

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Report No.: RFBHVI-WTW-P24080244A

FCC ID: N6C-PCEBE

Product: Wi-Fi 7/BT combo module

Brand: Silex Technology

Model No.: SX-PCEBE

Received Date: 2025/2/5

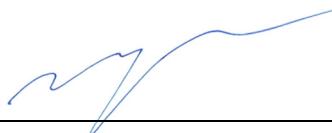
Test Date: 2025/4/2 ~ 2025/5/19

Issued Date: 2025/6/2

Applicant: Silex Technology, Inc.

Address: 2-3-1 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory


Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

FCC Registration / 723255 / TW2022

Designation Number:

Approved by: _____

May Chen / Manager

, Date: _____

2025/6/2

This test report consists of 32 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Phoenix Huang / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record	3
1 Certificate.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Supplementary Information	5
3 General Information	6
3.1 General Description.....	6
3.2 Antenna Description of EUT	8
3.3 Channel List.....	9
3.4 Test Mode Applicability and Tested Channel Detail.....	10
3.5 Duty Cycle of Test Signal.....	11
3.6 Test Program Used and Operation Descriptions.....	12
3.7 Connection Diagram of EUT and Peripheral Devices	12
3.8 Configuration of Peripheral Devices and Cable Connections	13
4 Test Instruments	14
4.1 RF Output Power.....	14
4.2 Power Spectral Density	14
4.3 AC Power Conducted Emissions	14
4.4 Unwanted Emissions below 1 GHz	15
5 Limits of Test Items.....	16
5.1 RF Output Power.....	16
5.2 Power Spectral Density	16
5.3 AC Power Conducted Emissions	16
5.4 Unwanted Emissions below 1 GHz	16
6 Test Arrangements.....	17
6.1 RF Output Power	17
6.1.1 Test Setup	17
6.1.2 Test Procedure	17
6.2 Power Spectral Density	17
6.2.1 Test Setup	17
6.2.2 Test Procedure	17
6.3 AC Power Conducted Emissions	18
6.3.1 Test Setup	18
6.3.2 Test Procedure	18
6.4 Unwanted Emissions below 1 GHz	19
6.4.1 Test Setup	19
6.4.2 Test Procedure	20
7 Test Results of Test Item	22
7.1 RF Output Power	22
7.2 Power Spectral Density	24
7.3 AC Power Conducted Emissions	26
7.4 Unwanted Emissions below 1 GHz	28
8 Pictures of Test Arrangements	31
9 Information of the Testing Laboratories	32

Release Control Record

Issue No.	Description	Date Issued
RFBHVI-WTW-P24080244A	Original release.	2025/6/2

1 Certificate

Product: Wi-Fi 7/BT combo module

Brand: Silex Technology

Test Model: SX-PCEBE

Sample Status: Engineering sample

Applicant: Silex Technology, Inc.

Test Date: 2025/4/2 ~ 2025/5/19

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Measurement

procedure: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)			
Standard / Clause	Test Item	Result	Remark
15.247(b)	RF Output Power	Pass	Meet the requirement of limit.
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.
15.247(a)(2)	6 dB Bandwidth	N/A	Refer to Note 1 below
15.247(d)	Conducted Out of Band Emissions	N/A	Refer to Note 1 below
15.207	AC Power Conducted Emissions	Pass	Minimum passing margin is -9.20 dB at 25.14844 MHz
15.205 / 15.209 / 15.247(d)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -1.72 dB at 87.23 MHz
15.205 / 15.209 / 15.247(d)	Unwanted Emissions above 1 GHz	N/A	Refer to Note 1 below
15.203	Antenna Requirement	Pass	Antenna connector is MHF 4L not a standard connector.

Note:

- Only RF Output Power, Power Spectral Density, AC Power Conducted Emissions and Unwanted Emissions below 1 GHz test items were performed for this addendum. The others testing data refer to original test report (Original FCC ID: J9C-QCNCM825).
- Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (\pm)
RF Output Power	-	1.1 dB
Power Spectral Density	-	1.3 dB
AC Power Conducted Emissions	150 kHz ~ 30 MHz	1.9 dB
Unwanted Emissions below 1 GHz	9 kHz ~ 30 MHz 30 MHz ~ 1 GHz	3.1 dB 5.5 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description

Product	Wi-Fi 7/BT combo module
Brand	Silex Technology
Test Model	SX-PCEBE
Status of EUT	Engineering sample
Power Supply Rating	3.3 Vdc from host equipment
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 1024QAM for OFDM in VHT mode 4096QAM for OFDMA in 11ax mode 4096QAM for OFDMA in 11be mode
Modulation Technology	DSSS, OFDM, OFDMA
Transfer Rate	802.11b: up to 11 Mbps 802.11g: up to 54 Mbps 802.11n: up to 300 Mbps VHT: up to 500 Mbps 802.11ax: up to 709.1 Mbps 802.11be: up to 688.2 Mbps
Operating Frequency	2.412 GHz ~ 2.462 GHz
Number of Channel	802.11b, 802.11g, 802.11n (HT20), VHT20, 802.11ax (HE20), 802.11be (EHT20): 11 802.11n (HT40), VHT40, 802.11ax (HE40), 802.11be (EHT40): 7
Resource Unit (RU)	Single RU: 26-tone, 52-tone, 106-tone, 242-tone, 484-tone Multi-RU (Small RU): 52-tone + 26-tone, 106-tone + 26-tone
Output Power	622.403 mW (27.94 dBm)

Note:

1. This report is prepared for FCC class II permissive change. The difference compared with the original design is as the following:
 - ◆ Decrease TX power of specific channels via SW, the conditions for reducing power are applicable solely to the retesting channel. (with original chip: WCN7851)
 - ◆ WLAN 2.4G BW20 ch12 and ch13; BW 40 ch10 and ch11 were disabled via software and is non-modifiable by any third-party.
2. According to above conditions, there are RF Output Power, Power Spectral Density, AC Power Conducted Emissions and Unwanted Emissions below 1 GHz test items need to be performed. All data for meeting the requirement is verified.
3. There are Bluetooth (EDR, BLE, QHS) and WLAN (2.4 GHz & 5 GHz & 6 GHz) technology used for the EUT.
4. Simultaneously transmission combination.

