

TEST REPORT

No.24B01N002659-001-Audio

For

ASUSTEK COMPUTER INC.

ASUS Phone(Mobile Phone)

Model Name: ASUSAI2501E, ASUSAI2501D

With

Hardware Version: R2.0C

Software Version: 35.1400.1400.10

FCC ID: MSQAI2501

Issued Date: 2024-12-13

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

Revision Version

Report Number Revision		Description	Issued Date	
24B01N002659-001-Audio	Rev.0	1st edition	2024-12-13	

NOTE: The previous version of the report is invalid for this revised edition.

CONTENTS

1. Summary of Test Report	5
1.1. Test Items	5
1.2. Test Standards	5
1.3. Test Result	5
1.4. Testing Location	5
1.5. Project Data	5
1.6. Signature	5
2. Client Information	6
2.1. Applicant Information	6
2.2. Manufacturer Information	6
3. Equipment Under Test (EUT) and Ancillary Equip	ment (AE)7
3.1. About EUT	7
3.2. Internal Identification of EUT	7
3.3. Internal Identification of AE Used During The Te	est7
3.4. General Description	7
4. Reference Documents for Testing	8
5. Test Results	9
5.1. Testing Environment	9
5.2. Summary of Test Results	9
5.3. Statement	9
6. Test Equipments Utilized	10
6.1. Test Equipments	10
6.2. GSM and WCDMA Test Connection Diagrams	10
6.3. LTE Test Connection Diagrams	11
6.4. WiFi Test Connection Diagrams	12
ANNEX A EUT photograph	13
ANNEX B Test Method and requirements	14
B.1 RECEIVE VOLUME CONTROL PERFORMANCE	
B.2 RECEIVE DISTROTION AND NOISE PERFORMANCE B.3 RECEIVE ACOUSTIC FREQUENCE RESPONSE PERFORMANCE	
D.3 RECEIVE ACOUSTIC PREQUENCE RESPONSE PERFORMANCE	

ANNEX C Detailed Test Results	18
C.1. GSM TEST RESULTS	18
C.2. WCDMA TEST RESULTS	
C.3. LTE TEST RESULTS	20
C.4. WIFI TEST RESULTS	24
ANNEX D Frequency Response Plots	26
D.1. GSM FREQUENCY RESPONSE PLOTS	
D.2. WCDMA FREQUENCY RESPONSE PLOTS	
D.3. LTE FREQUENCY RESPONSE PLOTS	31
D.4. WIFI FREQUENCY RESPONSE PLOTS	47
ANNEX E Test Setup Diagrams	53

1. Summary of Test Report

1.1. Test Items

Description ASUS Phone(Mobile Phone)

Model Name ASUSAI2501E, ASUSAI2501D

Applicant's name ASUSTEK COMPUTER INC.

Manufacturer's Name ASUSTEK COMPUTER INC.

1.2. Test Standards

ANSI C63.19 2019 ANSI/TIA-5050 2018

1.3. Test Result

All test items are passed. Please refer to "5.2 Summary of Test Results" for detail.

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China518000

1.5. Project Data

Project Leader Liang Shuzhen
Testing Start Date: 2024-11-01
Testing End Date: 2024-11-23

1.6. Signature

Li Yuhui

(Prepared this test report)

Huang Qiuqin

看机钦

(Reviewed this test report)

Zhang Hao

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: ASUSTEK COMPUTER INC.

Address/Post: 1F., No. 15, Lide Rd., Beitou Dist., Taipei City 112, Taiwan

Contact: /

Email: /

Telephone: /

Fax: /

2.2. Manufacturer Information

Company Name: ASUSTeK COMPUTER INC.

Address/Post: 1F., No. 15, Lide Rd., Beitou Dist., Taipei City 112, Taiwan

Contact: /
Email: /
Telephone: /
Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description ASUS Phone(Mobile Phone)
Model Name ASUSAI2501E, ASUSAI2501D

Brand Name ASUS

GSM 850/900/1800/1900,

WCDMA Band I/II/IV/V/VI/VIII/XIX,

LTE Band 1/2/3/4/5/7/8/12/17/18/19/20/25/26/28/29/30/

Frequency Bands: 32/34/38/39/40/41/42/43/48/66/71

NR n1/n2/n3/n5/n7/n8/n12/n18/n20/n25/n26/n28/n29/

n30/n38/n40/n41/n48/n66/n71/n77/n78/n79 Bluetooth, WLAN 2.4GHz/5GHz/6GHz

Condition of EUT as received No abnormality in appearance

Note: Photographs of EUT are shown in ANNEX A of this test report. Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	Model Name	HW Version	SW Version	Sample Arrival Date
UT01aa	351480090101253	ASUSAI2501E	R2.0C	35.1400.1400.10	2024-11-01
UT03aa	354319780100091	ASUSAI2501D	R2.0C	35.1400.1400.10	2024-11-01

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE Used During The Test

AE:

AEID* /
Description /
Type /
Manufacturer /

3.4. General Description

Equipment undertest (EUT) is a ASUS Phone(Mobile Phone) with integrated antenna.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the Client.

^{*}UT01aa is the primary test prototype, and unless otherwise specified, all test results are based on tests conducted using UT01aa. UT03aa was only used for testing a subset of test cases, which will be indicated in the test result list.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents for Testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	American National Standard Methods of Measurement of	
ANSI C63.19	Compatibility between Wireless Communications	2019
	Devicesand Hearing Aids	
ANSI/TIA-5050	Telecommunications	
	Communications Products	2018
	Receve Volume Control Requirements for Wireless	2010
	(Mobile) Devices	
KDB 285076 D05v01	HAC COMPLIANCE UNDER WAIVER DA 23-914	2023

5. Test Results

Abbreviations used in this clause:

P Passed

F Failed

NA not applicable

NM not measured

5.1. Testing Environment

Normal Temperature: 15-35°C Relative Humidity: 20-75% Local Bottom noise: 12.5dB

5.2. Summary of Test Results

See **ANNEX C** for detail

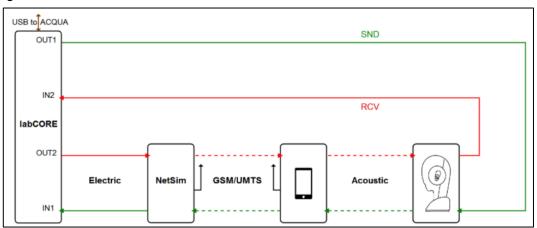
Summary of Test Results		VERDICT		
Summary of fest Results	NA	Р	F	NM
Receive Volume Control Performance	/olume Control Performance P			
Receive Distrotion and Noise Performance P				
Receive Acoustic Frequence Response Performance		Р		

The lowest conversational gain is 9.99dB with a hearing aid, and 15.88dB without a hearing-aid.

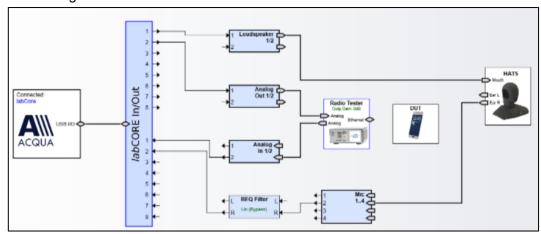
5.3. Statement

Since the information of samples in this report is provided by the client, the laboratory is not responsible for the authenticity of sample information.

This report takes measured values as criterion of test conclusion. The test conclusion meets the limit requirements.

