PCTEST Engineering Laboratory, Inc.

6660-B Dobbin Road • Columbia, MD 21045 • U.S.A. TEL (410) 290-6652 • FAX (410) 290-6654 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE

BF TECH.

4th 404, Gwang Jang Bldg.

1601-4, Gwan Yang-Dong, Dong An-Ku An Yang-Si, Gyoung Gi-Do, KOREA

Attention: Jung-Hwan Lee, Principle

Dates of Tests: August 13-14, 1998 Test Report S/N: NOT.980803535.N45

Test Site: PCTEST Lab, Columbia MD

Job No.: KES #816

FCC ID

N45BF-150P

APPLICANT

BF TECH.

FCC Rule Part(s): § 15, § 2 (Notification)

Classification: Numeric Radio Paging Receiver (CYY)

Freq. Range: 135MHz ~ 174MHz Bit Rate(s): 1200/2400 bps

Trade Name: BF TECH.

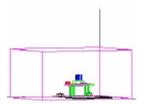
Model Name: Beacon Fire

Model No.: BF-150P

This device has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified is ANSI C63.4-1992 (Note Codes: #37).

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a)


Randy Ortanez
President & Chief Engineer

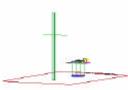


TABLE OF CONTENTS

ATTACHMENT A:	COVER LETTER(S)	
ATTACHMENT B:	ATTESTATION STATEMENT(S)	
ATTACHMENT C:	TEST REPORT	
SCOPE		1
INTRODUCTION	ON (SITE DESCRIPTION)	2
PRODUCTION	INFORMATION	3
DESCRIPTION	I OF TESTS (CONDUCTED)	4
DESCRIPTION	I OF TESTS (RADIATED)	5
TEST DATA (C	CONDUCTED)	6
FREQUENCY	MEASUREMENTS (SPURIOUS)	7
PLOTS OF EN	IISSION (RADIATED)	8
ACCURACY C	F MEASUREMENT	9
LIST OF TEST	EQUIPMENT	10
RECOMMEND	DATION / CONCLUSION	11
ATTACHMENT D:	TEST PLOTS	
ATTACHMENT E:	FCC ID LABEL / LOCATION	
ATTACHMENT F:	BLOCK DIAGRAM(S)	
ATTACHMENT G:	SCHEMATIC DIAGRAM(S)	
ATTACHMENT H:	TEST SETUP PHOTOGRAPHS	
ATTACHMENT I:	EXTERNAL PHOTOGRAPHS	
ATTACHMENT J:	INTERNAL PHOTOGRAPHS	
ATTACHMENT K:	USER S MANUAL	

MEASUREMENT REPORT

Scope - Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

Company Name: BF TECH.

Address: 4TH 404, Gwang Jang Bldg.

1601-4, Gwan Yang-Dong, Dong An-Ku An Yang-Si, Gyoung Gi-Do, KOREA

Attention: Jung-Hwan Lee, Principle

FCC ID: N45BF-150P
Model No.: BF-150P
Model Name: Beacon Fire
Trade Name: BF TECH.

EUT Type: Numeric Radio Paging Receiver (CYY)

FCC Procedure: Notification

Freq. Range: 135MHz ~ 174MHz
 Bit Rate(s): 1200/2400 bps

FCC Rule Part(s): § 15, §2

Dates of Tests: August 13-14, 1998

Place of Tests:
 PCTEST Lab, Columbia, MD U.S.A.

Test Report S/N: NOT.980803535.N45

1.1 INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-1992) was used in determining radiated and conducted emissions emanating from **BF TECH.** (Model: *BF-150P*) Numeric Paging Receiver FCC ID: N45BF-150P.

These measurement tests were conducted at *PCTEST Engineering Laboratory, Inc.* facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

1.2 PCTEST Location

The map at right shows the location of the PCTEST Lab, its proximity to the FCC Lab, the Columbia vicinity area, the Baltimore-Washington International (BWI) airport, and the city of Baltimore, and the Washington, D.C. area. (see Figure 1).

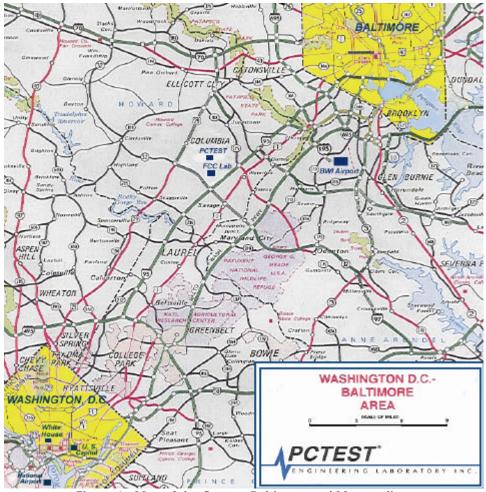


Figure 1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

2.1 Product Information

2.2 Equipment Description

The Equipment Under Test (EUT) is the **BF TECH**. (Model *BF-150P*) Numeric Paging receiver FCC ID: N45BF-150P.

