

Product Name	Mobile Clinical Assistant C5
Model No.	CFT-001
FCC ID	MSQCFTO1
Transmitter Module.	TRF7960

Applicant	ASUSTeK COMPUTER INC.
Address	4FL., No. 150, Li-Te Rd., Peitou, Taipei, Taiwan, R.O.C.

Date of Receipt	Apr. 17, 2007
Issued Date	May 24, 2007
Report No.	074L109-RFUSP10V01

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issued Date: May 24, 2007

Report No.: 074L109-RFUSP10V01

Product Name	Mobile Clinical Assistant C5			
Applicant	ASUSTeK COMPUTER INC.			
Address	4FL., No. 150, Li-Te Rd., Peitou, Taipei, Taiwan,	4FL., No. 150, Li-Te Rd., Peitou, Taipei, Taiwan, R.O.C.		
Manufacturer	ASUSTeK COMPUTER INC.			
Model No.	CFT-001			
FCC ID.	MSQCFTO1			
Rated Voltage	AC 120V/60Hz			
Working Voltage	AC 120V/60Hz			
Trade Name	Motion Computing Incorporated			
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2005	1 -8		
	ANSI C63.4: 2003			
Test Result	Complied	NVLAP Lab Code: 200533-0		

Test results relate only to the samples tested.

Tested By

Approved By

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By

(Engineering Adm. Specialist /

Rita Huang)

Rita Huang

(Engineer / Tim Sung)

Page: 2 of 27

President / Gene Chang

Version:1.0

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	5
1.3.	Tested System Datails	<i>.</i>
1.4.	Configuration of tested System	<i>.</i>
1.5.	EUT Exercise Software	
1.6.	Test Facility	7
2.	Conducted Emission	8
2.1.	Test Equipment	8
2.2.	Test Setup	8
2.3.	Limits	8
2.4.	Test Procedure	9
2.5.	Uncertainty	9
2.6.	Test Result of Conducted Emission	10
3.	Radiated Emission	12
3.1.	Test Equipment	12
3.2.	Test Setup	12
3.3.	Limits	13
3.4.	Test Procedure	14
3.5.	Uncertainty	14
3.6.	Test Result of Radiated Emission	15
4.	Band Edge	18
4.1.	Test Equipment	18
4.2.	Test Setup	18
4.3.	Limits	18
4.4.	Test Procedure	19
4.5.	Uncertainty	19
4.6.	Test Result of Band Edge	20
5.	Occupied Bandwidth	21
5.1.	Test Equipment	21
5.2.	Test Setup	21
5.3.	Limits	21
5.4.	Uncertainty	21
5.5.	Test Result of Occupied Bandwidth	22
6.	Frequency Tolerance	23

7.	EMI Reduction Method During Compliance Testing	25
6.6.	Test Result of Frequency Stability	24
6.5.	Uncertainty	23
6.4.	Test Procedure	23
6.3.	Limits	23
6.2.	Test Setup	23
6.1.	Test Equipment	23

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Mobile Clinical Assistant C5	
Trade Name	Motion Computing Incorporated	
Model No.	CFT-001	
FCC ID	MSQCFTO1	
Frequency Range	13.56MHz	
Channel Control	Non Applied	
Antenna Type	Connector	
Antenna Gain	Refer to the table "Antenna List"	
Power Adapter	MFR: DELTA, M/N: ADP-50HH REV.B	
	Cable Out: Non-Shielded, 1.8m with one ferrite core bonded.	
	Power Cord: Shielded, 1.8m	

Frequency of Each Channel:

Channel Frequency
Channel 1: 13.56 MHz

Note:

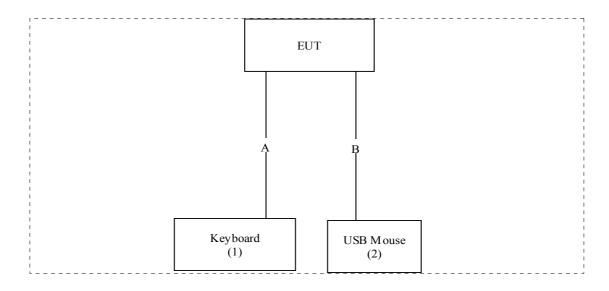
- 1. This device is a Mobile Clinical Assistant C5 with a built-in 13.56MHz transceiver.
- 2. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.225 for spread spectrum devices.
- 3. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

1.2. Operational Description

EUT is a Mobile Clinical Assistant C5 with a built-in 13.56MHz transceiver with ASK modulation. The signal will be transmitted through 13.56 MHz ASK RF signal from the Connector antenna from EUT to receiver.