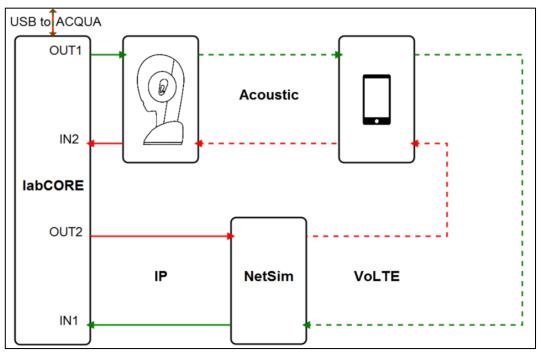

6. Test Equipments Utilized

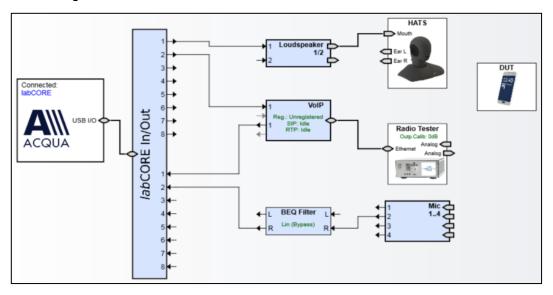
6.1. Test Equipments


Hard	ware			Acoustics Lab			
No.	Name		Туре	SN	Manufacturer	Cal.Due Date	
1	Measurement F	rontend	labCORE	77000455	HEAD acoustics	2026-07-23	
2	Artificial Head		HMS II.3	12306254	HEAD acoustics	2025-05-18	
3 Anechoic Cham		her	5.10m×4.1	20170802	Landtop	2027-08-04	
		Dei	0m×2.50m	20170002	Landtop		
4	Universal Radio		CMW500	129146	R&S	2025-04-10	
4	Communication	Tester	CIVIVVSUU	123140	Νάο	2023-04-10	
5	Universal Radio		CMW500	152499	R&S	2025-07-11	
J	Communication Tester		CIVIVV300	132499	Νάο	2020-07-11	
Software							
Nam	е	Version					
ACQ	UA	V6.0.200					

6.2. GSM and WCDMA Test Connection Diagrams

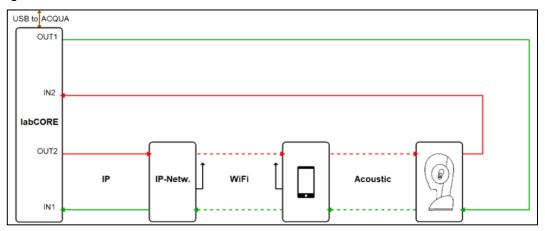
Test signal connection:

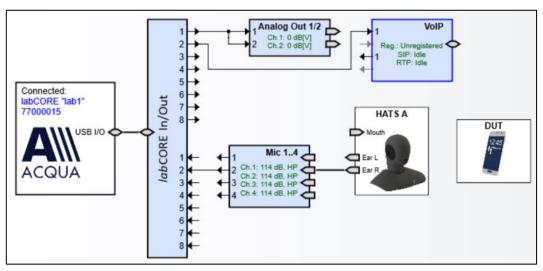

Hardware Configuration connection:



6.3. <u>LTE Test Connection Diagrams</u>

Test signal connection:


Hardware Configuration connection:



6.4. WiFi Test Connection Diagrams

Test signal connection:

Hardware Configuration connection:

ANNEX A EUT photograph

Please refer to the ANNEX A.

ANNEX B Test Method and requirements

B.1 Receive Volume Control Performance

Test Method:

- 1. Configure the DUT with a mounting force of 8N and test equipment in anactive call state with the applicable codec for the transmission mode under test.
- 2. Set the DUT volume control to the maximum setting.
- 3. Apply the real speech test signal at a level of -20 dBm0 at the RETP and measure the acoustic output at the Drum Reference Point (DRP) over one complete sequence of the test signal.
- 4. Over the applicable frequency band, determine the ASL in dBSPL for the resulting sound pressurelevel in accordance with Method B of ITU-T Recommendation P.56:
 - a. Narrowband 100 Hz through 4000 Hz.
 - b. Wideband 100 Hz through 7720 Hz.
- 5. Calculate the Conversational Gain by subtracting 70 dB from the measured dBSPL [Conversational Gain=(Measured dBSPL Level -70 dBSPL) dB]
- 6. Repeat steps 2-5 with a mounting force of 2N.

Test requirement:

According to KDB 285076 D05v01, only CMRS narrowband and CMRS wideband voice codecs are required to comply with the volume control requirements of the TIA 5050-2018 Volume Control Standard as amended as follows:

- 1. For the 2N mounting force test, one narrowband and one wideband voice codec embedded with the handset must pass with at least one volume control setting with a conversational gain of ≥ 6 dB for all voice services, bands of operation and air interfaces over which it operates using one codec bit rate of the applicant's choosing.
- 2. For the 8N mounting force test, one narrowband and one wideband voice codec embedded with the handset must pass with at least one volume control setting with a conversational gain of ≥ 6 dB for all voice services, bands of operation and air interfaces over which they operate but is not required to meet or exceed the full 18 dB of conversational gain specified in section 5.1.1 of the TIA 5050 Volume Control Standard using one codec bit rate of the applicant's choosing.

B.2 Receive Distrotion and Noise Performance

Test Method:

- 1. Configure the DUT with a mounting force of 8N and test equipment in anactive call state with the applicable codec for the transmission mode under test with the volumecontrol at the setting determined in B.1.
- 2. Receive distortion and noise is measured using the PN-SDNR procedure.
- 3. To ensure DUT activation, apply the real speech test signal at a level of -20 dBm0 followed immediately by the initial 1/3 octave center firequency PN test signal in TIA 5050 Table A.1 based on thenarrowband or wideband operating mode. Measure the acoustic output at the DRP over the completesequence of the PN test signal.
- 4.Translate the measurement made at the DRP to the FF using the translation data in TIA 5050 Annex B.
- 5. Calculate the acoustic output unweighted total signal power of the stimulus measurement band asdescribed in TIA 5050 A.2.
- 6. Calculate the notched A-weighting distortion and noise components as described in A.3.
- 7. Calculate the ratio of the signal power to the total A-weighted distortion and noise power using Eq TIA 5050 A-1.
- 8. Repeat for each of the remaining 1/3 octave center frequencies in TIA 5050 Table A.I based on the narrowband or wideband operating mode.
- 9. Repeat steps 2-8 with a mounting force of 2N.

Test requirement:

With a mounting force of 8N and 2N, the ratio of the stimulus signal power to the 100 Hz to 8000 Hz total A-weighted distortion and noise power shall be \geq 20 dB when tested over the range of 1/3 octaveband center frequencies:

- a. Narrowband transmission mode: Each 1/3 octave band center frequency from 400 Hz to 3150 Hz
- b. Wideband transmission mode: Each 1/3 octave band center frequency from 250 Hz to 5000 Hz.

B.3 Receive Acoustic Frequence Response Performance

Test Method:

- 1. Configure the DUT with a mounting force of 8N and test equipment in anactive call state with the applicable codec for the transmission mode under test with the volumecontrol at the setting determined in B.1.
- 2. Apply the real speech test signal with a level of -20 dBm0 at the RETP.
- 3. Capture the frequency spectrum at the DRP of the HATS using real-time analysis with 1/12 octave bands over the frequency range from 100 Hz to 4000 Hz for narrowband measurements, or over thefrequency range from 100 Hz to 8000 Hz for wideband measurements, averaged over the entireduration of the test signal.
- 4. Transform the DRP frequency spectrum measurement to the FF or DF (see TIA 5050 Annex B).
- **5.** Divide the 1/12 octave measurement data by the 1/12 octave frequency spectrum of the test signal atthe RETP and present the measurement in terms of dB(Pa/V).
- 6. Apply the applicable frequency response limits to determine compliance.
- 7. Repeat with a mounting force of 2N.