Combination	Technology	
1	WLAN(2.4 GHz)_Ant 0+1	WLAN(5 GHz)_Ant 0+1
2	WLAN(2.4 GHz)_Ant 0+1	WLAN(6 GHz)_Ant 0+1
3	WLAN(5 GHz)_Ant 0+1	Bluetooth_Ant 0
4	WLAN(5 GHz)_Ant 0+1	Bluetooth_Ant 1
5	WLAN(5 GHz)_Ant 0+1	Bluetooth_Ant 0+1
6	WLAN(6 GHz)_Ant 0+1	Bluetooth_Ant 0
7	WLAN(6 GHz)_Ant 0+1	Bluetooth_Ant 1
8	WLAN(6 GHz)_Ant 0+1	Bluetooth_Ant 0+1
9	WLAN(2.4 GHz)_Ant 0	Bluetooth_Ant 1
10	WLAN(2.4 GHz)_Ant 1	Bluetooth_Ant 0

5. The EUT support OFDMA and Partial RU mode, therefore partial RU combination were investigated and the worst case scenario was identified.
6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

Antenna Set	RF Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency Range (GHz)	Cable Loss (dB)	Antenna Type	Connector Type	Cable Length (mm)
1	Chain0/1	Hong-Bo	260-25094	3.53	2.4~2.4835	0.74	PIFA	MHF 4L	300
				3.06	5.15~5.25	1.16			
				3.07	5.25~5.35	1.18			
				4.81	5.47~5.725	1.26			
				4.2	5.725~5.850	1.28			
2	Chain0/1	Hong-Bo	260-25083	5.09	5.850~5.895	1.29	PIFA	MHF 4L	300
				5.14	5.925~6.425	1.35			
				5.09	6.425~6.525	1.38			
				5.16	6.525~6.875	1.45			
				5.12	6.875~7.125	1.50			
3	Chain0/1	Hong-Bo	260-25084	3.22	2.4~2.4835	0.49	Monopole	MHF 4L	200
				3.35	5.150~5.250	0.76			
				3.42	5.250~5.350	0.77			
				4.77	5.470~5.725	0.80			
				4.72	5.725~5.850	0.84			
				4.71	5.850~5.895	0.84			
				4.75	5.925~6.425	0.86			
				4.29	6.425~6.525	0.91			
				4.81	6.525~6.875	0.96			
				4.74	6.875~7.125	0.98			

Note: For 1TX diversity configuration, transmit chain 0 and chain 1 have been evaluated, the chain 0 will be used as representative test.

* Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

2. The EUT incorporates a MIMO function:

2.4 GHz Band		
Modulation Mode	Tx & Rx Configuration	
802.11b	2Tx / 1Tx Diversity	2Rx
802.11g	2Tx / 1Tx Diversity	2Rx
802.11n (HT20)	2Tx / 1Tx Diversity	2Rx
802.11n (HT40)	2Tx / 1Tx Diversity	2Rx
VHT20	2Tx / 1Tx Diversity	2Rx
VHT40	2Tx / 1Tx Diversity	2Rx
802.11ax (HE20)	2Tx / 1Tx Diversity	2Rx
802.11ax (HE40)	2Tx / 1Tx Diversity	2Rx
802.11be (EHT20)	2Tx / 1Tx Diversity	2Rx
802.11be (EHT40)	2Tx / 1Tx Diversity	2Rx
802.11ax (RU26/52/106/242/484)	2Tx / 1Tx Diversity	2Rx
802.11be (RU26/52/106/242/484 MRU52+26/106+26)	2Tx / 1Tx Diversity	2Rx

Note: The modulation and bandwidth are similar for 802.11n mode for 20 MHz (40 MHz), VHT mode for 20 MHz (40 MHz), 802.11ax mode for 20 MHz (40 MHz) and 802.11be mode for 20 MHz (40 MHz). Therefore the investigated worst case is the representative mode in test report.

3.3 Channel List

11 channels are provided for 802.11b, 802.11g, 802.11n (HT20), VHT20, 802.11ax (HE20), 802.11be (EHT20):

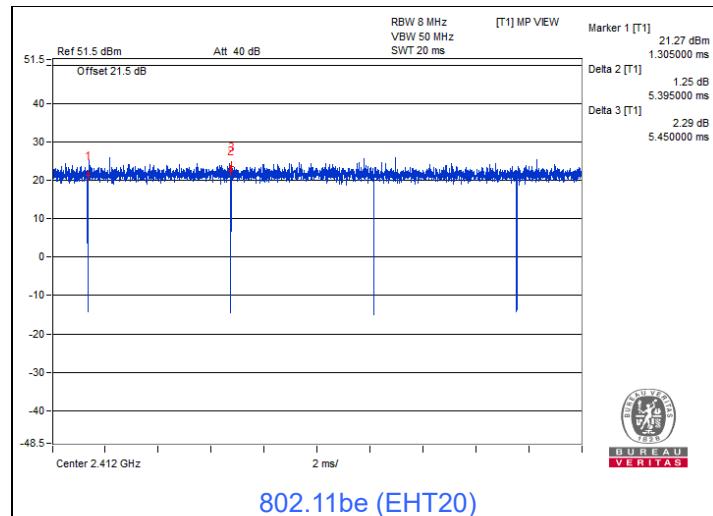
Channel	Frequency	Channel	Frequency
1	2412 MHz	8	2447 MHz
2	2417 MHz	9	2452 MHz
3	2422 MHz	10	2457 MHz
4	2427 MHz	11	2462 MHz
5	2432 MHz		
6	2437 MHz		
7	2442 MHz		

7 channels are provided for 802.11n (HT40), VHT40, 802.11ax (HE40), 802.11be (EHT40):

