




佳和集團  
怡安科技  
CHIA HEIR GROUP  
RF-LINK SYSTEMS INC.

FCC ID.: MIBRF50202

## EXHIBIT 3

### Test Report With Eut Photograph

Test report

**FCC Test Report  
Application for Certification**

**On Behalf Of**

**RF-Link Systems Inc.**

**WL 3D Mouse for 900MHz (Receiver)**

**Model # : RF 50202**

**FCC ID : MIBRF50202**

(#1)

*TESTED AS COMPUTER PERIPHERAL DEVICE*

**Prepared For:**

**RF-Link Systems Inc.**

**1F, No.9, Chan Yeh Road 1, Science-Based  
Industrial Park, HsinChu, Taiwan, R.O.C.**

**Report By : QuieTek Corporation  
No.75-1, Wang-Yeh Valley, Yung-Hsing  
Tsuen, Chiung-Lin, Hsin-Chu County,  
Taiwan, R.O.C.  
Tel : (03) 592-8858  
Fax : (03) 592-8859**

The test results are traceable to the national or international standards

Test results given in this report only relate to the specimen(s) tested or measured.

This report shall not be reproduced excepted in full, without the written consent of QuieTek.

This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

## TABLE OF CONTENTS

| <b>Description</b>                                             | <b>Page</b> |
|----------------------------------------------------------------|-------------|
| <b>1. TEST REPORT CERTIFICATION.....</b>                       | <b>3</b>    |
| <b>2. GENERAL INFORMATION .....</b>                            | <b>4</b>    |
| 2.1 PRODUCTION DESCRIPTION.....                                | 4           |
| 2.2 TESTED SYSTEM DETAILS.....                                 | 5           |
| 2.3 TEST METHODOLOGY .....                                     | 7           |
| 2.4 TEST FACILITY .....                                        | 7           |
| <b>3. CONDUCTED POWER LINE TEST.....</b>                       | <b>8</b>    |
| 3.1 TEST EQUIPMENTS.....                                       | 8           |
| 3.2 BLOCK DIAGRAM OF TEST SETUP .....                          | 8           |
| 3.3 CONDUCTED POWERLINE EMISSION LIMIT .....                   | 9           |
| 3.4 EUT CONFIGURATION ON MEASUREMENT .....                     | 9           |
| 3.5 EUT EXERCISE SOFTWARE.....                                 | 9           |
| 3.6 TEST PROCEDURE .....                                       | 10          |
| 3.7 CONDUCTED EMISSION DATA.....                               | 10          |
| <b>4. RADIATION EMISSION TEST .....</b>                        | <b>13</b>   |
| 4.1 TEST EQUIPMENT .....                                       | 13          |
| 4.2 TEST SETUP .....                                           | 13          |
| 4.3 RADIATED EMISSION LIMIT .....                              | 14          |
| 4.4 EUT CONFIGURATION .....                                    | 14          |
| 4.5 OPERATING CONDITION OF EUT .....                           | 15          |
| 4.6 TEST PROCEDURE .....                                       | 15          |
| 4.7 RADIATED EMISSION DATA .....                               | 15          |
| <b>5. SUMMARIZATION OF TEST RESULTS .....</b>                  | <b>18</b>   |
| <b>6. EMI REDUCTION METHOD DURING COMPLIANCE TESTING .....</b> | <b>19</b>   |
| <b>7. TEST PHOTOGRAPHS.....</b>                                | <b>20</b>   |
| <b>8. EUT DETAIL PHOTOGRAPHS .....</b>                         | <b>22</b>   |

## 1. Test Report Certification

QTK98-F013

**Applicant** : RF-Link Systems Inc.

**Manufacturer** : RF-Link Systems Inc.

### EUT Description

Model Name : WL 3D Mouse for 900MHz (Receiver)

Model No. : RF 50202

TESTED IN COMPUTER  
SYSTEM AS PERIPHERAL  
DEVICE

Serial Number : N/A

FCC ID. : MIBRF50202

Power : 120V/60Hz AC

### MEASUREMENT STANDARD USED :

CFR 47, Part 15 Radio Frequency Device Subpart B Unintentional Radiators Class B :1996