Test requirement:

For the volume control settings determined in B.1 with a mounting force of 8N and 2N, the receive frequency response shall be measured at the DRP in 1/12 octave bands. After translation to the FF or DF, it shall fall between the applicable upper and lower limits.

a. Narrowband: The 1/12 octave band frequency response after translation to the FF or DF shall fall between the upper and lower limits given in Table B.3-1 and shown in Figure 1

Table B.3-1 – Narrowband Receive Frequency Response Limits

er Limit Upper Limit

Lower Limit Frequency (Hz)	Lower Limit (dB)	Upper Limit Frequency (Hz)	Upper Limit (dB)	
300	-6	100	+6	
3400	-6	4000	+6	

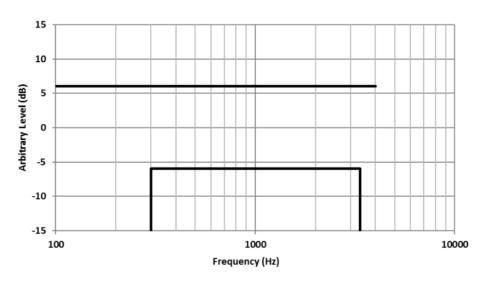


Figure B.3-1 - Narrowband Receive Frequency Response Limits

b. Wideband: The 1/12 octave band frequency response after translation to the FF or DF shall fall between the upper and lower limits given in Table B.3-2 and shown in Figure 2.

Table B.3-2 – Wideband	Receive	Frequency	Response	Limits
------------------------	---------	-----------	----------	--------

Lower Limit Frequency (Hz)	Lower Limit (dB)	Upper Limit Frequency (Hz)	Upper Limit (dB)
300	-10	100	+6
300	-6	1000	+6
5000	-6	2000	+8
6300	-12	8000	+8

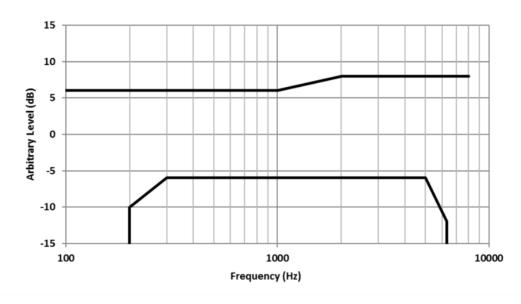


Figure B.3-2 - Wideband Receive Frequency Response Limits

ANNEX C Detailed Test Results

C.1. GSM Test Results

< EUT Supported Codec >

11	
	AMR-NB Bit Rate
	4.75 Kbps
	5.15 Kbps
	5.90 Kbps
GSM	6.60 Kbps
	7.40 Kbps
	7.95 Kbps
	10.20 Kbps
	12.20 Kbps

< Summary Tests Results >

						Receive		Minimum	Receive	Receive
GSM Band Channel	Channel	Channel Volune Level	Codec	Voice	2N/8N	Volume	Conversational	Distro	otion	Acoustic
GSW Danu	Chamier	Volume Level	Codec	Bandwith	21V/ OIV	Control	Gain [dB]	[Hz]	[dB]	Frequence
						[dBSPL]		[ПΖ]	[ab]	Response
GSM850	162	Max	AMR	NB	2N	83. 20	13. 20	2000	26.64	Pass
GSM850	162	Max	AMR	NB	8N	85. 31	15. 31	3150	24.65	Pass
GSM1900	600	Max	AMR	NB	2N	83. 20	13. 20	2500	26.64	Pass
GSM1900	600	Max	AMR	NB	8N	85. 17	15. 17	3150	23.72	Pass

Please refer to Annex D.1 for the Frequency Response.

C.2. WCDMA Test Results

< EUT Supported Codec >

	AMR-NB Bit Rate	AMR-WB Bit Rate
	4.75 Kbps	6.60 Kbps
	5.15 Kbps	8.85 Kbps
	5.90 Kbps	12.65 Kbps
MODMA	6.60 Kbps	14.25 Kbps
WCDMA	7.40 Kbps	15.85 Kbps
	7.95 Kbps	18.25 Kbps
	10.20 Kbps	19.85 Kbps
	12.20 Kbps	23.05 Kbps
	1	23.85 Kbps

< Summary Tests Results >

WCDMA Band	Channe1	Volune Level	Codec	Voice	Bit Rate	2N/8	Receive Volume	Conversati onal Gain		Receive otion	Receive Acoustic
WCDMA Dand	Chamier	volume Level	Codec	Bandwith	[kbps]	N	Control [dBSPL]	[dB] [Hz] [dB]		Frequence Response	
Band II	9262	Max	AMR	NB	12. 20	2N	82.85	12.85	2000	25.85	Pass
Band II	9262	Max	AMR	NB	12.20	8N	85. 10	15. 10	3150	23.96	Pass
Band IV	1312	Max	AMR	NB	12.20	2N	82.86	12.86	2000	26. 22	Pass
Band IV	1312	Max	AMR	NB	12.20	8N	85.07	15. 07	3150	23.50	Pass
Band V	4132	Max	AMR	NB	12.20	2N	83.06	13.06	2000	26.46	Pass
Band V	4132	Max	AMR	NB	12.20	8N	85. 10	15. 10	3150	23.81	Pass

Please refer to Annex D.2 for the Frequency Response.

C.3. LTE Test Results

< EUT Supported Codec >

	AMR-NB Bit Rate	AMR-WB Bit Rate
	4.75 Kbps	6.60 Kbps
	5.15 Kbps	8.85 Kbps
	5.90 Kbps	12.65 Kbps
Vol.TE	6.60 Kbps	14.25 Kbps
VoLTE	7.40 Kbps	15.85 Kbps
	7.95 Kbps	18.25 Kbps
	10.20 Kbps	19.85 Kbps
	12.20 Kbps	23.05 Kbps
	1	23.85 Kbps

An investigation was performed to determine the modulation, the bandwidth configuration and RB configuration to be used for testing. For LTE FDD bands, 1.4MHz BW, QPSK, 1RB, 0RB offset was used for the testing as the worst-case configuration for the handset. For TD-LTE bands, 5MHz BW, QPSK, 1RB, 0RB offset was used for the testing as the worst-case configuration for the handset. See below table for comparisons between different radios configurations:

< Radio Configuration Investigation >

LTE Band		Channal	Bandwidth	Modulation	RB	RB Off	Volune	Codoo	NB/WB	Bit Rate	2N/8N	Minimum D	istortion
LIE	Dana	Channel	[MHz]	Modulation	Size	Size	Level	Codec	ND/ WD	[kbps]	2N/ ON	[Hz]	[dB]
	Band 2	18900	20	QPSK	1	0	Max	AMR	NB	12. 2	8N	3150	25. 50
	Band 2	18900	20	QPSK	50	0	Max	AMR	NB	12. 2	8N	3150	25. 54
LTE FDD	Band 2	18900	20	QPSK	100	0	Max	AMR	NB	12. 2	8N	3150	25. 56
	Band 2	18900	20	16QAM	1	0	Max	AMR	NB	12. 2	8N	3150	25. 57
	Band 2	18900	15	QPSK	1	0	Max	AMR	NB	12.2	8N	3150	25. 39

I TE	Donal	Channal	Bandwidth	Madulation	RB	RB Off	Volune	Codoo	NB/WB	Bit Rate	2N/8N	Minimum Da	istortion
LIE	Band	Channe1	[MHz]	Modulation	Size	Size	Level	Codec	ND/ WD	[kbps]	2N/ ON	[Hz]	[dB]
	Band 2	18900	10	QPSK	1	0	Max	AMR	NB	12. 2	8N	3150	25.84
	Band 2	18900	5	QPSK	1	0	Max	AMR	NB	12. 2	8N	3150	25. 35
	Band 2	18900	3	QPSK	1	0	Max	AMR	NB	12. 2	8N	3150	25.07
	Band 2	18900	1.4	QPSK	1	0	Max	AMR	NB	12. 2	8N	3150	25. 00
	Band 41	41140	20	QPSK	1	0	Max	AMR	NB	12. 2	8N	3150	24.30
	Band 41	41140	20	QPSK	50	0	Max	AMR	NB	12. 2	8N	3150	24.32
	Band 41	41140	20	QPSK	100	0	Max	AMR	NB	12. 2	8N	3150	24.33
TD-LTE	Band 41	41140	20	16QAM	1	0	Max	AMR	NB	12. 2	8N	3150	24.17
	Band 41	41140	20	64QAM	1	0	Max	AMR	NB	12. 2	8N	3150	24.18
	Band 41	41140	10	QPSK	1	0	Max	AMR	NB	12.2	8N	3150	24.06
	Band 41	41140	5	QPSK	1	0	Max	AMR	NB	12. 2	8N	3150	24.05

