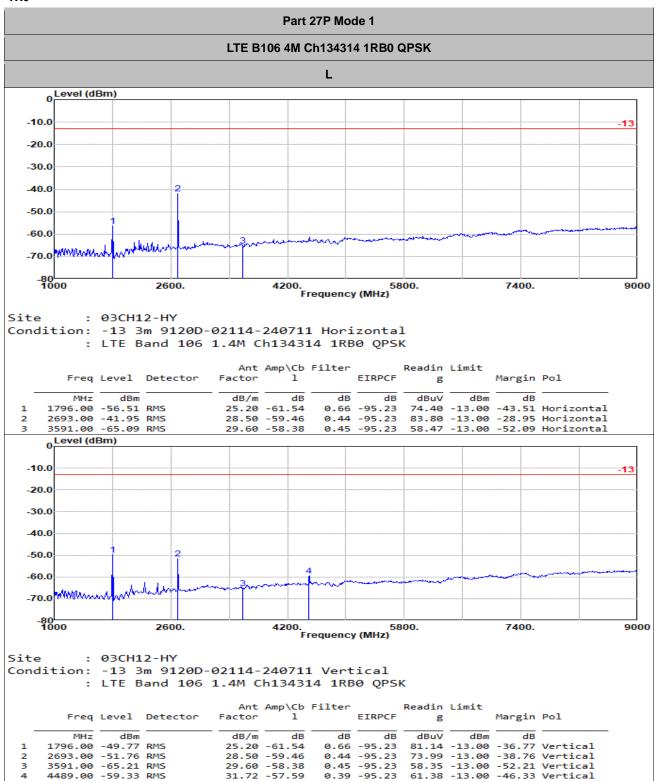
Note:

- 1. Normal Voltage = 3.3 V.; Minimum Voltage = 3.135 V.; Maximum Voltage = 4.4 V.
- 2. The frequency fundamental emissions stay within the authorized frequency block.

TEL: 886-3-327-3456 Page Number : A2-15 of 15

Appendix B. Test Results of Radiated Test

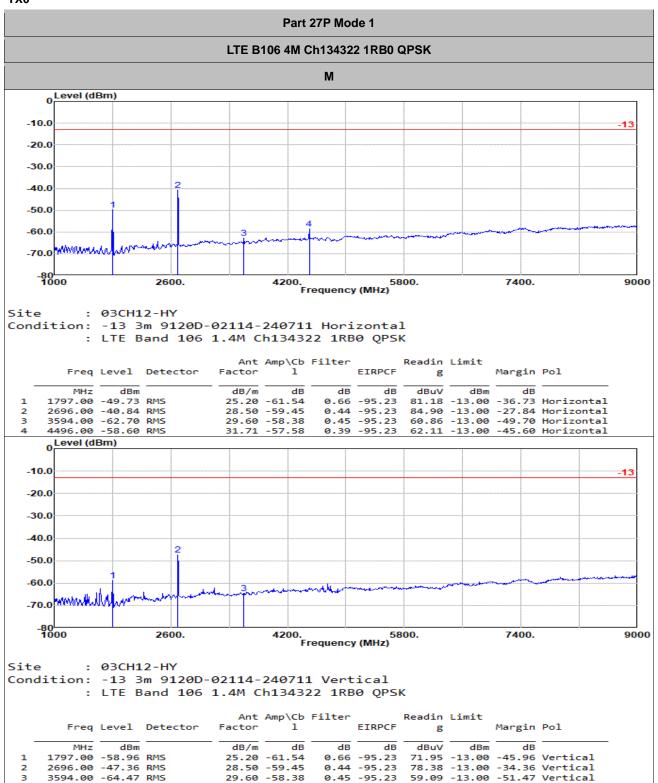
B1. Summary of each worse mode


Mode	Part	Band	Ch	Freq (MHz)	Level (dBm)	Det	Ant Factor (dB)	Amp\Cbl (dB)	Filter (dB)	EIRPCF (dB)	Reading (dBuV)	Limit (dBm)	Margin (dB)	Pol	Ant
1	Part 27P	LTE B106	М	2696	-40.84	RMS	28.50	-59.45	0.44	-95.23	84.90	-13.00	-27.84	Н	TX0

Report No.: FG4N2211

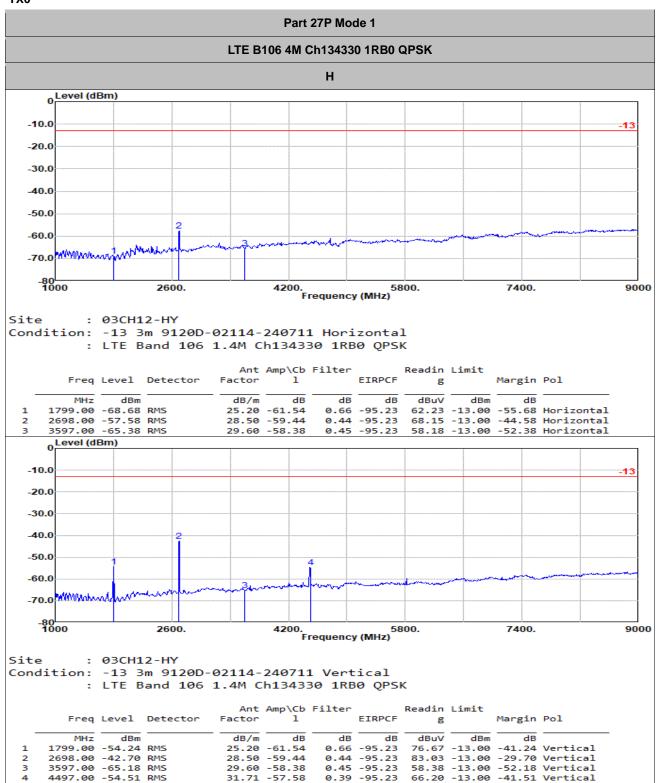
TEL: 886-3-327-3456 Page Number : B1 of B5

