Appendix D - Calibration Certificate for Dipole

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Eurofins E&E Wireless

New Taipei City

Certificate No. D2450V2-1087_Jun24

CALIBRATION CERTIFICATE

Object D2450V2 - SN:1087

Calibration procedure(s) QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: June 14, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
Power sensor NRP-Z91	SN: 103245	26-Mar-24 (No. 217-04037)	Mar-25
Reference 20 dB Attenuator	SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch combination	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24
DAE4	SN: 601	22-May-24 (No. DAE4-601_May24)	May-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	1.0
Approved by:	Sven Kühn	Technical Manager	i.A. A. A. A.M.L

Issued: June 17, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-1087_Jun24

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: D2450V2-1087_Jun24

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	•••
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 17.0 % (k≂2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-1087_Jun24 Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω + 3.9 jΩ	
Return Loss	- 27.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns
Electrical Delay (one direction)	1.102 113
· · · · · · · · · · · · · · · · · · ·	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

" " " " " " " " " " " " " " " " " " " "	
Manufactured by	SPEAG
Maria alasta o o y	_ : : _ :

Certificate No: D2450V2-1087_Jun24 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 14.06.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1087

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 03.11.2023

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 22.05.2024

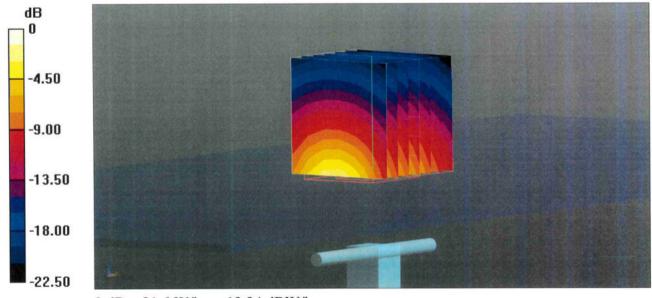
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

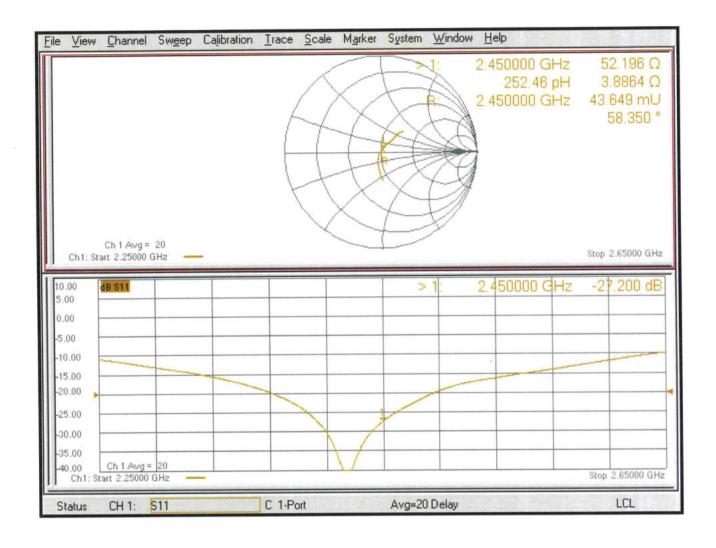
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.9 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.30 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 50.8%

Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

Impedance Measurement Plot for Head TSL

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless

New Taipei City

Certificate No. D6.5GHzV2-1081_Jun24

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object

D6.5GHzV2 - SN:1081

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date:

June 11, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

TESTS INCOME.		
SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
SN: 84224 / 360D	28-Mar-24 (No. 217-04050)	Mar-25
SN: 7405	12-Jun-23 (No. EX3-7405_Jun23)	Jun-24
SN: 908	27-Mar-24 (No. DAE4-908_Mar24)	Mar-25
	SN: BH9394 (20k) SN: 84224 / 360D SN: 7405	SN: BH9394 (20k) 26-Mar-24 (No. 217-04046) SN: 84224 / 360D 28-Mar-24 (No. 217-04050) SN: 7405 12-Jun-23 (No. EX3-7405_Jun23)

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator Anapico APSIN20G	SN: 827	18-Dec-18 (in house check Jan-24)	In house check: Jan-25
Power sensor NRP-Z23	SN: 100169	10-Jan-19 (in house check Jan-24)	In house check: Jan-25
Power sensor NRP-18T	SN: 100950	28-Sep-22 (in house check Jan-24)	In house check: Jan-25
Network Analyzer Keysight E5063A	SN:MY54504221	31-Oct-19 (in house check Oct-22)	In house check: Oct-25

Calibrated by:

Name Leif Klysner Function

Laboratory Technician

Sef Algun A. S. Korbsh

Approved by:

Sven Kühn

Technical Manager

Issued: June 12, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D6.5GHzV2-1081_Jun24

Page 1 of 6

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1081_Jun24

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 3.4 mm$, $dz = 1.4 mm$	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	6.22 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	L J J L	

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	28.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	288 W/kg ± 24.7 % (k=2)

SAR averaged over 8 cm ³ (8 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.0 W/kg ± 24.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 24.4 % (k=2)

Certificate No: D6.5GHzV2-1081_Jun24

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.3 Ω - 1.7 jΩ
Return Loss	- 25.6 dB

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	287 W/m²
APD measured	normalized to 1W	2870 W/m² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	130 W/m²
APD measured	normalized to 1W	1300 W/m² ± 28.9 % (k=2)

^{*}The reported APD values have been derived using the psSAR1g and psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufac	tured by	SPEAG

Certificate No: D6.5GHzV2-1081_Jun24

DASY6 Validation Report for Head TSL

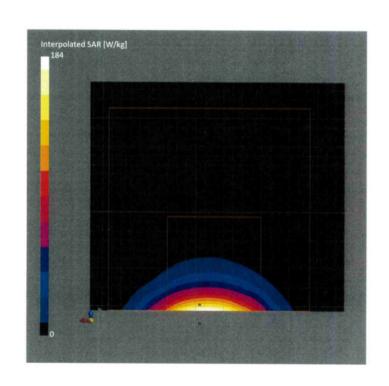
Measurement Report for D6.5GHz-1081, UID 0 -, Channel 6500 (6500.0MHz)

Device under Test Properties

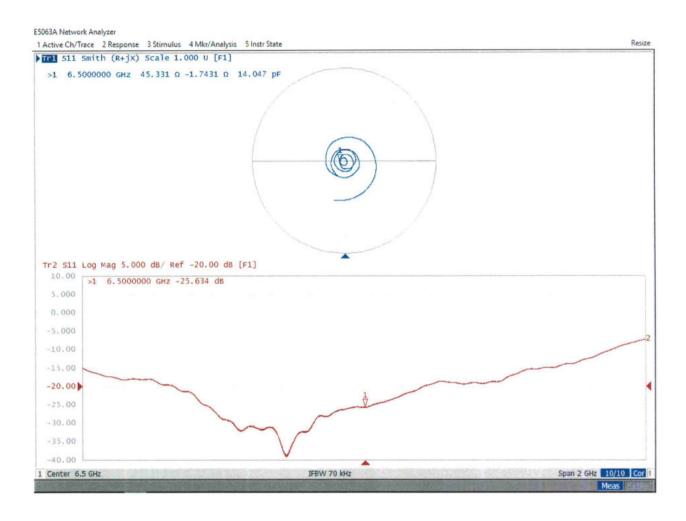
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
D6.5GHz	16.0 x 6.0 x 300.0	SN: 1081	

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.50	6.22	34.3


Hardware Setup

Phantom	TSL	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center - 1182	HBBL600-10000V6	EX3DV4 - SN7405, 2023-06-12	DAE4 Sn908, 2024-03-27


Scan Setup

	Zoom Scan		Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2024-06-11, 13:30
Grid Steps [mm]	$3.4 \times 3.4 \times 1.4$	psSAR1g [W/Kg]	28.8
Sensor Surface [mm]	1.4	psSAR8g [W/Kg]	6.51
Graded Grid	Yes	psSAR10g [W/Kg]	5.33
Grading Ratio	1.4	Power Drift [dB]	0.03
MAIA	N/A	Power Scaling	Disabled
Surface Detection	VMS + 6p	Scaling Factor [dB]	
Scan Method	Measured	TSL Correction	No correction
		M2/M1 [%]	50.3
		Dist 3dB Peak [mm]	4.8

Measurement Results

Impedance Measurement Plot for Head TSL

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless New Taipei City Certificate No. 5G-Veri10-1060_Sep24

CALIBRATION CERTIFICATE

Object

5G Verification Source 10 GHz - SN: 1060

Calibration procedure(s)

QA CAL-45.v5

Calibration procedure for sources in air above 6 GHz

Calibration date:

September 17, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Network Analyzer Keysight E5063A | SN: MY54504221

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Reference Probe EUmmWV3	SN: 9374	28-Aug-24 (No. EUmm-9374_Aug24)	Aug-25
DAE4ip	SN: 1602	08-Nov-23 (No. DAE4ip-1602_Nov23)	Nov-24
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Secondary Standards RF generator R&S SMF100A	ID # SN: 100184	Check Date (in house) 29-Nov-23 (in house check Nov-23)	Scheduled Check In house check: Nov-24