Channel	Frequency	Channel	Frequency
3	2422 MHz	8	2447 MHz
4	2427 MHz	9	2452 MHz
5	2432 MHz		
6	2437 MHz		
7	2442 MHz		

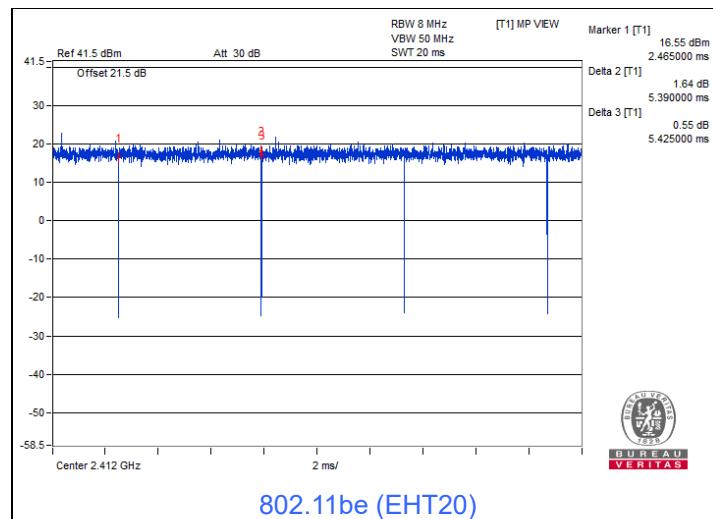
3.4 Test Mode Applicability and Tested Channel Detail

Pre-Scan:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.						
-----------	--	--	--	--	--	--	--


Following channel(s) was (were) selected for the final test as listed below:

Test Item	EUT Configure Mode	Mode	Tx/Rx Mode	Signal Mode	Tested Channel	Modulation	Data Rate Parameter
RF Output Power / Power Spectral Density	A	802.11be (EHT20)	1Tx, 2Tx	CDD	1, 2, 6, 10, 11	BPSK	MCS0
AC Power Conducted Emissions	C	802.11be (EHT20)	2Tx	CDD	6	BPSK	MCS0
Unwanted Emissions below 1 GHz	A, B	802.11be (EHT20)	2Tx	CDD	6	BPSK	MCS0
EUT Configure Mode:	A	EUT only (remove 50 ohm terminator and Connect to the appropriate equipment)					
	B	EUT with 50 ohm terminator					
	C	EUT with antenna set 1 (Model: 260-25094)					