CRADIO TEST REPORT Report No. : FG4N2211


TX0

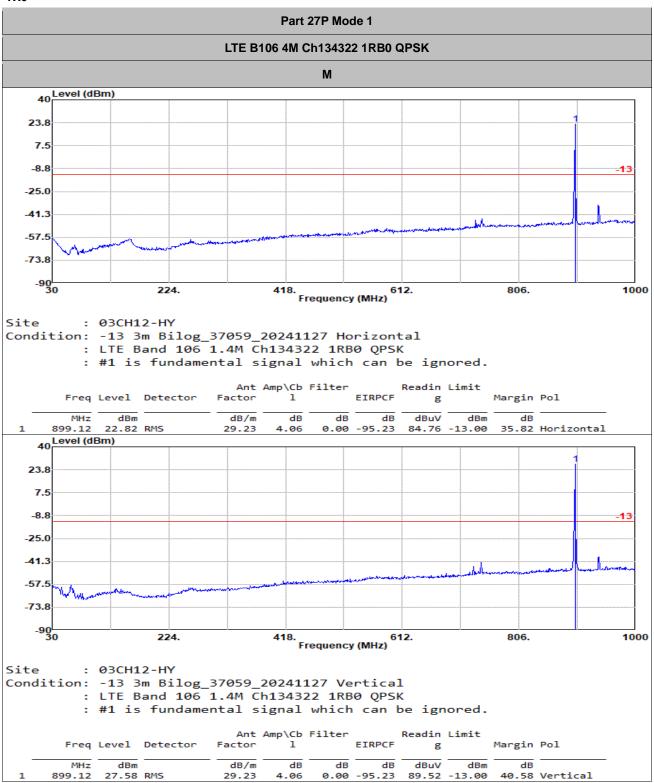
TEL: 886-3-327-3456 Page Number : B2 of B5

C RADIO TEST REPORT Report No. : FG4N2211


TX0

TEL: 886-3-327-3456 Page Number : B3 of B5

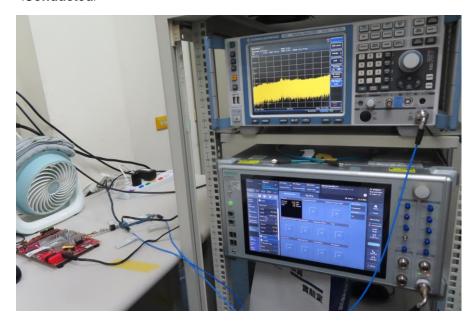
RADIO TEST REPORT Report No. : FG4N2211


TX0

TEL: 886-3-327-3456 Page Number : B4 of B5

C RADIO TEST REPORT Report No. : FG4N2211

TX0

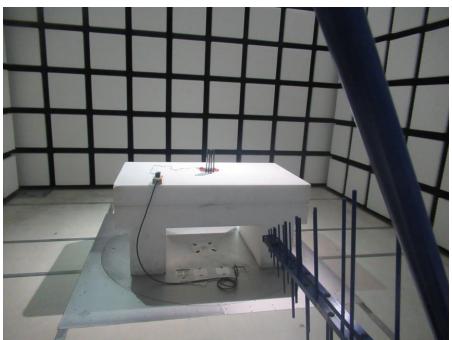


Remark: #1 is fundamental signal which can be ignored.

TEL: 886-3-327-3456 Page Number : B5 of B5

Appendix C. Setup Photographs

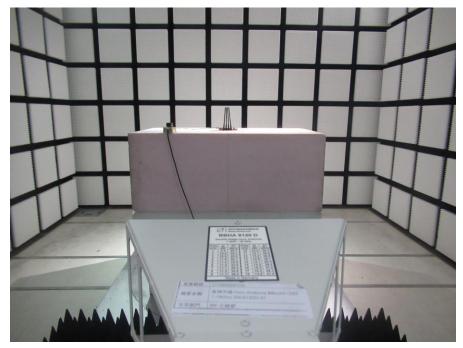
<Conducted>


Report No. : FG4N2211

TEL: 886-3-327-3456 Page Number : C1 of C2

<Radiated Emission>

Ant. Veritical


LF

Report No. : FG4N2211

HF

FAX: 886-3-328-4978

———THE END———

TEL: 886-3-327-3456 Page Number : C2 of C2