Test Mode	Mode 1: Transmitter
-----------	---------------------

Page: 5 of 27 Version:1.0


1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.	Serial No.	Power Cord
(1)	Keyboard	BTC	5200U	N/A	N/A
(2)	USB Mouse	Logitech	M-BE58	HCA30103100	N/A

Signal Cable Type		Signal cable Description	
A. Keyboard Cable		Shielded, 1.8m	
B.	Mouse Cable	Shielded, 1.8m	

1.4. Configuration of tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute TRF 7960 EVM Control V1.0.0.1 on the notebook.
- (3) Configure the test mode, EUT will continuous transmission the signal.
- (4) Verify that the EUT works properly.

Page: 6 of 27 Version: 1.0

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual	
Temperature (°C)	15-35	20-35	
Humidity (%RH)	25-75	50-65	
Barometric pressure (mbar)	860-1060	950-1000	

Site Description: File on

Federal Communications Commission

FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046

Reference 31040/SIT1300F2

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation

Site Address: No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen,

Lin-Kou Shiang, Taipei,

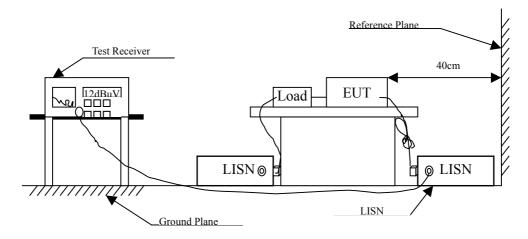
Taiwan, R.O.C.

TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789

E-Mail: service@quietek.com

Page: 7 of 27 Version:1.0

2. Conducted Emission


2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2007	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2007	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2007	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2007	
5	No.1 Shielded Roo	m		N/A	

Note: All equipments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit					
Frequency	Limits				
MHz	QP	AV			
0.15 - 0.50	66-56 _(it)	56-46 _(\$\pm\)			
0.50-5.0	56	46			
5.0 - 30	60	50			

Page: 8 of 27 Version: 1.0

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product : Mobile Clinical Assistant C5
Test Item : Conducted Emission Test

Power Line : Line 1

Test Mode : Mode 1: Transmitter

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE 1					
Quasi-Peak					
0.209	0.202	48.820	49.022	-15.292	64.314
0.269	0.210	39.480	39.690	-22.910	62.600
0.339	0.214	35.750	35.964	-24.636	60.600
0.409	0.215	38.100	38.315	-20.285	58.600
0.479	0.216	32.770	32.986	-23.614	56.600
0.549	0.217	36.200	36.417	-19.583	56.000
Average					
0.209	0.202	31.460	31.662	-22.652	54.314
0.269	0.210	23.840	24.050	-28.550	52.600
0.339	0.214	21.910	22.124	-28.476	50.600
0.409	0.215	24.010	24.225	-24.375	48.600
0.479	0.216	21.740	21.956	-24.644	46.600
0.549	0.217	23.300	23.517	-22.483	46.000

Note:

