

TEST REPORT

FCC MPE Test for ADXV-R-3378P-UA

Certification

APPLICANT ADRF KOREA, Inc.

REPORT NO. HCT-RF-2204-FC006

DATE OF ISSUE April 19, 2022

Tested by Sang Su Lee

Technical ManagerJong Seok Lee

HCT CO., LTD. Bongjai Huh / CEO

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT

FCC MPE Test for ADXV-R-3378P-UA

REPORT NO.

HCT-RF-2204-FC006

DATE OF ISSUE

April 19, 2022

standard.

Additional Model

-

Applicant	ADRF KOREA, Inc. 5-5, Mojeon-Ri, Backsa-Myun, Icheon-Citi, Kyunggi-Do, Korea	
Eut Type Model Name	DAS ADXV-R-3378P-UA	
FCC ID	N52-ADXVR3378PUA	
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the	

F-TP22-03 (Rev. 04) Page 2 of 6

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	April 19, 2022	Initial Release

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

If this report is required to confirmation of authenticity, please contact to www.hct.co.kr

F-TP22-03 (Rev. 04) Page 3 of 6

RF Exposure Statement

1. Limit

According to § 1.1310, § 2.1091 RF exposure is calculated.

(B) Limits for General Population/Uncontrolled Exposures

Frequency range	Electric field Strength (V/m)	Magneticfield	Powerdensity	Averagingtime
(MHz)		Strength (A/m)	(mW/cm²)	(minutes)
0.3 - 1.34	614 824/f 27.5	1.63 2.19/f 0.073	*(100) *(180/ f²) 0.2 f/1500 1.0	30 30 30 30 30

F = frequency in MHz

2. Maximum Permissible Exposure Prediction

Prediction of MPE limit at a given distance

$S = PG/4\pi R^2$

S = Power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

F-TP22-03 (Rev. 04) Page 4 of 6

^{* =} Plane-wave equivalent power density

비

객

3. RESULTS

- PS Narrowband – Downlink

34.00	dBm
2511.89	mW
60.00	cm
769.00	MHz
2.60	dBi
1.82	-
0.1010	mW/cm²
0.5127	mW/cm²
	60.00 769.00 2.60 1.82 0.1010

Max Peak output Power at antenna input terminal	34.00	dBm
Max Peak output Power at antenna input terminal	2511.89	mW
Prediction distance	60.00	cm
Prediction frequency	851.00	MHz
Antenna Gain(typical)	3.90	dBi
Antenna Gain(numeric)	2.45	-
Power density at prediction frequency(S)	0.1363	mW/cm²
MPE limit for uncontrolled exposure at prediction frequency	0.5673	mW/cm²

F-TP22-03 (Rev. 04) Page 5 of 6

Simultaneous band emission conditions

[Downlink]

Band	MPE Ratio (Power density / Limit)	Sum of MPE	Ratio
PS Narrowband	0.1971	0.4272	_ 1
NPSPAC+SMR	0.2402	0.4373	≥ 1

*Note

 The result of each band was applied to the worst value.
 MPE ratios are calculated as [(Power density1 / MPE Limit) + [(Power density2 / MPE Limit) + ...] \leq 1

F-TP22-03 (Rev. 04) Page 6 of 6