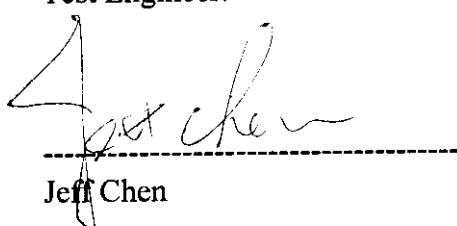
### MEASUREMENT PROCEDURE USED :

ANSI C63.4 Methods of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9kHz to 40GHz. :1992

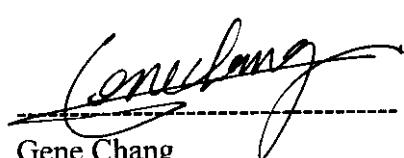
The device described above was tested by QuieTek Corporation to determine the maximum emission levels emanating from the device. The maximum emission levels were compared to the FCC Part 15 Subpart B limits for both radiated and conducted emissions.

The measurement results are contained in this test report and QuieTek Corporation is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT to be technically compliant with the FCC Part 15 Subpart B limits.

And there are no deviation from the above measurement process.


Sample Received Date : December 9, 1998

NVLAP®


Test Date : December 9, 1998

Documented by : Kathy Lee

Test Engineer:

  
Jeff Chen

Approve & Authorized Signer:

  
Gene Chang

## 2. General Information

### 2.1 Production Description

Description : WL 3D Mouse for 900MHz (Receiver)  
Model Number : RF 50202  
Serial Number : N/A  
FCC ID. : MIBRF50202  
Applicant : RF-Link Systems Inc.  
Address : 1F, No.9, Chan Yeh Road 1, Science-Based  
Industrial Park, HsinChu, Taiwan, R.O.C.  
Manufacturer : RF-Link Systems Inc.  
Address : 1F, No.9, Chan Yeh Road 1, Science-Based  
Industrial Park, HsinChu, Taiwan, R.O.C.  
Industrial Park, HsinChu, Taiwan, R.O.C.  
Data Cable : Shielded, Undetachable, 1.5m

Note:

1. The data show in this test report reflects the worst-case data for each operation mode.
2. The EUT which is a wireless receiver is used with wireless 3D mouse(transmitter),  
FCC ID.: MIBRF50202.

## 2.2 Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

Host Personal Computer

Model Number : PIIL97  
Manufacturer : ASUS  
Serial Number : AS10228  
FCC ID : DoC  
Power Cord : Unshielded, Detachable, 1.8m

Keyboard

Model Number : 6311-TW2C  
Serial Number : N/A  
FCC ID : DoC  
Manufacturer : ACER  
Data Cable : Shielded, Non-detachable, 1.8m

Monitor

Model Number : CM752ET-311  
Serial Number : T8F006364  
FCC ID : DoC  
Manufacturer : HITACHI  
Data Cable : Shielded, Non-Detachable 1.5m  
Power Cord : Shielded, Detachable 1.8m

Printer

Model Number : C2642A  
Serial Number : MY75J1D1D0  
FCC ID : B94C2642X  
Manufacturer : HP  
Data Cable : Shielded, Detachable, 1.2m  
Power Adapter : NMB, M/N: C2175A  
Cable for AC IN: Unshielded, Non-detachable, 0.7m  
Cable for AC Out: Unshielded, Non-detachable, 1.5m

Modem

Model Number : 1414  
Serial Number : 980033038  
FCC ID : IFAXDM1414  
Manufacturer : ACEEX  
Data Cable : Shielded, Detachable, 1.5m  
Power Adapter : ACCEX, M/N: SCP41-91000A  
Cable Output : Shielded, Non-detachable, 1.5m

 Modem

Model Number : 1414  
Serial Number : 980033041  
FCC ID : IFAXDM1414  
Manufacturer : ACEEX  
Data Cable : Shielded, Detachable, 1.5m  
Power Adapter : ACCEX, M/N: SCP41-91000A  
Cable Output : Shielded, Non-detachable, 1.5m

 WL 3D Mouse for 900MHz (Receiver) (EUT)

Model Number : RF 50202  
Serial Number : N/A  
FCC ID : MIBRF50202  
Manufacturer : RF-Link Systems Inc.  
Data Cable : Shielded, Undetachable, 1.5m

 Joystick

Model Number : JPD110  
Serial Number : 9814A15646  
FCC ID : DoC  
Manufacturer : Maxxtro  
Data Cable : Shielded, Non-detachable, 1.7m

 Mouse

Model Number : M-S34  
Serial Number : LZB75078428  
FCC ID : DZL211029  
Manufacturer : HP  
Data Cable : Shielded, Non-detachable, 1.8m

## 2.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4-1992.

Radiated testing was performed at an antenna to EUT distance of 3 meters.