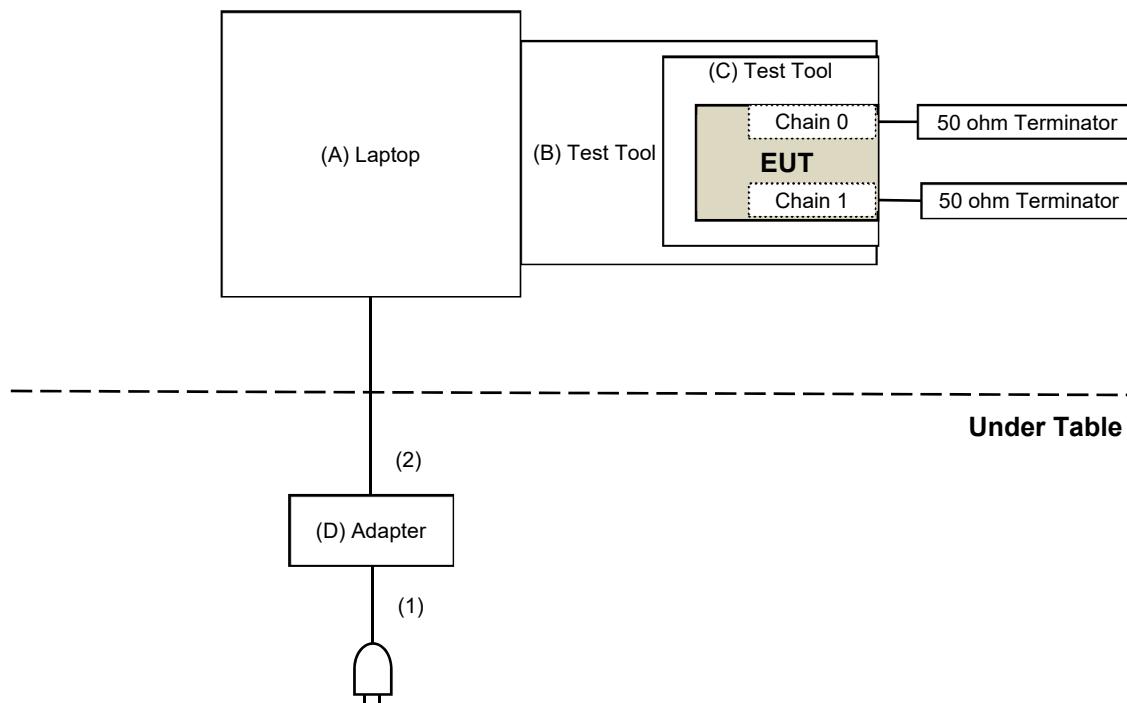
3.5 Duty Cycle of Test Signal


1Tx

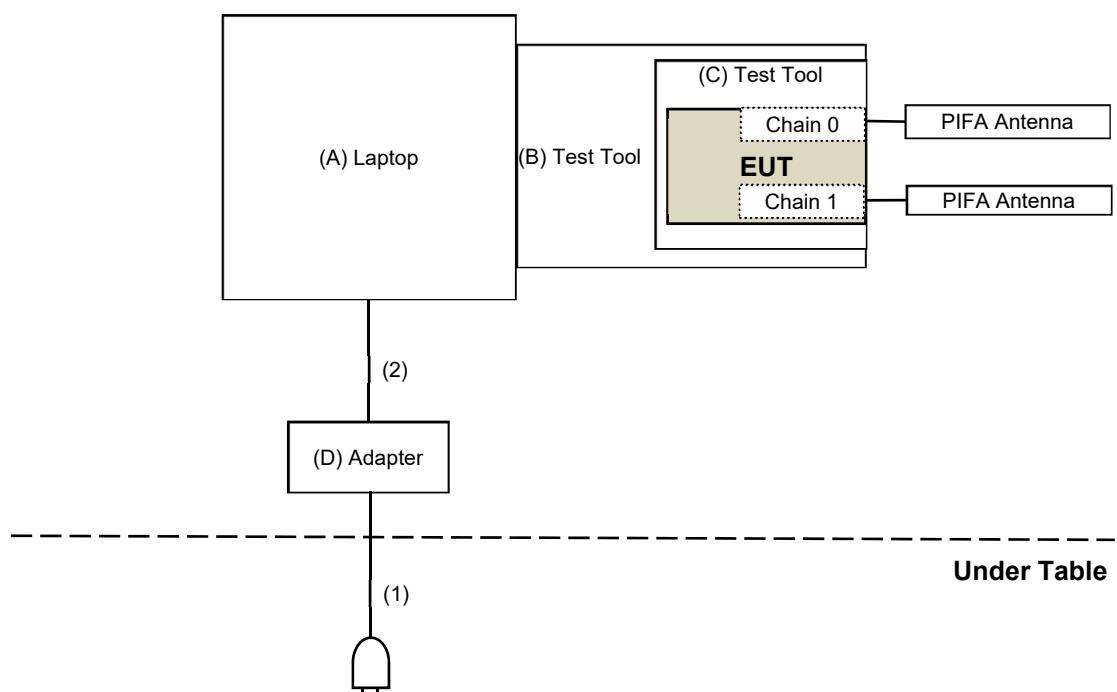
802.11be (EHT20): Duty cycle = 5.395 ms / 5.45 ms x 100% = 99.0%

2Tx

802.11be (EHT20): Duty cycle = 5.39 ms / 5.425 ms x 100% = 99.4%



3.6 Test Program Used and Operation Descriptions


Controlling software (QRCT 1.0.00098) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.7 Connection Diagram of EUT and Peripheral Devices

For Unwanted Emissions test:

For AC Power Conducted Emission test:

3.8 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A	Laptop	HP	HSN-Q32C-5	N/A	N/A	Supplied by applicant
B	Test Tool	Silex	NGFF(A+E) TO Mini PCI-E Adapter	N/A	N/A	Supplied by applicant
C	Test Tool	Silex	PW105500XX	N/A	N/A	Supplied by applicant
D	Adapter	HP	TPN-DA22	N/A	N/A	Supplied by applicant

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	AC Cable	1	0.85	No	0	Supplied by applicant
2	DC Cable	1	1.6	No	0	Supplied by applicant

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Pulse Power Sensor Anritsu	MA2411B	1726434	2024/6/7	2025/6/6
RF Power Meter Anritsu	ML2495A	1529002	2024/6/7	2025/6/6

Notes:

1. The test was performed in Oven room 2.
2. Tested Date: 2025/4/2

4.2 Power Spectral Density

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
PXA Signal Analyzer Keysight	N9030A	MY55410176	2024/6/12	2025/6/11
Software	ADT_RF Test Software V7.6.5.4	N/A	N/A	N/A

Notes:

1. The test was performed in Oven room 2.
2. Tested Date: 2025/4/2

4.3 AC Power Conducted Emissions

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
50 ohm terminal resistance Telegartner	50 ohm	3	2024/11/1	2025/10/31
EMI Test Receiver R&S	ESCS 30	100375	2024/5/20	2025/5/19
Fixed Attenuator STI	STI02-2200-10	005	2025/2/17	2026/2/16
LISN R&S	ESH3-Z5	835239/001	2025/3/27	2026/3/26
		848773/004	2024/10/7	2025/10/6
RF Coaxial Cable JYEBAO	5D-FB	COCCAB-001	2025/2/17	2026/2/16
Software BVADT	BVADT_Cond_V7.3.7.4	N/A	N/A	N/A

Notes:

1. The test was performed in Conduction 1
2. Tested Date: 2025/5/19

4.4 Unwanted Emissions below 1 GHz

Mode A

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
PXA Signal Analyzer Keysight	N9030A	MY55410176	2024/6/12	2025/6/11
Software	ADT_RF Test Software V7.6.5.4	N/A	N/A	N/A

Notes:

1. The test was performed in Oven room 2.
2. Tested Date: 2025/4/6

Mode B

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Bi_Log Antenna Schwarzbeck	VULB 9168	9168-406	2024/10/8	2025/10/7
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	N/A	N/A
Fixed Attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-03	2025/2/15	2026/2/14
Loop Antenna TESEQ	HLA 6121	63620	2024/10/17	2025/10/16
MXE EMI Receiver Agilent	N9038A	MY51210202	2024/7/29	2025/7/28
Preamplifier EMCI	EMC330N	980701	2025/2/15	2026/2/14
RF Coaxial Cable mTJ	EMC001340	980142	2025/2/17	2026/2/16
	100100-CFD400LW-200	CFD400-200	2025/2/15	2026/2/14
	100100-CFD400LW-400	CFD400-400	2025/2/15	2026/2/14
Software	100100-CFD400LW-800	CFD400-800	2025/2/15	2026/2/14
	ADT_Radiated_V8.7.08	N/A	N/A	N/A

Notes:

1. The test was performed in 966 Chamber No. 4.
2. Tested Date: 2025/5/16

5 Limits of Test Items

5.1 RF Output Power

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

Per KDB 662911 D01 Multiple Transmitter Output Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \leq 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT} ;

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \geq 5$.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS})$ dB.

5.2 Power Spectral Density

The Maximum of Power Spectral Density Measurement is 8 dBm in any 3 kHz.

5.3 AC Power Conducted Emissions

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Notes:

1. The lower limit shall apply at the transition frequencies.
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.4 Unwanted Emissions below 1 GHz

Radiated emissions up to 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	$2400/F(kHz)$	300
0.490 ~ 1.705	$24000/F(kHz)$	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = $20 \log$ Emission level (uV/m).