* Freq. Range: 135MHz ~ 174MHz * Bit Rate(s): 1200/2400 bps

* Crystal/Oscillator(s): 20.945MHz

* Antenna: Micro Loop

* Power Supply: (1) 1.5 VDC (AAA size Alkaline)
 * Receiving System: Double Superheterodyne, Crystal

* Signal System: POCSAG

* Modulation: FSK

* Frequency Stability: ± 5 ppm
 * Image rejection: > 50dB
 * Spurious rejection: > 60dB

* Deviation: \pm 4.5 kHz

* Dimensions: 56 x 43 x 18 mm

* Weight: 38g (including battery)

2.4 EMI Suppression Device(s)

EMI suppression device(s) added and/or modified during testing:

none

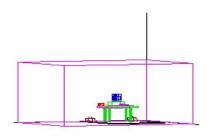


Figure 2. Shielded Enclosure Line-Conducted Test Facility

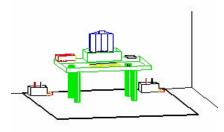


Figure 3. Line Conducted Emission Test Set-Up

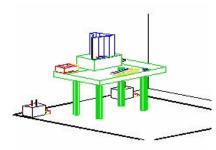


Figure 4. Wooden Table & Bonded LISNs

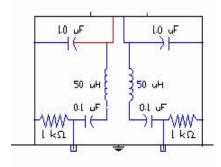


Figure 5. LISN Schematic Diagram

3.1 Description of Tests

3.2 Conducted Emissions (n/a Battery Operated Only)

The line-conducted facility is located inside a 16'x20'x10' shielded enclosure. It is manufactured by Ray Proof Series 81 (see Figure 2). The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-6. A 1m. x 1.5m. wooden table 80cm. high is placed 40cm. away from the vertical wall and 1.5m away from the side wall of the shielded room (see Figure 3). Electronics and EMCO Model 3725/2 (10kHz-30MHz) 50Ω/50μH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room (see Figure 4). The EUT is powered from the Solar LISN and the support equipment is powered from the EMCO LISN. Power to the LISNs are filtered by a high-current high-insertion loss Ray Proof power line filters (100dB 14kHz-10GHz). The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure. All electrical cables are shielded by braided tinned copper zipper tubing with inner diameter of 1/2". If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the Solar LISN. LISN schematic diagram is shown in Figure 5. All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1-meter length. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. spectrum was scanned from 450kHz to 30MHz with 20 msec. sweep time. The frequency producing the maximum level was reexamined using EMI/ Field Intensity Meter and Quasi-Peak adapter. detector function was set to CISPR quasi-peak mode. The bandwidth of the receiver was set to 10 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission. Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and/or support equipment, and powering the monitor from the floor mounted outlet box and the computer aux AC outlet, if applicable; whichever determined the worst-case emission. Photographs of the worst-case emission can be seen in Appendix C. Each EME reported was calibrated using the HP8640B signal generator.

Figure 6. 3-Meter Test Site

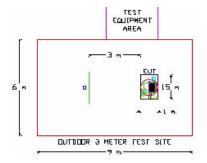


Figure 7. Dimensions of Outdoor Test Site

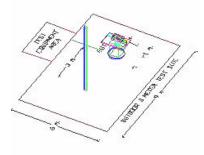


Figure 8. Turntable and System Setup

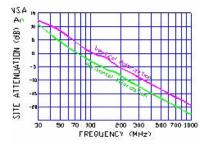


Figure 9. Normalized Site Attenuation Curves (H&V)

3.1 Description of Tests (continued)

3.3 Radiated Emissions

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were noted for each frequency found. The spectrum was scanned from 30 to 200 MHz using biconical antenna and from 200 to 1000 MHz using log-spiral antenna. Above 1 GHz, linearly polarized double ridge horn antennas were used.

Final measurements were made outdoors at 3-meter test range using Roberts™ Dipole antennas or horn antenna (see Figure 6). The test equipment was placed on a wooden and plastic bench situated on a 1.5 x 2 meter area adjacent to the measurement area (see Figure 7). Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was reexamined and investigated using EMI/Field Intensity Meter and Quasi-Peak Adapter. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 100kHz or 1 MHz depending on the frequency or type of signal.

The EUT, support equipment and interconnecting cables were rearranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Photographs of the worst case emission can be seen in Attachment H. Each EME report was calibrated using the HP8640B signal generator. The Theoretical Normalized Site Attenuation Curves for both horizontal and vertical polarization are shown in Figure 9 according to ANSI C63.4.