## 2.4 Test Facility

Ambient conditions in the laboratory:

| Items                      | Required (IEC 68-1) | Actual   |
|----------------------------|---------------------|----------|
| Temperature (°C)           | 15-35               | 24-27    |
| Humidity (%RH)             | 25-75               | 50-65    |
| Barometric pressure (mbar) | 860-1060            | 950-1000 |

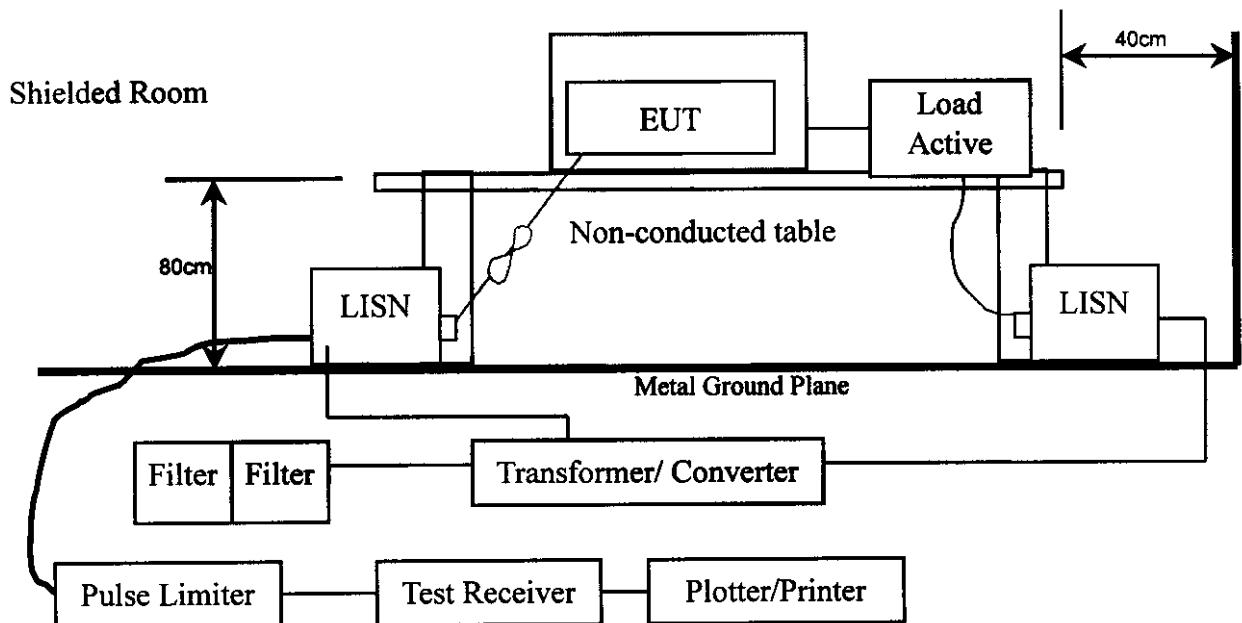
Site Description : November 3, 1998 File on  
 Federal Communications Commission  
 FCC Engineering Laboratory  
 7435 Oakland Mills Road  
 Columbia, MD 21046  
 Reference 31040/SIT1300F2

NVLAP Lab Code: 200347-0  
 United States Department of commerce  
 National Institute of Standards and Technology  
 National Voluntary Laboratory Accreditation Program

Name of firm : QuieTek Corporation

Site location : No.75-1, Wang-Yeh Valley, Yung-Hsing Tsuen,  
 Chiung-Lin, Hsin-Chu County, Taiwan, R.O.C.

### 3. Conducted Power Line Test


#### 3.1 Test Equipments

The following test equipments are used during the conducted power line tests:

| Item | Instrument         | Manufacturer | Type No./Serial No | Last Cal.. | Remark      |
|------|--------------------|--------------|--------------------|------------|-------------|
| 1    | Test Receiver      | R & S        | ESCS 30/825442/17  | May, 1998  |             |
| 2    | L.I.S.N.           | R & S        | ESH3-Z5/825016/6   | May, 1998  | EUT         |
| 3    | L.I.S.N.           | Kyoritsu     | KNW-407/8-1420-3   | May, 1998  | Peripherals |
| 4    | Pulse Limiter      | R & S        | ESH3-Z2            |            | N/A         |
| 5    | N0.2 Shielded Room |              |                    |            | N/A         |

Note: All equipment upon which need to calibrated are with calibration period of 1 year.