Name

Function

31-Oct-19 (in house check Oct-22)

Calibrated by:

Joanna Lleshaj

Laboratory Technician

111

In house check: Oct-25

Approved by:

Sven Kühn

Technical Manager

Issued: September 18, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-1060_Sep24

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Glossary

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CW Continuous wave

Accreditation No.: SCS 0108

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a
 vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the
 horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn	Prad1	Max E-field	Uncertainty	Avg Power Density		Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	AVg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
Measured Plane				(W/m²)		
				1 cm ²	4 cm ²	
10 mm	93.3	153	1.27 dB	60.6	56.5	1.28 dB

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	93.3	153	1.27 dB	60.4, 60.6, 60.8	56.2, 56.5, 56.7	1.28 dB

Square Averaging

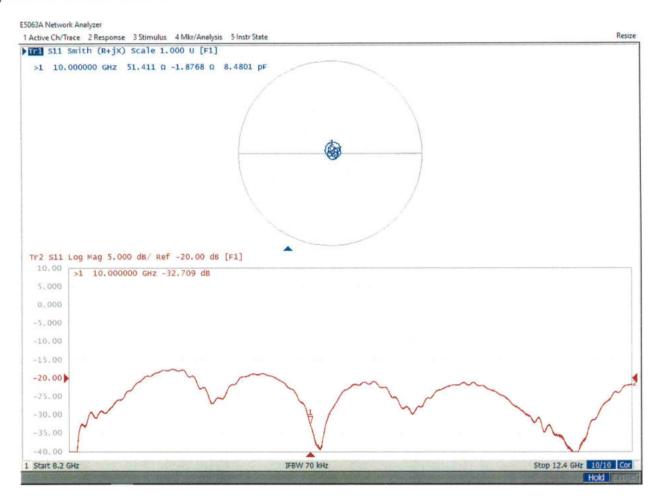
	- 3					
Distance Horn	Prad¹	Max E-field	Uncertainty	Avg Power Density		Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	AVg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
Measured Plane	<u> </u>			(W/m²)		
				1 cm ²	4 cm ²	
10 mm	93.3	153	1.27 dB	60.5	56.4	1.28 dB

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
Weastred Flatte				1 cm ²	4 cm ²	
10 mm	93.3	153	1.27 dB	60.3, 60.5, 60.7	56.1, 56.4, 56.6	1.28 dB

Max Power Density

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m²)	Uncertainty (k = 2)
10 mm	93.3	153	1.27 dB		1.28 dB

Certificate No: 5G-Veri10-1060_Sep24


 $^{^{1}}$ Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	51.4 Ω - 1.9 jΩ	
Return Loss	- 32.7 dB	

Impedance Measurement Plot

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer

5G Verification Source 10 GHz

Dimensions [mm] 100.0 x 100.0 x 172.0

IMEI SN: 1060 **DUT Type**

Exposure Conditions

Phantom Section

Position, Test Distance

Band

Group,

Frequency [MHz],

Conversion Factor

[mm]

Validation band

CW

Channel Number

5G Scan

1.00

60.4

60.6

60.8

61.9

62.0

62.2

153

-0.04

5G -

10.0 mm

10000.0. 10000

1.0

Hardware Setup

Phantom

mmWave Phantom - 1002

Medium Air

Probe, Calibration Date

EUmmWV3 - SN9374_F1-55GHz,

2024-08-28

DAE, Calibration Date DAE4ip Sn1602,

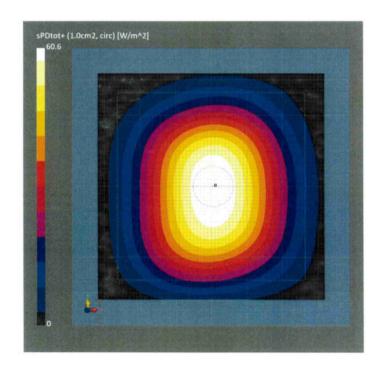
2023-11-08

Scan Setup

Sensor Surface [mm]

MAIA

5G Scan


MAIA not used

10.0

Measurement Results

2024-09-17, 16:32 Date Avg. Area [cm2] Avg. Type Circular Averaging psPDn+ [W/m²] psPDtot+ [W/m²] psPDmod+ [W/m²] Max(Sn) [W/m²] Max(Stot) [W/m²] Max(|Stot|) [W/m²]

E_{max} [V/m] Power Drift [dB]