3.4 Radiated Emissions (Antenna Conducted)

The antenna-power conducted measurements were performed with the EUT antenna terminals connected directly to a spectrum analyzer with a matching impedance termination. Power on the receive antenna terminals is determined by measurements of the voltage present at these terminals. A CISPR QP detector is used below 1GHz. Power on the receive antenna terminals is the ratio of $V^2/2$, where V is the loss-corrected voltage measured at the antenna terminals, and R is the impedance of the measuring instrument. The power at the antenna terminal at any frequency from 30MHz to 1000MHz shall not exceed 2.0 nanowatts.

FCC Notification
Paging Receiver (CYY)

Test Report S/N: NOT.980803535.N45 Dates of Tests: August 13-14, 1998

5.1 LINE-CONDUCTED TEST DATA

5.2 Conducted Emissions

Not applicable. The EUT is only a battery operated device.

6.1 RADIATED TEST DATA

6.3.1 Radiated Emissions

FREQ. (MHz)	Level* (dBm)	AFCL** (dB)	POL (H/V)	Height (m)	Azimuth (° angle)	F/S (μV/m)	Margin*** (dB)
66.0	- 80.0	5.7	Н	3.1	10	43.4	- 7.3
132.0	- 87.0	12.4	Н	2.4	30	41.5	- 11.0
264.0	- 88.2	19.3	Н	1.5	60	80.4	- 7.9
396.0	- 96.0	23.6	Н	1.3	30	57.6	- 11.4

Table 1. Radiated Measurements at 3-meters.

152.480MHz

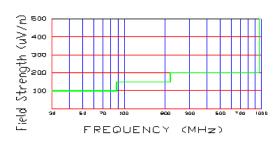


Figure 10. Limits at 3 meters

NOTES:

- 1. The antenna is manipulated through typical positions and/or three orthogonal positions during the tests.
- 2. The emissions are maximized by changing polarity of the antenna.
- 3. The EUT is supplied with a new/fully charged battery.
- 4. AFCL=Antenna Factor (Dipole) + Cable loss
- 5. HA=Horn Antenna used above 1GHz Limit 54.0 dBμV above 1GHz

^{*} All readings are calibrated by HP8640B signal generator with accuracy traceable to the National Institute of Standards and Technology (formerly NBS).

^{**} AFCL = Antenna Factor (Roberts dipole) and Cable Loss (30 ft. RG58C/U).

^{***} Measurements using CISPR quasi-peak mode. Above 1GHz, peak detector function mode is used using a resolution bandwidth of 1MHz and a video bandwidth of 1MHz. The peak level complies with the average limit. Peak mode is used with linearly polarized horn antenna and low-loss microwave cable.

FCC Notification
Paging Receiver (CYY)

Test Report S/N: NOT.980803535.N45 Dates of Tests: August 13-14, 1998

7.1 Plot(s) of Emissions

See Attachment D

8.1 Accuracy of Measurement

8.2 Measurement Uncertainty Calculations:

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994).

Contribution	Probability	Uncertainty (± dB)		
(Line Conducted)	Distribution	9kHz-150MHz	150-30MHz	
Receiver specification	Rectangular	1.5	1.5	
LISN coupling specification	Rectangular	1.5	1.5	
Cable and input attenuator calibration	Normal (k=2)	0.3	0.5	
Mismatch: Receiver VRC $\Gamma_1 = 0.03$				
LISN VRC $\Gamma_R = 0.8 \text{ (9kHz) } 0.2 \text{ (30MHz)}$	U-Shaped	0.2	0.35	
Uncertainty limits $20Log(1 \pm \Gamma_1 \Gamma_R)$				
System repeatability	Std. deviation	0.2	0.05	
Repeatability of EUT		•	-	
Combined standard uncertainty	Normal	1.26	1.30	
Expanded uncertainty	Normal (k=2)	2.5	2.6	

Calculations for 150kHz to 30MHz:

$$u_{C}(y) = \sqrt{\sum_{i=1}^{m} u_{i}^{2}(y)} = \pm \sqrt{\frac{1.5^{2} + 1.5^{2}}{3} + (\frac{0.5}{2})^{2} + 0.35} = \pm 1.298dB$$

$$U = 2U_{C}(y) = \pm 2.6dB$$

Contribution	Probability	Uncertain	ties (± dB)
(Radiated Emissions)	Distribution	3 m	10 m
Ambient Signals		-	-
Antenna factor calibration	Normal (k=2)	± 1.0	± 1.0
Cable loss calibration	Normal (k=2)	± 0.5	± 0.5
Receiver specification	Rectangular	± 1.5	±1.5
Antenna directivity	Rectangular	+ 0.5 / - 0	+ 0.5
Antenna factor variation with height	Rectangular	± 2.0	± 0.5
Antenna phase centre variation	Rectangular	0.0	± 0.2
Antenna factor frequency interpolation	Rectangular	±. 0.25	± 0.25
Measurement distance variation	Rectangular	± 0.6	± 0.4
Site imperfections	Rectangular	± 2.0	± 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$	U-Shaped	+ 1.1	
Antenna VRC Γ_R = 0.67 (Bi) 0.3 (Lp)	0-Shapeu	- 1.25	± 0.5
Uncertainty limits $20Log(1 \pm \Gamma_1 \Gamma_R)$		1.20	
System repeatability	Std. Deviation	± 0.5	± 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+ 2.19 / - 2.21	+ 1.74 / - 1.72
Expanded uncertainty U	Normal (k=2)	+ 4.38 / - 4.42	+ 3.48 / - 3.44