#### 3.2 Block Diagram of Test Setup



### 3.3 Conducted Powerline Emission Limit

#### ➤ FCC Part 15 Subpart B Limits

| Frequency    | Maximum RF Line Voltage |      |         |      |  |
|--------------|-------------------------|------|---------|------|--|
|              | Class A                 |      | Class B |      |  |
| MHz          | UV                      | dBuV | uV      | dBuV |  |
| 0.45 - 1.705 | 1000                    | 60.0 | 250     | 48.0 |  |
| 1.705 - 30   | 3000                    | 69.5 | 250     | 48.0 |  |

Remarks : 1. RF Line Voltage (dBuV) =  $20 \log_{10}$  RF Line Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

### 3.4 EUT Configuration on Measurement

The equipments which is listed 3.2 are installed on Conducted Power Line Test to meet the Commission requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

### 3.5 EUT Exercise Software

The EUT exercise program used during conducted testing was designed to exercise the EUT in a manner similar to a typical use. The exercise sequence is listed as below:

- 3.5.1 Setup the EUT and simulators as shown on 3.2
- 3.5.2 Turn on the power of all equipment.
- 3.5.3 PC reads data from disk.
- 3.5.4 PC sends "H" pattern to printer, the printer will print "H" pattern on paper.
- 3.5.5 PC reads and writes data into and from modem.
- 3.5.6 PC will read data from floppy disk and then writes the data into floppy disk , same operation for hard disk.
- 3.5.7 The wireless receiver mouse (EUT) will be stand by for waiting to receive the data from the wireless transmitting mouse.
- 3.5.7 Repeat the above procedure 3.5.4 to 3.5.7

### 3.6 Test Procedure

The EUT is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables must be changed according to ANSI C63.4-1992 on conducted measurement.

The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 10Khz. The frequency range from **0.45 MHz to 30 MHz** is checked.

### 3.7 Conducted Emission Data

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range for all the test modes. Then the worst modes were reported the following data pages.

The uncertainty is calculated in accordance with NAMAS NIS 81. The total uncertainty for this test is as follows:  
• Uncertainty in the field strength measured:  $< \pm 2.0 \text{ dB}$

## CONDUCTED EMISSION DATA

|               |   |                        |                 |   |           |
|---------------|---|------------------------|-----------------|---|-----------|
| Date of Test  | : | December 9, 1998       | Temperature     | : | 25 °C     |
| EUT           | : | WL 3D Mouse for 900MHz | Humidity        | : | 61 %      |
| Test Mode     | : | Normal                 | Display Pattern | : | H Pattern |
| Detector Mode | : | Quasi-Peak             |                 |   |           |

| Frequency<br>MHz | Cable<br>Loss<br>dB | LISN<br>Factor<br>dB | Reading Level |               | Measurement Level |       | Limits<br>uV |
|------------------|---------------------|----------------------|---------------|---------------|-------------------|-------|--------------|
|                  |                     |                      | Line1<br>dBuV | Line1<br>dBuV | Line1<br>uV       |       |              |
| 0.495            | 0.06                | 0.10                 | 20.69         | 20.85         | 11.0              | 250.0 |              |
| 2.669            | 0.16                | 0.14                 | 21.16         | 21.46         | 11.8              | 250.0 |              |
| 7.973            | 0.25                | 0.19                 | 29.00         | 29.44         | 29.7              | 250.0 |              |
| 15.999           | 0.33                | 0.37                 | 28.84         | 29.54         | 30.0              | 250.0 |              |
| 23.274           | 0.37                | 0.51                 | 31.39         | 32.27         | 41.1              | 250.0 |              |
| * 27.692         | 0.39                | 0.57                 | 33.39         | 34.35         | 52.2              | 250.0 |              |

**Remarks :**

1. “\*” means that this data is the worse emission level.
2. All readings are Quasi-peak