< LTE FDD Summary Tests Results >

				Voice	Bit		Receive Volume	Convergetionel	Minimum D	istortion	Receive
LTE Band	Channel	Volune Level	Codec	Bandwith	Rate [kbps]	2N/8N	Control [dBSPL]	Conversational Gain [dB]	[Hz]	[dB]	Acoustic Frequence Response
Band 2	18900	Max	AMR	NB	12. 20	2N	83.35	13. 35	2000	26. 33	Pass
Band 2	18900	Max	AMR	NB	12.20	8N	86. 58	16. 58	3150	25. 76	Pass
Band 4	20175	Max	AMR	NB	12.20	2N	83.81	13.81	2000	26. 32	Pass
Band 4	20175	Max	AMR	NB	12.20	8N	86. 49	16. 49	3150	25.83	Pass
Band 5	20525	Max	AMR	NB	12.20	2N	83.68	13.68	2000	25.64	Pass
Band 5	20525	Max	AMR	NB	12. 20	8N	86. 16	16. 16	3150	22.75	Pass
Band 7	21100	Max	AMR	NB	12.20	2N	82. 99	12. 99	2000	25. 95	Pass

				Vaica	Bit		Receive Volume	Convengational	Minimum D	istortion	Receive Acoustic
LTE Band	Channel	Volune Level	Codec	Voice Bandwith	Rate [kbps]	2N/8N	Control [dBSPL]	Conversational Gain [dB]	[Hz]	[dB]	Frequence Response
Band 7	21100	Max	AMR	NB	12. 20	8N	86.67	16. 67	3150	26. 19	Pass
Band 12	23095	Max	AMR	NB	12. 20	2N	84.09	14.09	2000	26.65	Pass
Band 12	23095	Max	AMR	NB	12. 20	8N	85.90	15. 90	3150	22.83	Pass
Band 17	23790	Max	AMR	NB	12. 20	2N	82.60	12.60	2500	26. 53	Pass
Band 17	23790	Max	AMR	NB	12. 20	8N	84.64	14.64	3150	22. 57	Pass
Band 25	26365	Max	AMR	NB	12. 20	2N	84.01	14.01	1250	26.66	Pass
Band 25	26365	Max	AMR	NB	12. 20	8N	86. 20	16. 20	3150	21. 96	Pass
Band 26	26865	Max	AMR	NB	12. 20	2N	83. 98	13. 98	2000	26. 39	Pass
Band 26	26865	Max	AMR	NB	12. 20	8N	86. 39	16. 39	3150	21.67	Pass
Band 30	27710	Max	AMR	NB	12. 20	2N	82.83	12.83	2500	26. 18	Pass
Band 30	27710	Max	AMR	NB	12. 20	8N	84.82	14.82	3150	20.00	Pass
Band 66	132322	Max	AMR	NB	12. 20	2N	84.02	14.02	2500	26. 17	Pass
Band 66	132322	Max	AMR	NB	12. 20	8N	86.46	16. 46	3150	26. 24	Pass
Band 71	133297	Max	AMR	NB	12. 20	2N	82.98	12. 98	2000	26. 12	Pass
Band 71	133297	Max	AMR	NB	12. 20	8N	86. 57	16. 57	3150	25. 13	Pass

Please refer to Annex D.3 for the Frequency Response.

< TD-LTE Summary Tests Results >

				Voice	Bit		Receive Volume	Conversational	Minimum D	istortion	Receive Acoustic
LTE Band	Channel	Volune Level	Codec	Bandwith	Rate [kbps]	2N/8N	Control [dBSPL]	Gain [dB]	[Hz]	[dB]	Frequence Response
Band 38	38000	Max	AMR	NB	12.20	2N	83. 28	13. 28	2000	26. 35	Pass

No.24B01N002659-001-Audio

				Voice	Bit		Receive Volume	Conversational	Minimum D	istortion	Receive Acoustic
LTE Band	Channel	Volune Level	Codec	Bandwith	Rate [kbps]	2N/8N	Control [dBSPL]	Gain [dB]	[Hz]	[dB]	Frequence Response
Band 38	38000	Max	AMR	NB	12. 20	8N	86. 26	16. 26	3150	24. 32	Pass
Band 41	40620	Max	AMR	NB	12. 20	2N	82.16	12. 16	2000	26. 32	Pass
Band 41	40620	Max	AMR	NB	12.20	8N	83. 97	13. 97	3150	22. 54	Pass
Band 42	42590	Max	AMR	NB	12.20	2N	82.72	12.72	2000	26. 37	Pass
Band 42	42590	Max	AMR	NB	12.20	8N	84. 43	14. 43	3150	22.60	Pass
Band 43	44590	Max	AMR	NB	12.20	2N	83.05	13.05	2000	26.46	Pass
Band 43	44590	Max	AMR	NB	12.20	8N	84.64	14.64	3150	22.66	Pass
Band 48	55990	Max	AMR	NB	12.20	2N	82. 58	12. 58	2000	26. 34	Pass
Band 48	55990	Max	AMR	NB	12.20	8N	84.46	14. 46	3150	22. 59	Pass

Please refer to Annex D.3 for the Frequency Response.

C.4. WiFi Test Results

< EUT Supported Codec >

	AMR-NB Bit Rate	AMR-WB Bit Rate
	4.75 Kbps	6.60 Kbps
	5.15 Kbps	8.85 Kbps
	5.90 Kbps	12.65 Kbps
VoWiFi (AMD Codes)	6.60 Kbps	14.25 Kbps
VoWiFi (AMR Codec)	7.40 Kbps	15.85 Kbps
	7.95 Kbps	18.25 Kbps
	10.20 Kbps	19.85 Kbps
	12.20 Kbps	23.05 Kbps
	1	23.85 Kbps

< Summary Tests Results >

								Receive		Minimum Di	stortion	Receive
WLAN Band	WLAN	Channel	Volune	Codec	Voice	Bit Rate	2N/8N	Volume	Conversational			Acoustic
WLAN Danu	Standard	Chamier	Level	Codec	Bandwith	[kbps]	21V/ OIV	Control	Gain [dB]	[Hz]	[dB]	Frequence
								[dBSPL]				Response
2.4GHz	IEEE 802.11b	7	Max	AMR	NB	12.20	2N	80.82	10.82	2000	26. 21	Pass
2.4GHz	IEEE 802.11b	7	Max	AMR	NB	12.20	8N	82.77	12. 77	3150	22. 19	Pass
UNII-1	IEEE 802.11a	40	Max	AMR	NB	12.20	2N	80.84	10.84	2500	22. 51	Pass
UNII-1	IEEE 802.11a	40	Max	AMR	NB	12.20	8N	82.64	12.64	3150	23.61	Pass
UNII-2A	IEEE 802.11a	64	Max	AMR	NB	12.20	2N	80.88	10.88	3150	25. 7	Pass
UNII-2A	IEEE 802.11a	64	Max	AMR	NB	12.20	8N	82. 75	12. 75	3150	22.71	Pass
UNII-2C	IEEE 802.11a	120	Max	AMR	NB	12.20	2N	79. 99	9. 99	1250	25. 67	Pass
UNII-2C	IEEE 802.11a	120	Max	AMR	NB	12. 20	8N	82.44	12. 44	3150	22. 27	Pass

								Receive		Minimum Di	stortion	Receive
WLAN Band	WLAN	Channel	Volune	Codec	Voice	Bit Rate	2N/8N	Volume	Conversational			Acoustic
WLAN Danu	Standard	Chamier	Level	Codec	Bandwith	[kbps]	21V/ OIV	Control	Gain [dB]	[Hz]	[dB]	Frequence
								[dBSPL]				Response
UNII-3	IEEE 802.11a	157	Max	AMR	NB	12. 20	2N	80.95	10. 95	2000	26. 12	Pass
UNII-3	IEEE 802.11a	157	Max	AMR	NB	12. 20	8N	82.70	12. 70	3150	22.67	Pass
UNII-5	IEEE 802.11ax	1	Max	AMR	NB	12.20	2N	80.86	10.86	2000	26.02	Pass
UNII-5	IEEE 802.11ax	1	Max	AMR	NB	12. 20	8N	83. 26	13. 26	3150	24. 3	Pass

Please refer to Annex D.4 for the Frequency Response.