Calculations for 3m biconical antenna. Coverage factor of k=2 will ensure that the level of confidence will be approximately 95%, therefore:

$$U=2u_C(y) = 2 x \pm 2.19 = \pm 4.38dB$$

9.1 Test Equipment

9.2 Type	Model Ca	l. Due Date	S/N
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	08/15/99	3638A08713
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	04/17/99	2542A11898
Spectrum Analyzer/Tracking Gen.	HP 8591A (100Hz-1.8GHz)	08/10/99	3144A02458
Signal Generator*	HP 8640B (500Hz-1GHz)	08/09/99	2232A19558
Signal Generator [*]	HP 8640B (500Hz-1GHz)	08/09/99	1851A09816
Signal Generator [*]	Rohde & Schwarz (0.1-1000MHz)	09/11/98	894215/012
Ailtech/Eaton Receiver	NM 37/57A-SL (30-1000MHz)	04/12/99	0792-03271
Ailtech/Eaton Receiver	NM 37/57A (30-1000MHz)	03/11/99	0805-03334
Ailtech/Eaton Receiver	NM 17/27A (O.1-32MHz)	09/17/98	0608-03241
Quasi-Peak Adapter	HP 85650A	08/15/99	2043A00301
Ailtech/Eaton Adapter	CCA-7 CISPR/ANSI QP Adapter	03/11/99	0194-04082
RG58 Coax Test Cable	No. 167		n/a
Harmonic/Flicker Test System	HP 6841A (IEC 555-2/3)		3531A00115
Broadband Amplifier (2)	HP 8447D		1145A00470, 1937A033
Broadband Amplifier	HP 8447F		2443A03784
Fransient Limiter	HP 11947A (9kHz-200MHz)		2820A00300
Horn Antenna	EMCO Model 3115 (1-18GHz)		9704-5182
Horn Antenna	EMCO Model 3115 (1-18GHz)		9205-3874
Horn Antenna	EMCO Model 3116 (18-40GHz)		9203-2178
Biconical Antenna (4)	Eaton 94455/Eaton 94455-1/Sin	ger 94455-1/Compliar	nce Design 1295, 1332, 035
og-Spiral Antenna (3)	Ailtech/Eaton 93490-1		0608, 1103, 1104
Roberts Dipoles	Compliance Design (1 set)		
Ailtech Dipoles	DM-105A (1 set)		33448-111
EMCO LISN	3816/2		1079
EMCO LISN	3816/2		1077
EMCO LISN	3725/2		2009
Microwave Preamplifier 40dB Gain	HP 83017A (0.5-26.5GHz)		3123A00181
Microwave Cables	MicroCoax (1.0-26.5GHz)		
Ailtech/Eaton Receiver	NM37/57A-SL		0792-03271
Spectrum Analyzer	HP 8594A		3051A00187
Spectrum Analyzer (2)	HP 8591A		3034A01395, 3108A02
Modulation Analyzer	HP 8901A		2432A03467
NTSC Pattern Generator	Leader 408		0377433
Noise Figure Meter	HP 8970B		3106A02189
Noise Figure Meter	Ailtech 7510		TE31700
Noise Generator	Ailtech 7010		1473
Microwave Survey Meter	Holaday Model 1501 (2.450GHz)		80931
Digital Thermometer	Extech Instruments 421305		426966
Attenuator	HP 8495A (0-70dB) DC-4GHz		
Bi-Directional Coax Coupler	Narda 3020A (50-1000MHz)		
Shielded Screen Room	RF Lindgren Model 26-2/2-0		6710 (PCT270)
Shielded Semi-Anechoic Chamber	Ray Proof Model S81		R2437 (PCT278)
	-		•

^{*} Calibration traceable to the National Institute of Standards and Technology (NIST).

Test Report S/N: NOT.980803535.N45 FCC Notification

Dates of Tests: August 13-14, 1998 Paging Receiver (CYY)

10.1 Recommendation/Conclusion

The data collected shows that the **BF TECH. (Model: BF-150P) Numeric Paging Receiver FCC ID: N45BF-150P** is in compliance with Part 15 and Part 2 of the FCC Rules for Paging Receivers.