## CONDUCTED EMISSION DATA

|               |   |                        |                 |   |           |
|---------------|---|------------------------|-----------------|---|-----------|
| Date of Test  | : | December 9, 1998       | Temperature     | : | 25 °C     |
| EUT           | : | WL 3D Mouse for 900MHz | Humidity        | : | 61 %      |
| Test Mode     | : | Normal                 | Display Pattern | : | H Pattern |
| Detector Mode | : | Quasi-Peak             |                 |   |           |

| Frequency<br>MHz | Cable<br>Loss<br>dB | LISN<br>Factor<br>dB | Reading<br>Level<br>dBuV | Measurement Level |       | Limits<br>uV |
|------------------|---------------------|----------------------|--------------------------|-------------------|-------|--------------|
|                  |                     |                      |                          | Line2             | Line2 |              |
| 2.670            | 0.16                | 0.14                 | 21.30                    | 21.60             | 12.0  | 250.0        |
| 6.582            | 0.23                | 0.18                 | 27.92                    | 28.33             | 26.1  | 250.0        |
| 7.970            | 0.25                | 0.19                 | 30.09                    | 30.53             | 33.6  | 250.0        |
| 8.637            | 0.26                | 0.19                 | 28.42                    | 28.87             | 27.8  | 250.0        |
| 15.999           | 0.33                | 0.37                 | 27.24                    | 27.94             | 24.9  | 250.0        |
| * 27.691         | 0.39                | 0.57                 | 33.17                    | 34.13             | 50.9  | 250.0        |

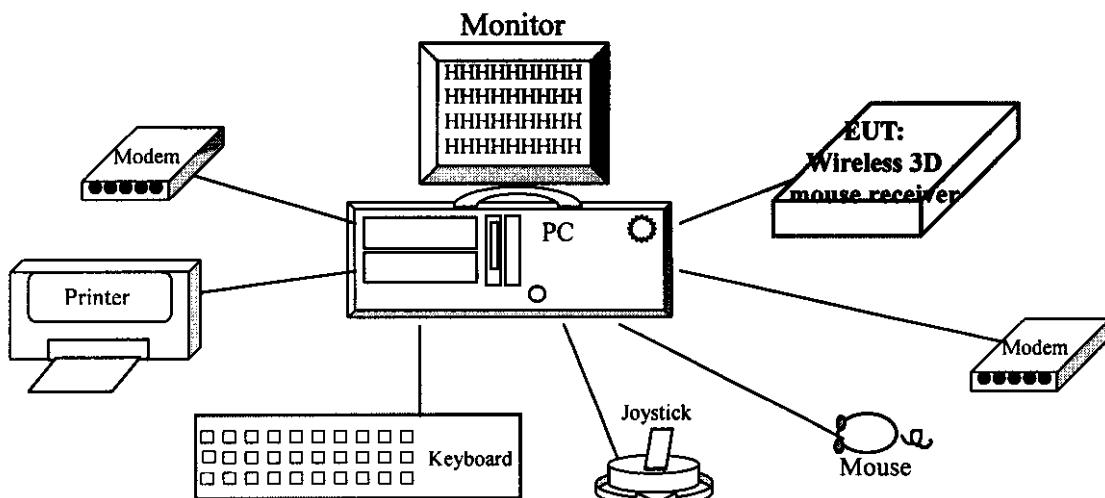
**Remarks :**

1. “\*” means that this data is the worse emission level.
2. All readings are Quasi-peak