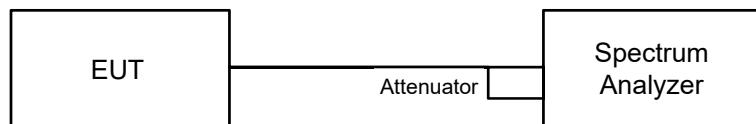
6 Test Arrangements

6.1 RF Output Power

6.1.1 Test Setup

6.1.2 Test Procedure

Peak Power:

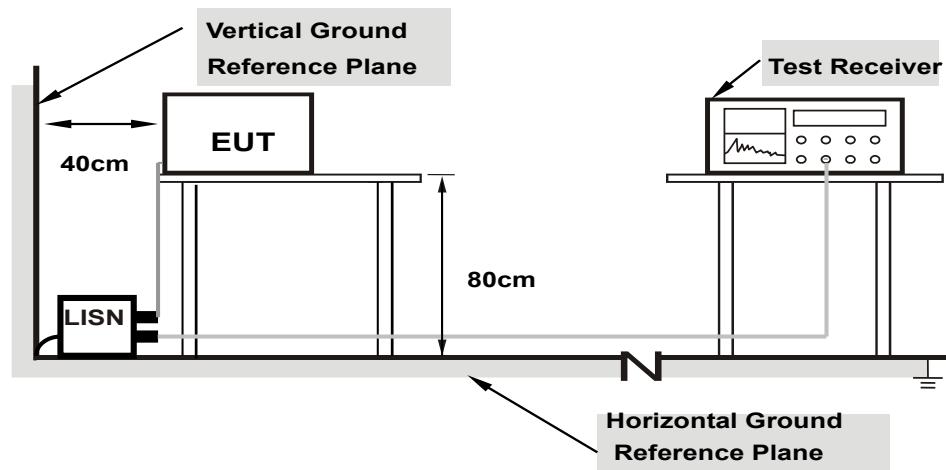

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average Power:

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

6.2 Power Spectral Density

6.2.1 Test Setup



6.2.2 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: 3 kHz.
- d. Set the VBW $\geq 3 \times$ RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

6.3 AC Power Conducted Emissions

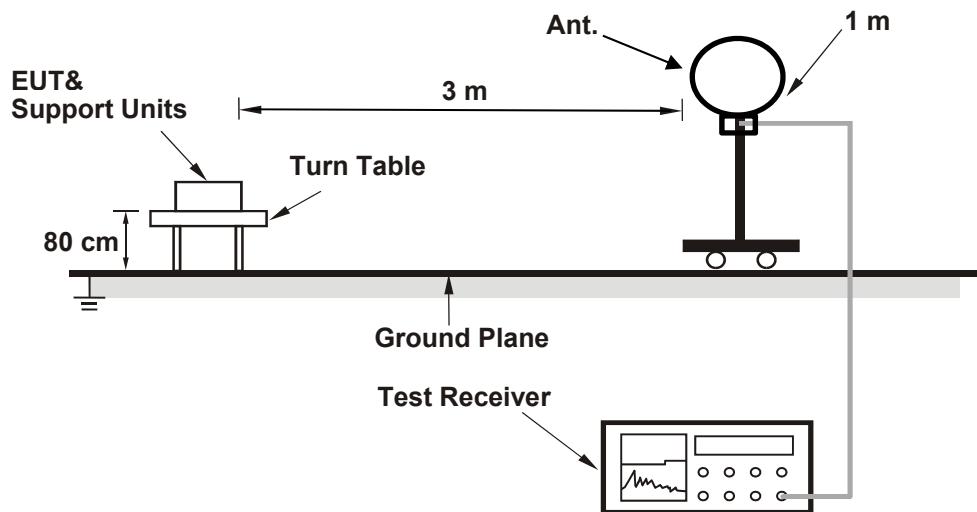
6.3.1 Test Setup

Note: 1. Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.3.2 Test Procedure

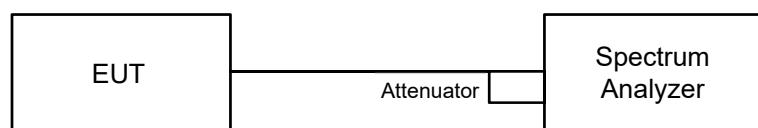
- The EUT was placed on a 0.8 meter to the top of table and placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit – 20 dB) was not recorded.


Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz-30 MHz.

6.4 Unwanted Emissions below 1 GHz

6.4.1 Test Setup

For Radiated Configuration:


For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For Conducted Configuration:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.4.2 Test Procedure

Radiated versus Conducted Measurement.

The unwanted emission limits in both the restricted and non-restricted bands are based on antenna-port conducted measurements in conjunction with cabinet emissions tests are permitted to demonstrate compliance.

The following steps was performed:

- a. Cabinet emissions measurements. Radiated measurement was performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna was replaced by a termination matching the nominal impedance of the antenna.
- b. Conducted tests was performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT.
- c. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater.
- d. EIRP adjustments for multiple outputs. (Follow the procedures specified in FCC KDB Publication 662911)
- e. For all of Radiation emission test

For Radiated emission below 30 MHz

- e-1.1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- e-1.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- e-1.3. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- e-1.4. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e-1.5. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- e-2.1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- e-2.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- e-2.3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e-2.4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e-2.5. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
2. All modes of operation were investigated and the worst-case emissions are reported.

Radiated versus Conducted Measurement

For Radiated measurement:

The level of unwanted emissions was measured when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation).

For Conducted measurement:

The level of unwanted emissions was measured as their power in a specified load (conducted spurious emissions).

Conducted Unwanted Emission Convert Formula

- a. Emission Level (dB_{UV}/m) = EIRP Level (dBm) – 20log(d) + 104.8
d = measurement distance in 3 meters.
- b. EIRP Level (dBm) = Raw Value(dBm) + Correction Factor(dB)
- c. Correction Factor is directional gain, and the composite gain will be used when signal support the correlated signal.
For the out of band spurious the gain for the specific band may have been used rather than the highest gain across all bands.
For the band edge the gain for the specific band may have been used.