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

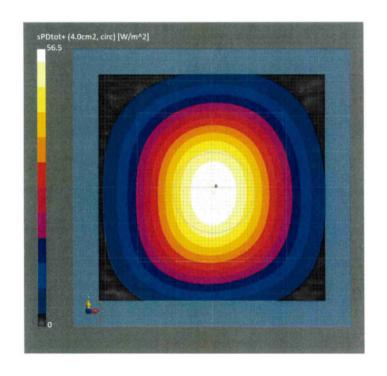
Name, Manufacturer Dimensions [mm] IMEI DUT Type
5G Verification Source 10 GHz 100.0 x 172.0 SN: 1060

Exposure Conditions

Phantom Section Position, Test Distance Band Group, Frequency [MHz], Conversion Factor [mm] Channel Number

5G - 10.0 mm Validation band CW 10000.0, 1.0

10000


Measurement Results

Hardware Setup

PhantomMediumProbe, Calibration DateDAE, Calibration DatemmWave Phantom - 1002AirEUmmWV3 - SN9374_F1-55GHz,
2024-08-28DAE4ip Sn1602,
2023-11-08

Scan Setup

5G Scan 5G Scan 2024-09-17, 16:32 Sensor Surface [mm] 10.0 Date MAIA MAIA not used Avg. Area [cm2] 4.00 Circular Averaging Avg. Type psPDn+ [W/m²] 56.2 psPDtot+ [W/m²] 56.5 psPDmod+ [W/m²] 56.7 Max(Sn) [W/m²] 61.9 Max(Stot) [W/m²] 62.0 Max(|Stot|) [W/m²] 62.2 E_{max} [V/m] 153 Power Drift [dB] -0.04

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer

5G Verification Source 10 GHz

Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI

DUT Type

SN: 1060

Exposure Conditions

Phantom Section

Position, Test Distance [mm]

Band

Group,

Frequency [MHz],

Channel Number

Conversion Factor

5G Scan

1.00

60.3

60.5

60.7

61.9

62.0

62.2

5G -

10.0 mm

Validation band

CW

10000.0, 10000

1.0

Hardware Setup

Phantom

mmWave Phantom - 1002

Medium

Air

Probe, Calibration Date

EUmmWV3 - SN9374 F1-55GHz,

2024-08-28

DAE, Calibration Date

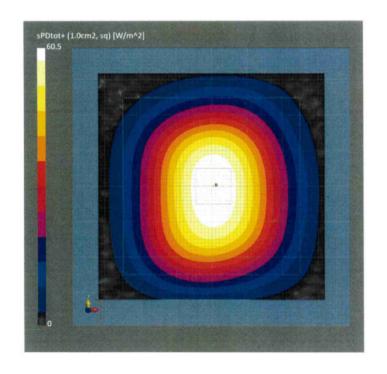
DAE4ip Sn1602, 2023-11-08

Scan Setup

Sensor Surface [mm]

MAIA

5G Scan 10.0


MAIA not used

Measurement Results

2024-09-17, 16:32 Date

Avg. Area [cm²] Avg. Type Square Averaging psPDn+ [W/m²] psPDtot+ [W/m²] psPDmod+ [W/m²] Max(Sn) [W/m²] Max(Stot) [W/m²] Max(|Stot|) [W/m²]

E_{max} [V/m] 153 Power Drift [dB] -0.04

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1060 **DUT Type**

Exposure Conditions

Phantom Section

Position, Test Distance

Band

Group,

Frequency [MHz],

Channel Number

5G -

[mm] 10.0 mm

Validation band

CW

10000.0, 10000

1.0

Conversion Factor

Hardware Setup

Phantom

mmWave Phantom - 1002

Medium

Air

Probe, Calibration Date

EUmmWV3 - SN9374 F1-55GHz,

2024-08-28

DAE, Calibration Date DAE4ip Sn1602,

2023-11-08

Scan Setup

Sensor Surface [mm]

MAIA

5G Scan 10.0

MAIA not used

Measurement Results

2024-09-17, 16:32 Date

Avg. Area [cm²] Avg. Type psPDn+ [W/m²] psPDtot+ [W/m²] psPDmod+ [W/m²] Max(Sn) [W/m²]

Max(Stot) [W/m²] Max(|Stot|) [W/m²] $E_{max}\left[V/m\right]$

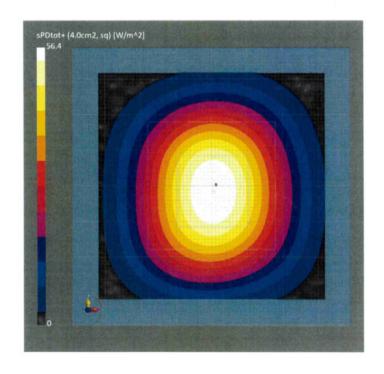
Power Drift [dB]

153 -0.04

Square Averaging

5G Scan

4.00


56.1

56.4

56.6

61.9 62.0

62.2