The lowest conversational gain is 9.99dB with a hearing aid.

Turn off the accessibility feature - hearing aid function in the phone, and test with the same configuration.

WLAN Band	WLAN Standard	Channel	Volune Level	Codec	Voice Bandwith	Bit Rate [kbps]	2N/8N	Receive Volume Control [dBSPL]	Conversational Gain [dB]
UNII-2C	IEEE 802.11a	120	Max	AMR	NB	12. 20	2N	85. 88	15. 88

The test prototype has been changed to UT03aa, and test with the same configuration.

Hearing Aid Function	WLAN Band	WLAN Standard	Channel	Volune Level	Codec	Voice Bandwith	Bit Rate [kbps]	2N/8N	Receive Volume Control [dBSPL]	Conversational Gain [dB]
On	UNII-2C	IEEE 802.11a	120	Max	AMR	NB	12. 20	2N	80.65	10.65
Off	UNII-2C	IEEE 802.11a	120	Max	AMR	NB	12. 20	2N	85. 95	15. 95

ANNEX D Frequency Response Plots

D.1. GSM Frequency Response Plots

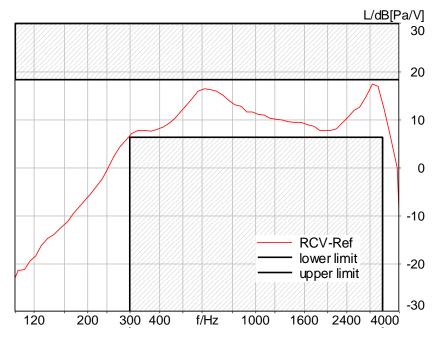


Figure D.1-1 - GSM850 2N FF Norrowband Frequency Response

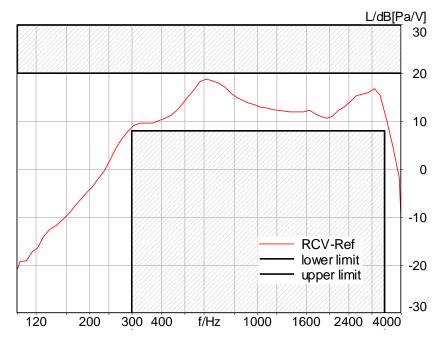


Figure D.1-2 - GSM850 8N FF Norrowband Frequency Response

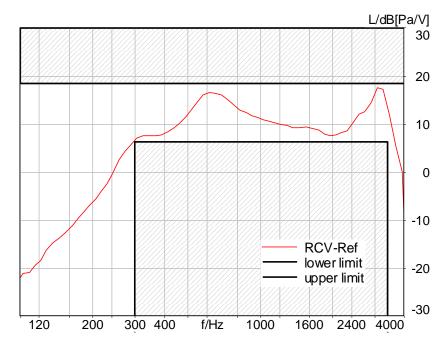


Figure D.1-3 – GSM1900 2N FF Norrowband Frequency Response

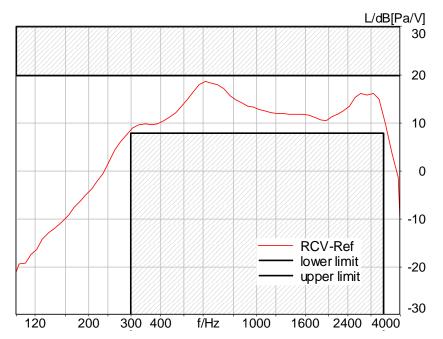


Figure D.1-4 - GSM1900 8N FF Norrowband Frequency Response

D.2. WCDMA Frequency Response Plots

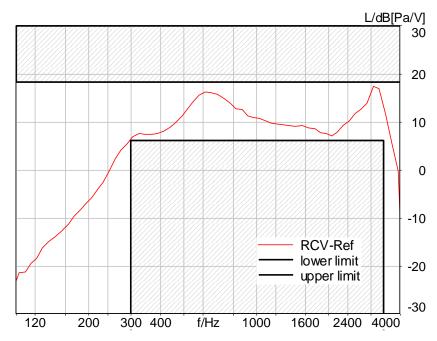


Figure D.2-1 – WCDMA Band II 2N FF Norrowband Frequency Response

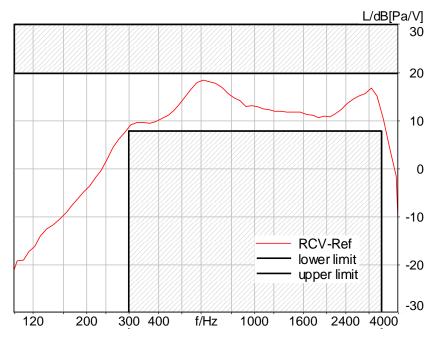


Figure D.2-2 – WCDMA Band II 8N FF Norrowband Frequency Response

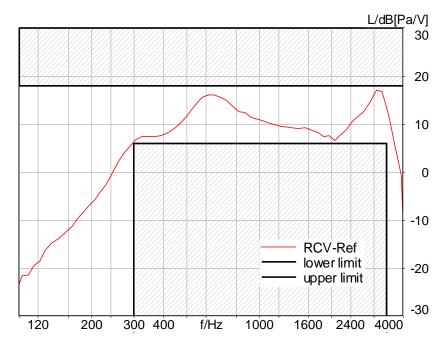


Figure D.2-3 – WCDMA Band IV 2N FF Norrowband Frequency Response

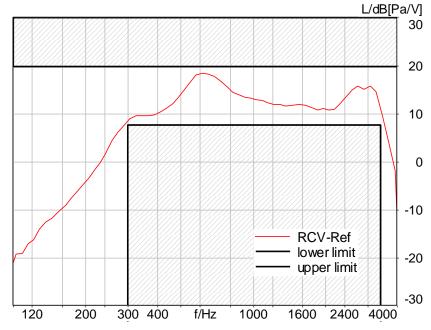


Figure D.2-4 – WCDMA Band IV 8N FF Norrowband Frequency Response