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Page: 10 of 27 Version: 1.0

Product : Mobile Clinical Assistant C5
Test Item : Conducted Emission Test

Power Line : Line 2

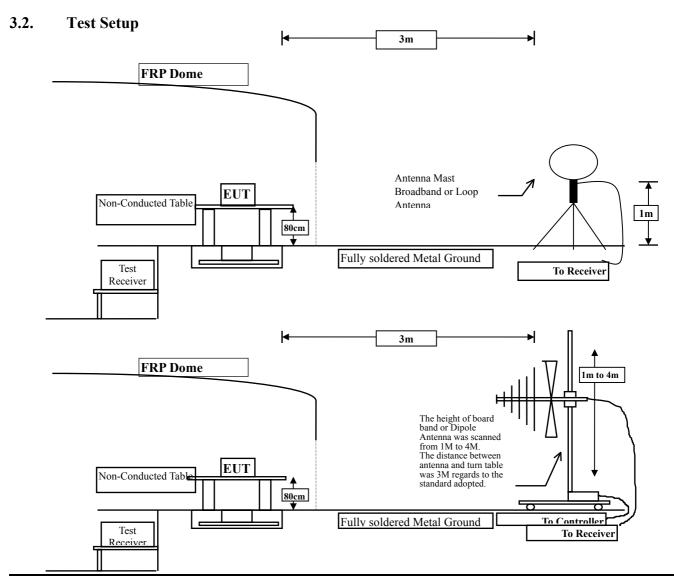
Test Mode : Mode 1: Transmitter

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE 2					
Quasi-Peak					
0.205	0.202	51.880	52.082	-12.347	64.429
0.275	0.203	45.010	45.213	-17.216	62.429
0.345	0.214	37.230	37.444	-22.985	60.429
0.415	0.215	35.900	36.115	-22.314	58.429
0.485	0.216	29.020	29.236	-27.193	56.429
0.545	0.217	33.760	33.977	-22.023	56.000
Average					
0.205	0.202	33.840	34.042	-20.387	54.429
0.275	0.203	29.040	29.243	-23.186	52.429
0.345	0.214	23.130	23.344	-27.085	50.429
0.415	0.215	22.650	22.865	-25.564	48.429
0.485	0.216	18.980	19.196	-27.233	46.429
0.545	0.217	20.620	20.837	-25.163	46.000

Note:

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Radiated Emission


3.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	X	Test Receiver	R & S	ESI 26 / 838786 / 004	May, 2007
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2007
	X	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2007
	X	Bilog Antenna	SCHAFFNER	CBL6112B / 2697	May, 2007
	X	Horn Antenna	ETS	3115 / 0005-6160	July, 2006
	X	Pre-Amplifier	QTK	QTK-AMP-01 / 0001	July, 2006
	X	Loop Antenna	R & S	HFH2-Z2/833799/004	July, 2006

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

Page: 12 of 27 Version:1.0

3.3. Limits

> Fundamental electric field strength Limit

FCC Part 15 Subpart C Paragraph 15.225 Limits					
Fundamental Frequency	Field strength of fundamental				
Fundamental Frequency MHz	uV/m	Distance (meter)	dBuV/m	Distance (meter)	
13.553 – 13.567	15848	30	104	3	
13.410 – 13.553 and 13.567 – 13.710	334	30	70.5	3	
13.110 – 13.410 and 13.710 – 14.010	106	30	60.5	3	
Outside of the 13.110 – 14.010	See 15.209 Limits				

Remarks: 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$

- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

> Spurious electric field strength Limit

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency MHz	uV/m	dBuV/m	Measurement distance (meter)			
0.009-0.490	2400/F(kHz)	See Remark ¹	300			
0.490-1.705	24000/F(kHz)	See Remark ¹	30			
1.705-30	30	29.5	30			
30-88	100	40	3			
88-216	150	43.5	3			
216-960	200	46	3			
Above 960	500	54	3			

Remarks: 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Page: 13 of 27 Version:1.0

3.4. Test Procedure

Fundamental electric field strength:

The EUT and its simulators are placed on a turn table which is 1 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum electric field strength.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna which is 1 meter above ground. All X-axis, Y-axis and Z-axis polarization of the antenna are set on measurement.

Spurious electric field strength:

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4 on radiated measurement.

On any frequency the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

The bandwidth below 30MHz setting on the field strength meter is 9kHz and above 30MHz is 120kHz.

3.5. Uncertainty

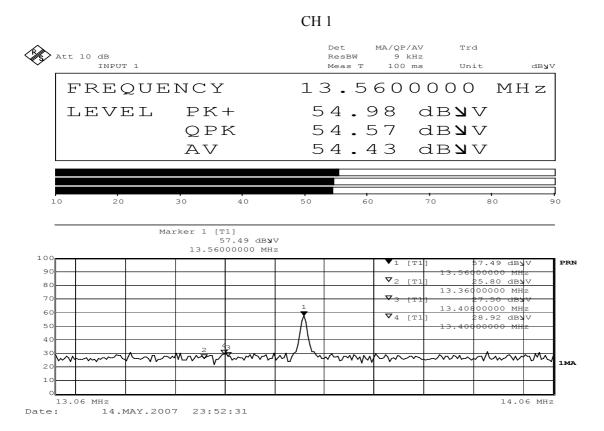
- ± 2.6 dB below 30MHz
- ± 3.8 dB above 30MHz

3.6. Test Result of Radiated Emission

Product : Mobile Clinical Assistant C5
Test Item : Fundamental Radiated Emission

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter


Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Peak Detector					
13.560	0.710	54.980	55.690	-68.310	124.000

Average Detector

--

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Page: 15 of 27 Version:1.0

Product : Mobile Clinical Assistant C5

Test Item : General Radiated Emission Data (below 30MHz)