Notes:

1. In restricted bands below 1000 MHz, add upper bound on ground plane reflection:
For frequencies between 30 MHz and 1000 MHz, add 4.7 dB.
2. The conducted emission test was considered some factor to compute test result.

7 Test Results of Test Item

7.1 RF Output Power

Input Power:	3.3 Vdc	Environmental Conditions:	21°C, 61% RH	Tested By:	Katina Lu
--------------	---------	---------------------------	--------------	------------	-----------

1Tx

802.11be (EHT20)

For Peak Power

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
1	2412	295.121	24.70	30	Pass
2	2417	285.759	24.56	30	Pass
6	2437	322.849	25.09	30	Pass
10	2457	303.389	24.82	30	Pass
11	2462	202.768	23.07	30	Pass

Note: The antenna gain is 3.53 dBi < 6 dBi, so the output power limit shall not be reduced.

For Average Power

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
1	2412	79.616	19.01
2	2417	78.886	18.97
6	2437	91.201	19.60
10	2457	89.331	19.51
11	2462	59.02	17.71

BUREAU
VERITAS

Input Power:	3.3 Vdc	Environmental Conditions:	21°C, 61% RH	Tested By:	Katina Lu
--------------	---------	---------------------------	--------------	------------	-----------

2Tx

802.11be (EHT20)

For Peak Power

Chan.	Chan. Freq. (MHz)	Peak Power (dBm)		Total Power (mW)	Total Power (dBm)	Power Limit (dBm)	Test Result
		Chain 0	Chain 1				
1	2412	20.16	20.24	209.435	23.21	30	Pass
2	2417	23.08	23.45	424.545	26.28	30	Pass
6	2437	24.87	24.99	622.403	27.94	30	Pass
10	2457	22.34	23.12	376.512	25.76	30	Pass
11	2462	20.36	20.69	225.862	23.54	30	Pass

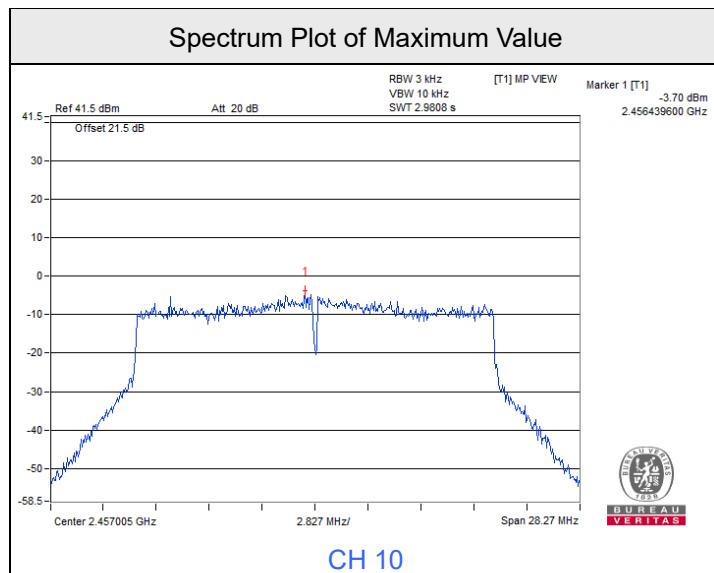
Notes:

1. Directional gain is the maximum gain of antennas.
2. The maximum gain is 3.53 dBi < 6 dBi, so the output power limit shall not be reduced.

For Average Power

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Average Power (mW)	Total Average Power (dBm)
		Chain 0	Chain 1		
1	2412	14.39	14.62	56.452	17.52
2	2417	17.25	17.60	110.632	20.44
6	2437	19.07	19.53	170.466	22.32
10	2457	16.81	17.46	103.692	20.16
11	2462	14.68	15.06	61.439	17.88

7.2 Power Spectral Density

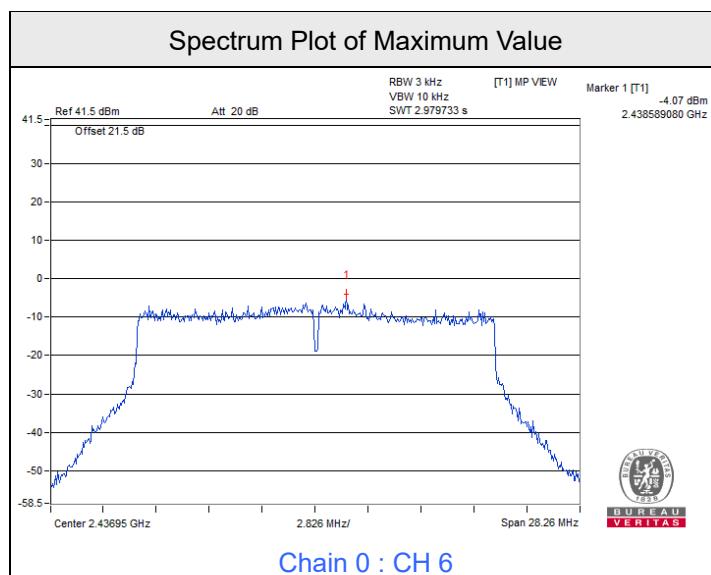

Input Power:	3.3 Vdc	Environmental Conditions:	21°C, 61% RH	Tested By:	Katina Lu
--------------	---------	---------------------------	--------------	------------	-----------

1Tx

802.11be (EHT20)

Chan.	Chan. Freq. (MHz)	PSD (dBm/3kHz)	PSD Limit (dBm/3kHz)	Test Result
1	2412	-5.81	8	Pass
2	2417	-6.39	8	Pass
6	2437	-4.25	8	Pass
10	2457	-3.70	8	Pass
11	2462	-6.60	8	Pass

Note: The antenna gain is 3.53 dBi < 6 dBi, so the power density limit shall not be reduced.