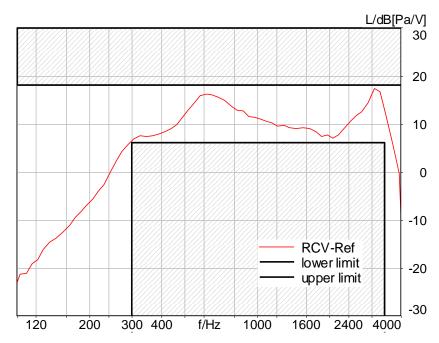


Figure D.2-5 – WCDMA Band V 2N FF Norrowband Frequency Response

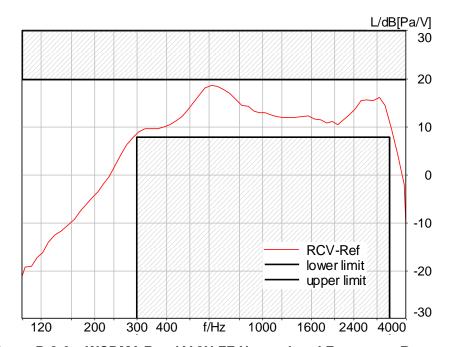


Figure D.2-6 – WCDMA Band V 8N FF Norrowband Frequency Response

D.3. LTE Frequency Response Plots

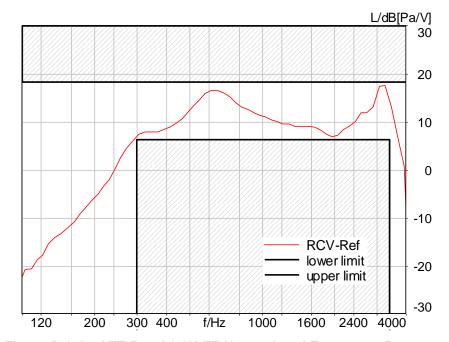


Figure D.3-1 - LTE Band 2 2N FF Norrowband Frequency Response

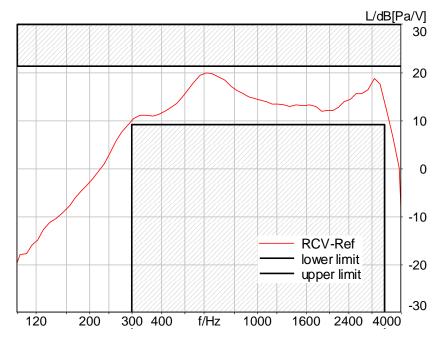


Figure D.3-2 – LTE Band 2 8N FF Norrowband Frequency Response

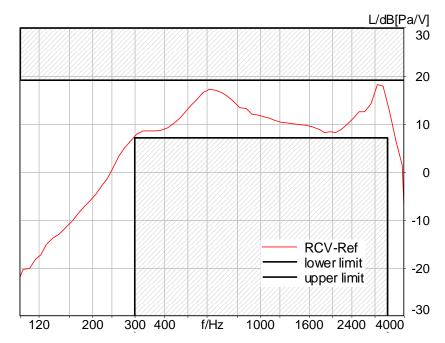


Figure D.3-3 – LTE Band 4 2N FF Norrowband Frequency Response

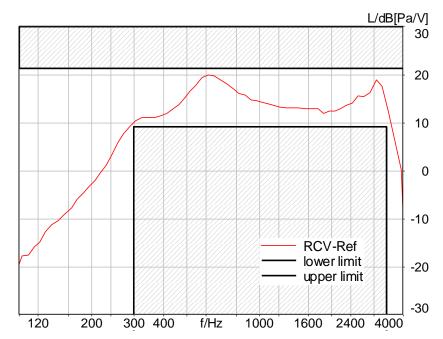


Figure D.3-4 – LTE Band 4 8N FF Norrowband Frequency Response

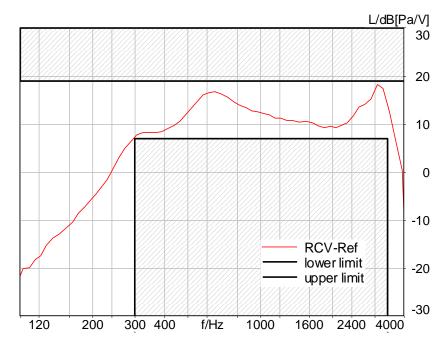


Figure D.3-5 – LTE Band 5 2N FF Norrowband Frequency Response

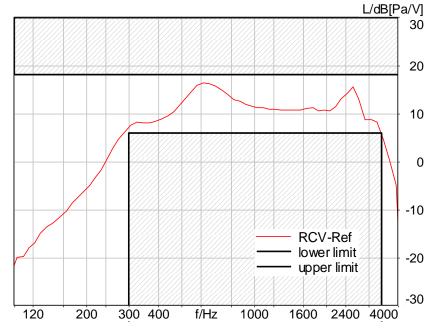


Figure D.3-6 – LTE Band 5 8N FF Norrowband Frequency Response

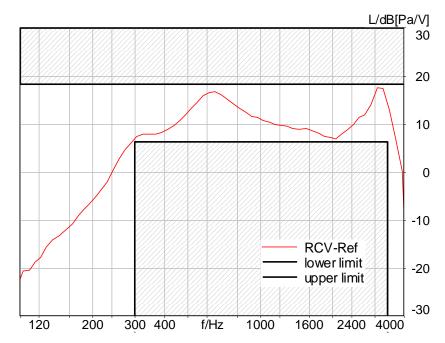


Figure D.3-7 – LTE Band 7 2N FF Norrowband Frequency Response

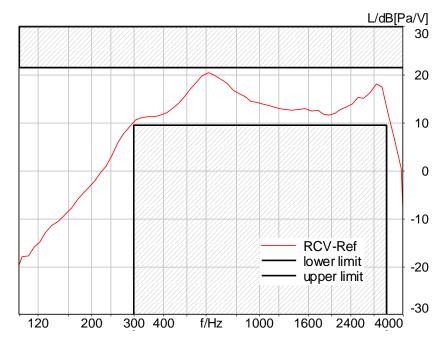


Figure D.3-8 – LTE Band 7 8N FF Norrowband Frequency Response

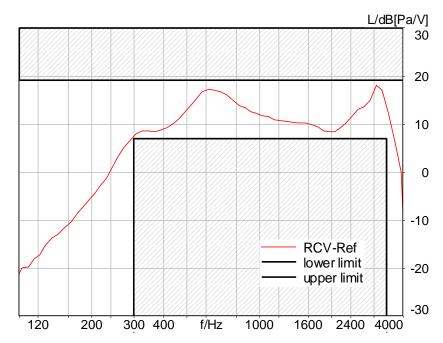


Figure D.3-9 – LTE Band 12 2N FF Norrowband Frequency Response

Figure D.3-10 – LTE Band 12 8N FF Norrowband Frequency Response

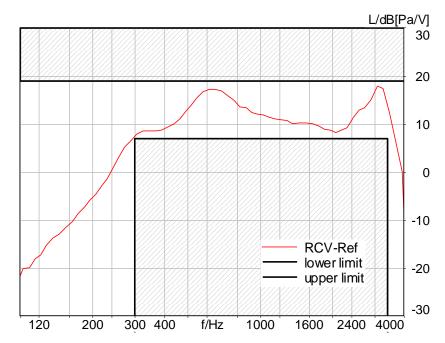


Figure D.3-11 – LTE Band 17 2N FF Norrowband Frequency Response

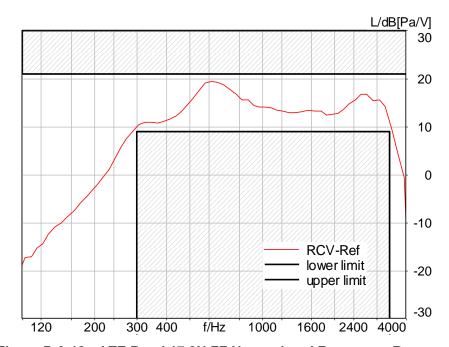


Figure D.3-12 – LTE Band 17 8N FF Norrowband Frequency Response

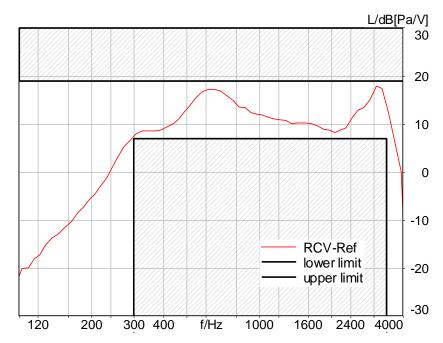


Figure D.3-13 – LTE Band 25 2N FF Norrowband Frequency Response

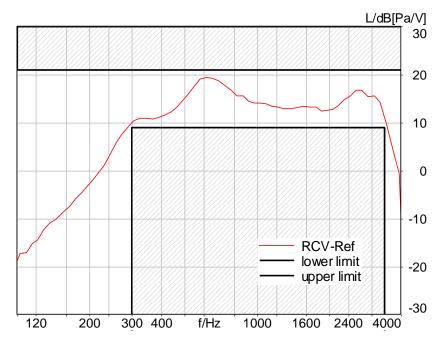