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
3.014	0.520	31.900	32.420	-17.120	49.540
5.297	0.530	31.760	32.290	-17.250	49.540
6.199	0.580	31.960	32.540	-17.000	49.540
9.985	0.540	33.210	33.750	-15.790	49.540
16.116	0.740	32.270	33.010	-16.530	49.540
16.597	0.730	32.840	33.570	-15.970	49.540

Note:

1. All Readings below 1GHz are Quasi-Peak, above are average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor.

Page: 16 of 27 Version: 1.0

Product : Mobile Clinical Assistant C5

Test Item : General Radiated Emission Data (above 30MHz)

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter

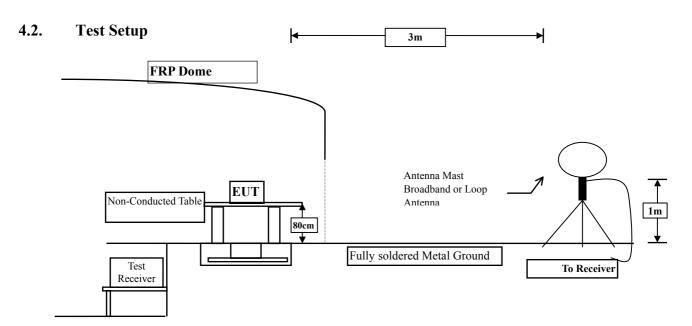
Correct	Reading	Measurement	Margin	Limit
Factor	Level	Level		
dB	dBuV	dBuV/m	dB	dBuV/m
12.009	23.827	35.836	-7.664	43.500
12.077	28.118	40.195	-5.805	46.000
17.666	18.823	36.489	-9.511	46.000
18.477	21.850	40.327	-5.673	46.000
18.485	21.643	40.128	-5.872	46.000
19.999	18.695	38.694	-7.306	46.000
11.151	29.136	40.287	-5.713	46.000
12.463	28.883	41.346	-4.654	46.000
14.417	22.566	36.983	-9.017	46.000
14.360	27.227	41.587	-4.413	46.000
19.299	20.029	39.328	-6.672	46.000
18.888	21.746	40.634	-5.366	46.000
	Factor dB 12.009 12.077 17.666 18.477 18.485 19.999 11.151 12.463 14.417 14.360 19.299	Factor Level dBuV 12.009 23.827 12.077 28.118 17.666 18.823 18.477 21.850 18.485 21.643 19.999 18.695 11.151 29.136 12.463 28.883 14.417 22.566 14.360 27.227 19.299 20.029	Factor Level Level dBuV/m 12.009 23.827 35.836 12.077 28.118 40.195 17.666 18.823 36.489 18.477 21.850 40.327 18.485 21.643 40.128 19.999 18.695 38.694 11.151 29.136 40.287 12.463 28.883 41.346 14.417 22.566 36.983 14.360 27.227 41.587 19.299 20.029 39.328	Factor Level Level dBuV/m dB 12.009 23.827 35.836 -7.664 12.077 28.118 40.195 -5.805 17.666 18.823 36.489 -9.511 18.477 21.850 40.327 -5.673 18.485 21.643 40.128 -5.872 19.999 18.695 38.694 -7.306 11.151 29.136 40.287 -5.713 12.463 28.883 41.346 -4.654 14.417 22.566 36.983 -9.017 14.360 27.227 41.587 -4.413 19.299 20.029 39.328 -6.672

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Page: 17 of 27 Version:1.0

4. Band Edge


4.1. Test Equipment

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
X	Test Receiver	R & S	ESI 26 / 838786 / 004	May, 2007
X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2007
X	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2007
X	Bilog Antenna	SCHAFFNER	CBL6112B / 2697	May, 2007
X	Horn Antenna	ETS	3115 / 0005-6160	July, 2006
X	Pre-Amplifier	QTK	QTK-AMP-01 / 0001	July, 2006
X	Loop Antenna	R & S	HFH2-Z2/833799/004	July, 2006
Test	Site:	Site 3		

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

4.3. Limits

In any 9 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 50 dB below that in the 9 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Page: 18 of 27 Version: 1.0

4.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4 on radiated measurement.

The bandwidth below 30MHz setting on the field strength meter is 9kHz and above 30MHz is 120kHz.