Input Power:	3.3 Vdc	Environmental Conditions:	21°C, 61% RH	Tested By:	Katina Lu
--------------	---------	---------------------------	--------------	------------	-----------

2Tx
802.11be (EHT20)

Chan.	Chan. Freq. (MHz)	PSD (dBm/3kHz)		Total PSD (dBm/3kHz)	PSD Limit (dBm/3kHz)	Test Result
		Chain 0	Chain 1			
1	2412	-10.37	-11.14	-7.73	7.46	Pass
2	2417	-6.70	-7.27	-3.97	7.46	Pass
6	2437	-4.07	-5.67	-1.79	7.46	Pass
10	2457	-7.07	-7.44	-4.24	7.46	Pass
11	2462	-9.67	-10.35	-6.99	7.46	Pass

Notes:

1. Method E) 2) b) Measure and sum spectral maxima across the outputs of KDB 662911 is using for calculating total power density.
2. Directional gain = gain of antenna element + 10 log (2 of TX antenna elements)
3. The directional gain is 6.54 dBi > 6 dBi, so the power density limit shall be reduced to 8-(6.54-6) = 7.46 dBm/3kHz.

7.3 AC Power Conducted Emissions

2Tx

RF Mode	802.11be (EHT20)	Channel	CH 6 : 2437 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	25 °C, 75 % RH
Tested By	Tank Wu		

Phase Of Power : Line (L)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15025	10.00	36.50	19.88	46.50	29.88	65.99	55.99	-19.49	-26.11
2	0.17734	10.01	30.54	17.85	40.55	27.86	64.61	54.61	-24.06	-26.75
3	0.42344	10.04	29.17	24.30	39.21	34.34	57.38	47.38	-18.17	-13.04
4	4.15625	10.31	17.62	6.40	27.93	16.71	56.00	46.00	-28.07	-29.29
5	7.74609	10.54	16.06	11.89	26.60	22.43	60.00	50.00	-33.40	-27.57
6	25.14844	11.20	31.46	29.60	42.66	40.80	60.00	50.00	-17.34	-9.20

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

RF Mode	802.11be (EHT20)	Channel	CH 6 : 2437 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	25 °C, 75 % RH
Tested By	Tank Wu		

Phase Of Power : Neutral (N)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15026	10.02	36.86	20.71	46.88	30.73	65.99	55.99	-19.11	-25.26
2	0.16953	10.02	34.74	18.46	44.76	28.48	64.98	54.98	-20.22	-26.50
3	0.42734	10.02	28.61	23.98	38.63	34.00	57.30	47.30	-18.67	-13.30
4	3.80859	10.26	19.98	17.49	30.24	27.75	56.00	46.00	-25.76	-18.25
5	7.69531	10.49	16.16	11.81	26.65	22.30	60.00	50.00	-33.35	-27.70
6	25.91016	11.00	28.11	25.12	39.11	36.12	60.00	50.00	-20.89	-13.88

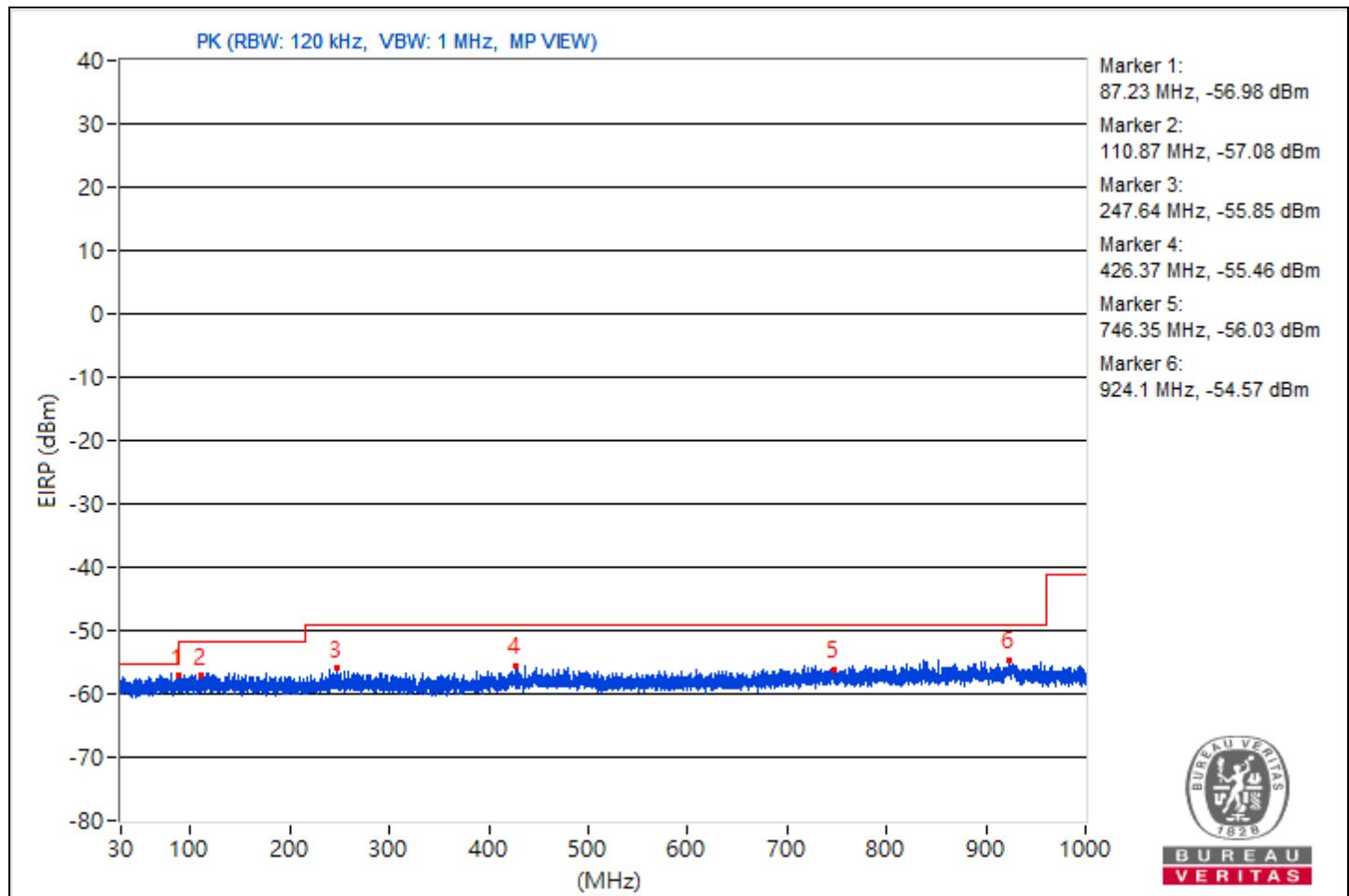
Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