Figure D.3-14 - LTE Band 25 8N FF Norrowband Frequency Response

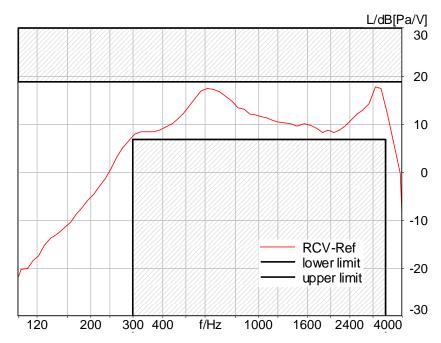


Figure D.3-15 – LTE Band 26 2N FF Norrowband Frequency Response

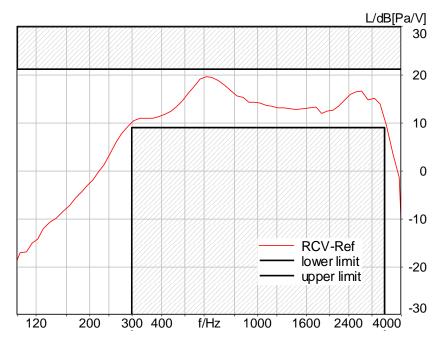


Figure D.3-16 – LTE Band 26 8N FF Norrowband Frequency Response

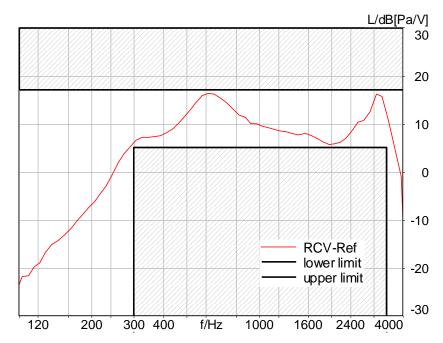


Figure D.3-17 – LTE Band 30 2N FF Norrowband Frequency Response

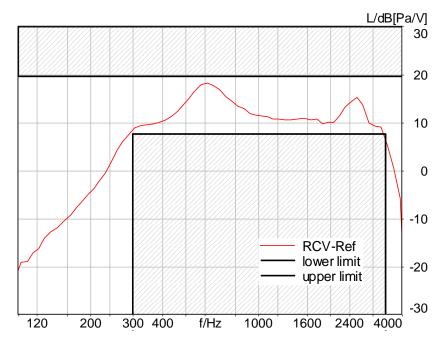


Figure D.3-18 – LTE Band 30 8N FF Norrowband Frequency Response

Figure D.3-19 – LTE Band 38 2N FF Norrowband Frequency Response

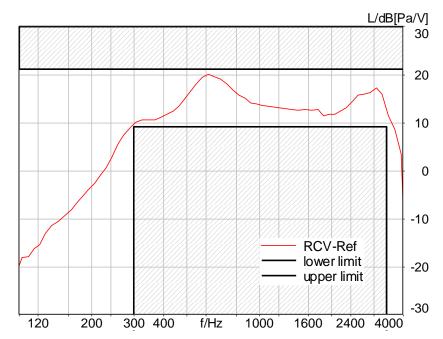


Figure D.3-20 - LTE Band 38 8N FF Norrowband Frequency Response

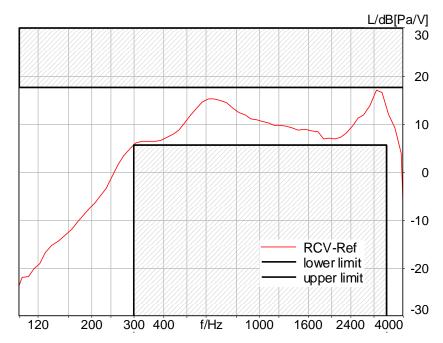


Figure D.3-21 – LTE Band 41 2N FF Norrowband Frequency Response

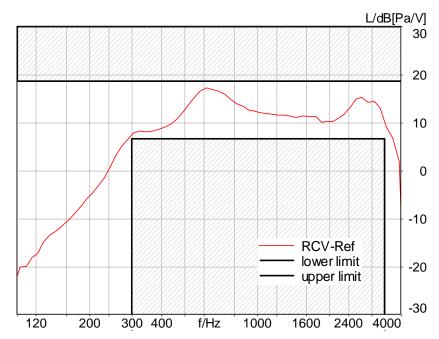


Figure D.3-22 - LTE Band 41 8N FF Norrowband Frequency Response

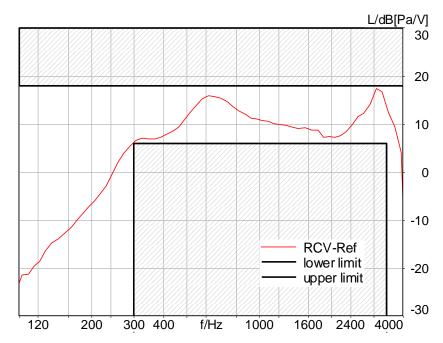


Figure D.3-23 – LTE Band 42 2N FF Norrowband Frequency Response

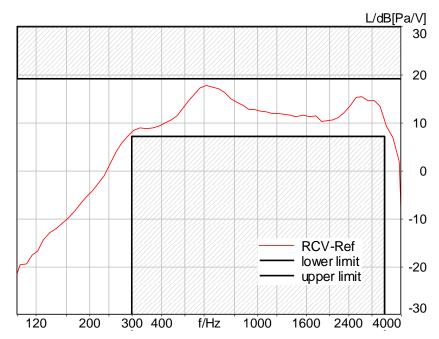


Figure D.3-24 – LTE Band 42 8N FF Norrowband Frequency Response

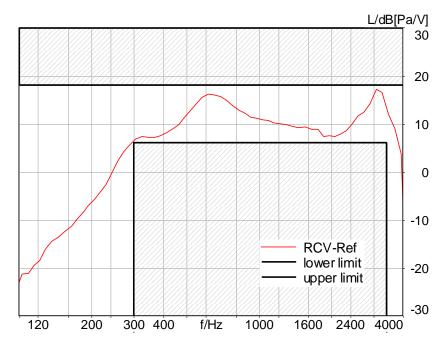


Figure D.3-25 – LTE Band 43 2N FF Norrowband Frequency Response



Figure D.3-26 - LTE Band 43 8N FF Norrowband Frequency Response

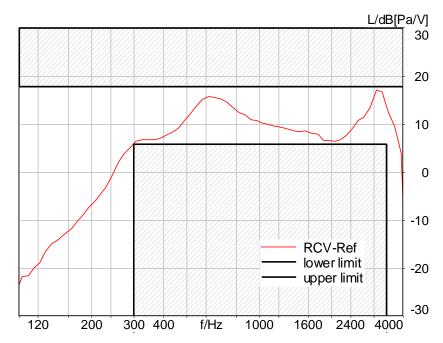


Figure D.3-27 – LTE Band 48 2N FF Norrowband Frequency Response

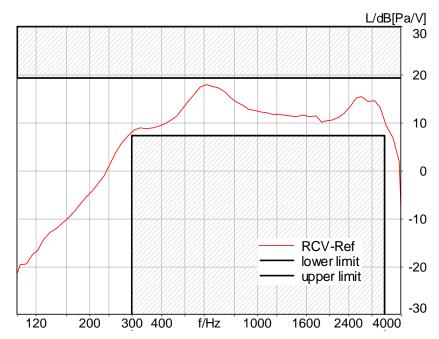


Figure D.3-28 - LTE Band 48 8N FF Norrowband Frequency Response



Figure D.3-29 – LTE Band 66 2N FF Norrowband Frequency Response

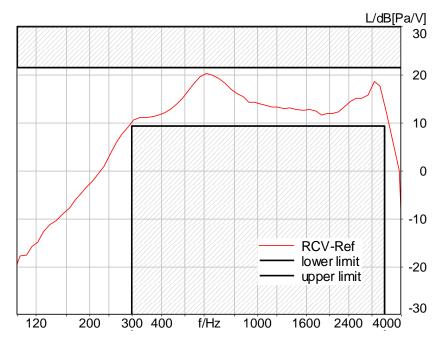


Figure D.3-30 - LTE Band 66 8N FF Norrowband Frequency Response

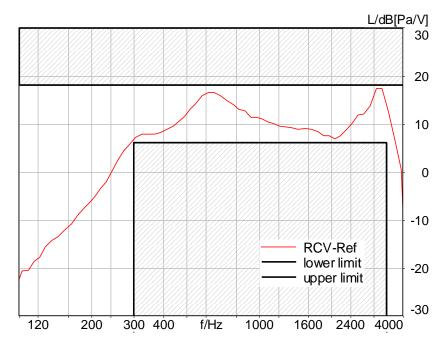