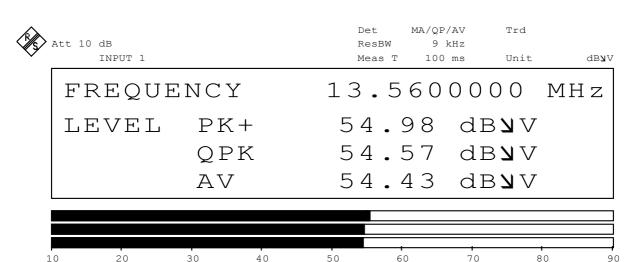
4.5. Uncertainty

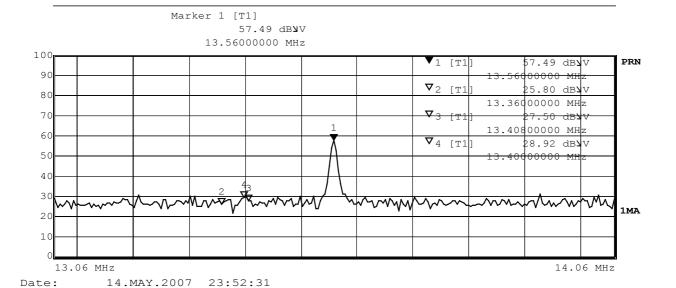
Radiated is ± 2.6 dB

Page: 19 of 27 Version:1.0

4.6. Test Result of Band Edge

Product : Mobile Clinical Assistant C5


Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 1: Transmitter

RF Radiated Measurement:

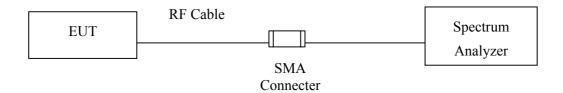
Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Arerage Limit (dBuV/m)	Result
1 (Quasi-Peak)	13.400	0.720	28.200	28.920	49.540	Pass

Figure Channel 1: (Band Edge Data see mark 4)

Page: 20 of 27 Version:1.0

5. Occupied Bandwidth

5.1. Test Equipment


The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2007

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

5.2. Test Setup

5.3. Limits

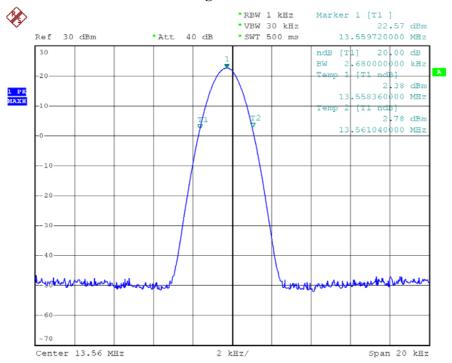
Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission is contained within the frequency band designated in the rule section under which the equipment is operated.

The requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

5.4. Uncertainty

± 150Hz

5.5. Test Result of Occupied Bandwidth


Product : Mobile Clinical Assistant C5
Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

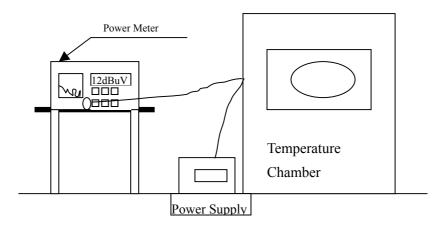
Test Mode : Mode 1: Transmitter

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	13.56	4.68		Pass

Figure Channel 1:

PN1

Date: 15.MAY.2007 08:30:57


6. Frequency Tolerance

6.1. Test Equipment

Equipment	Manufacturer	Model No./Serial No.	Last Cal.	Remark
Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2007	
Temperature Chamber	WIT GROUP	TH-1S-B / WIT-02121901	June, 2006	

Note: All equipments are calibrated every one year.

6.2. Test Setup

6.3. Limits

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency.

6.4. Test Procedure

The over operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

6.5. Uncertainty

± 150 Hz

6.6. Test Result of Frequency Stability

Product : Mobile Clinical Assistant C5

Test Item : Frequency Tolerance
Test Site : Temperature Chamber
Test Mode : Mode 1: Transmitter

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tnom (20) °C	Vnom (120)V	1	13.56	13.5596	0.0002
Tnax (50) °C	Vnax (136.5)V	1	13.56	13.5598	0.0002
Tnax (50) °C	Vmin (103.5)V	1	13.56	13.5598	0.0002
Tmin (-20) °C	Vnax (136.5)V	1	13.56	13.5596	0.0004
Tmin (-20) °C	Vmin (103.5)V	1	13.56	13.5596	0.0004

7. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Page: 25 of 27 Version:1.0