7.4 Unwanted Emissions below 1 GHz

Mode A

2Tx

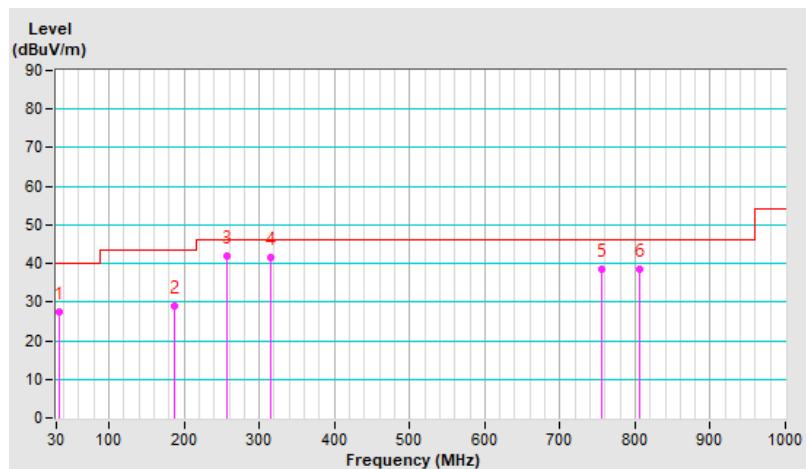

RF Mode	802.11be (EHT20)	Channel	CH 6 : 2437 MHz
Frequency Range	30 MHz ~ 1 GHz	Environmental Conditions	22°C, 60% RH
Tested By	Katina Lu		

Conducted Unwanted Emissions

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value Chain 0 (dBm)	Raw Value Chain 1 (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	87.23	38.28 PK	40	-1.72	-74.23	-71.83	12.87	-56.98
2	110.87	38.18 PK	43.5	-5.32	-71.45	-75.28	12.87	-57.08
3	247.64	39.41 PK	46	-6.59	-70.67	-73.13	12.87	-55.85
4	426.37	39.8 PK	46	-6.2	-72.03	-70.75	12.87	-55.46
5	746.35	39.23 PK	46	-6.77	-70.3	-74.51	12.87	-56.03
6	924.1	40.69 PK	46	-5.31	-72.19	-69.21	12.87	-54.57

Notes:

1. Margin value = Emission Level - Limit value
2. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

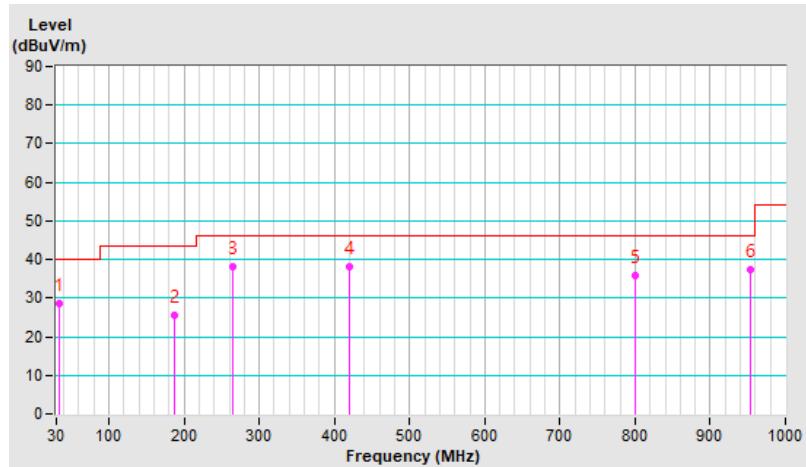

Mode B
2Tx

RF Mode	802.11be (EHT20)	Channel	CH 6 : 2437 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	25 °C, 65 % RH
Tested By	Tank Wu		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	33.37	27.3 QP	40.0	-12.7	1.00 H	4	41.1	-13.8
2	188.01	28.9 QP	43.5	-14.6	2.00 H	96	44.6	-15.7
3	257.34	41.9 QP	46.0	-4.1	1.00 H	166	55.8	-13.9
4	315.45	41.7 QP	46.0	-4.3	1.00 H	186	53.5	-11.8
5	755.90	38.4 QP	46.0	-7.6	1.00 H	243	40.5	-2.1
6	806.85	38.5 QP	46.0	-7.5	1.00 H	241	39.9	-1.4

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.


RF Mode	802.11be (EHT20)	Channel	CH 6 : 2437 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	25 °C, 65 % RH
Tested By	Tank Wu		

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	33.40	28.7 QP	40.0	-11.3	1.00 V	12	42.5	-13.8
2	186.97	25.6 QP	43.5	-17.9	1.00 V	185	41.2	-15.6
3	264.69	38.2 QP	46.0	-7.8	2.00 V	211	51.7	-13.5
4	419.75	38.1 QP	46.0	-7.9	1.00 V	201	47.2	-9.1
5	799.89	35.7 QP	46.0	-10.3	3.00 V	360	37.0	-1.3
6	954.41	37.3 QP	46.0	-8.7	2.00 V	193	36.7	0.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@bureauveritas.com

Web Site: <http://ee.bureauveritas.com.tw>

The address and road map of all our labs can be found in our web site also.

--- END ---