Figure D.3-31 – LTE Band 71 2N FF Norrowband Frequency Response

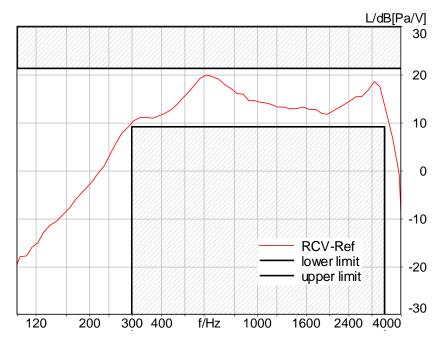


Figure D.3-32 - LTE Band 71 8N FF Norrowband Frequency Response

D.4. WiFi Frequency Response Plots

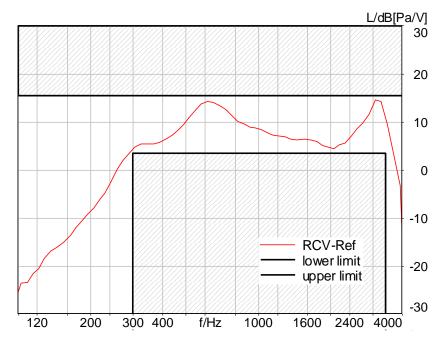


Figure D.4-1 – WLAN 2.4GHz 2N FF Norrowband Frequency Response

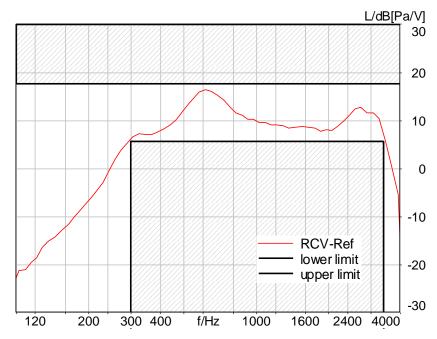


Figure D.4-2 – WLAN 2.4GHz 8N FF Norrowband Frequency Response

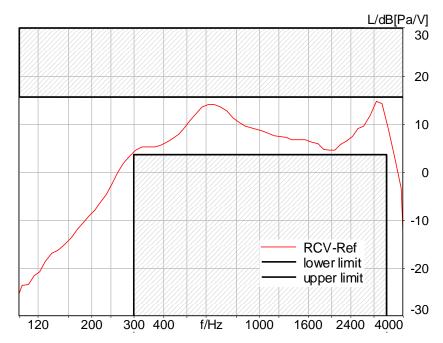


Figure D.4-3 – WLAN UNII-1 2N FF Norrowband Frequency Response

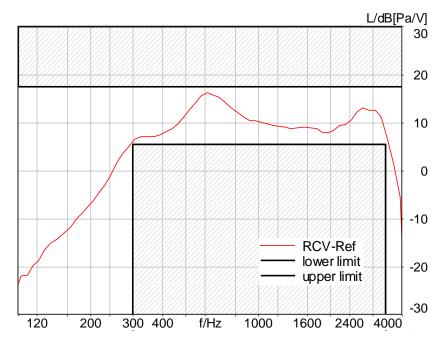


Figure D.4-4 – WLAN UNII-1 8N FF Norrowband Frequency Response

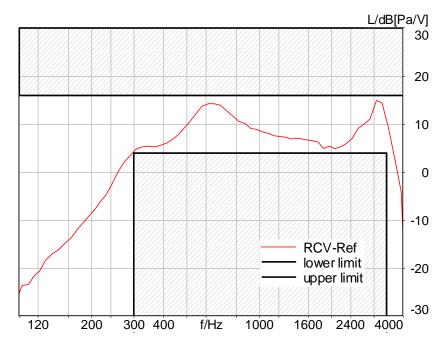


Figure D.4-5 – WLAN UNII-2A 2N FF Norrowband Frequency Response

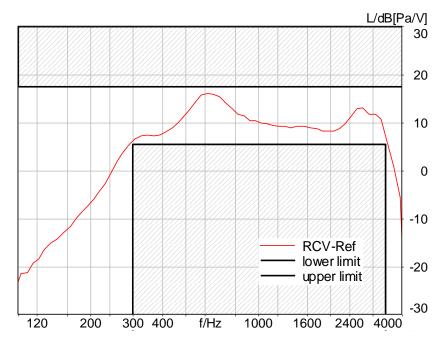


Figure D.4-6 – WLAN UNII-2A 8N FF Norrowband Frequency Response

Figure D.4-7 – WLAN UNII-2C 2N FF Norrowband Frequency Response

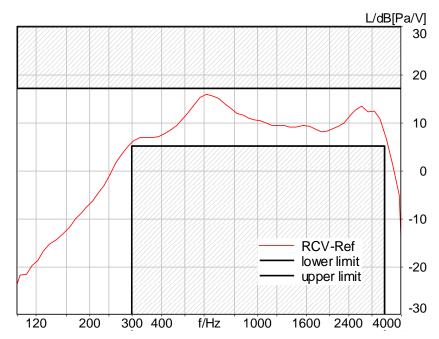


Figure D.4-8 – WLAN UNII-2C 8N FF Norrowband Frequency Response

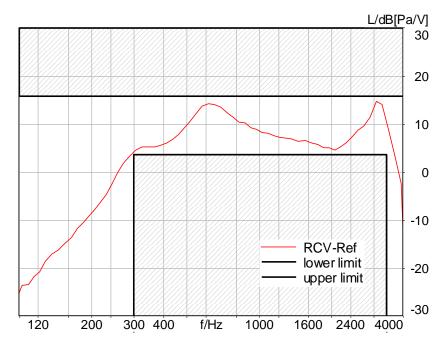


Figure D.4-9 – WLAN UNII-3 2N FF Norrowband Frequency Response

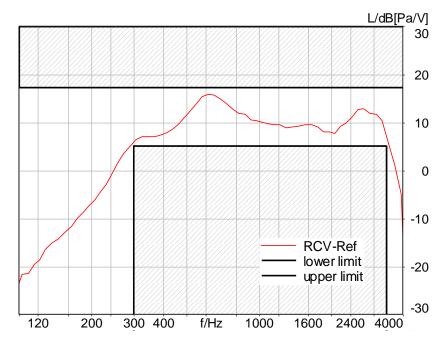


Figure D.4-10 - WLAN UNII-3 8N FF Norrowband Frequency Response

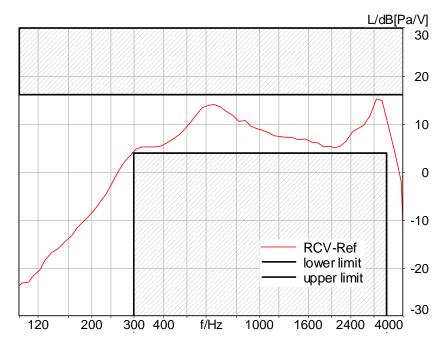


Figure D.4-11 – WLAN UNII-5 2N FF Norrowband Frequency Response

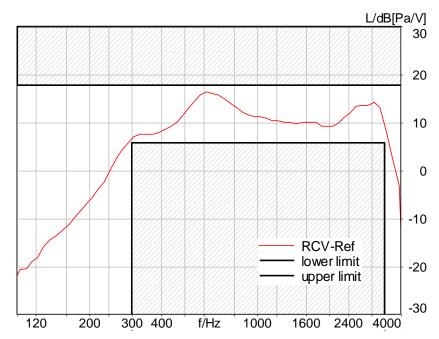


Figure D.4-12 - WLAN UNII-5 8N FF Norrowband Frequency Response

ANNEX E Test Setup Diagrams

Test Diagrams

Artificial Ear Type		3.3
Pressure Force [N]		2/8
Center Fork Offset [°]		/
Postion		
Xe [°]	Ye [°]	Ze [°]
Н	Н	+5

Please refer to the ANNEX E For the photo of Test Layout

END OF REPORT