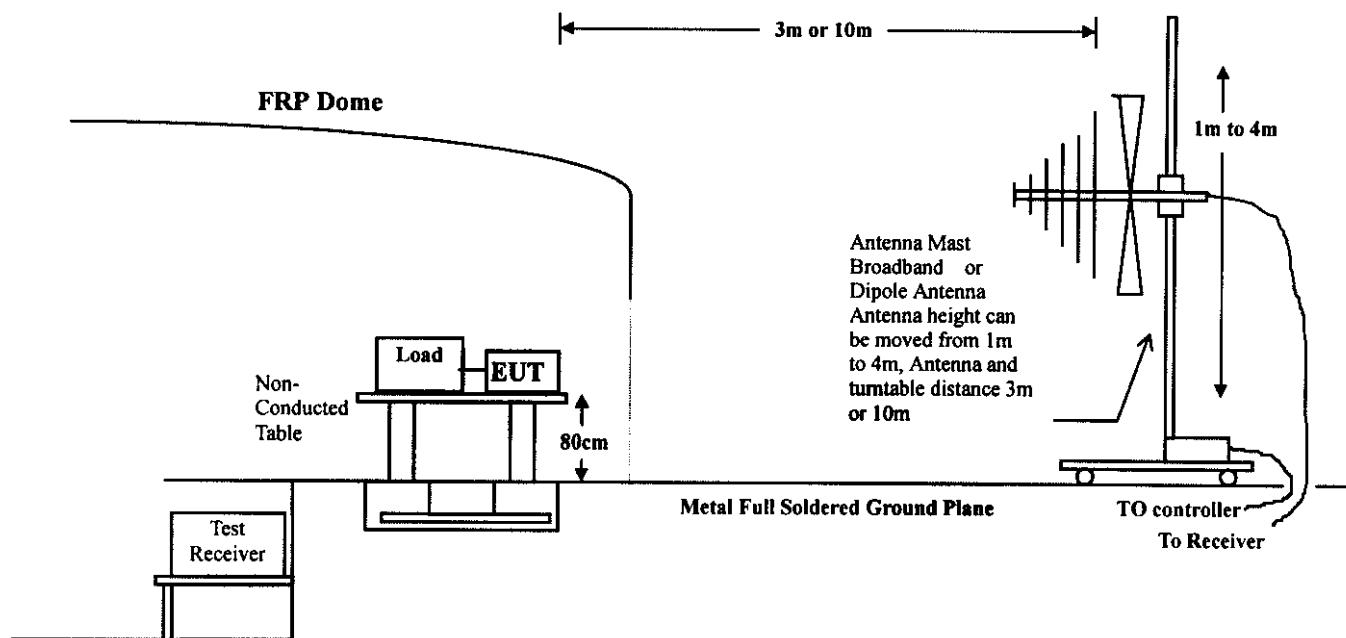
## 4. Radiation Emission Test

QTK 98 F013

### 4.1 Test Equipment


The following test equipments are used during the radiated emission tests:

| Test Site |   | Equipment         | Manufacturer | Model No./Serial No. | Last Cal.  |
|-----------|---|-------------------|--------------|----------------------|------------|
| SITE # 1  | X | Test Receiver     | R & S        | ESCS 30 / 825442/14  | May, 1998  |
|           |   | Spectrum Analyzer | Advantest    | R3261C / 71720140    | May, 1998  |
|           |   | Pre-Amplifier     | HP           | 8447D/3307A01812     | May, 1998  |
|           | X | Bilog Antenna     | Chase        | CBL6112B / 12452     | Sep., 1998 |
|           | X | Horn Antenna      | EM           | EM6917 / 103325      | May, 1998  |
| SITE # 2  | X | Test Receiver     | R & S        | ESCS 30 / 825442/17  | May, 1998  |
|           |   | Spectrum Analyzer | Advantest    | R3261C / 71720609    | May, 1998  |
|           |   | Pre-Amplifier     | HP           | 8447D/3307A01814     | May, 1998  |
|           | X | Bilog Antenna     | Chase        | CBL6112B / 2455      | Sep., 1998 |
|           | X | Horn Antenna      | EM           | EM6917 / 103325      | May, 1998  |


Note: 1. All equipment upon which need to calibrated are with calibration period of 1 year.  
 2. Mark "X" test instruments are used to measure the final test results.  
 2. Test Site :  Site #1 ,  Site #2

### 4.2 Test Setup

#### 4.2.1 Block Diagram of Connections between EUT and simulators



#### 4.2.2 Open Test Site Setup Diagram



#### 4.3 Radiated Emission Limit

##### ➤ FCC Part 15 Subpart B Limits

| Frequency    | Maximum RF Line Voltage |      |         |      |      |
|--------------|-------------------------|------|---------|------|------|
|              | Class A                 |      | Class B |      |      |
|              | MHz                     | UV   | dBuV    | uV   | dBuV |
| 0.45 - 1.705 | 1000                    | 60.0 | 250     | 48.0 |      |
| 1.705 - 30   | 3000                    | 69.5 | 250     | 48.0 |      |

Remarks : 1. RF Line Voltage (dBuV) =  $20 \log_{10}$  RF Line Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

#### 4.4 EUT Configuration

The equipments which is listed 4.2.1 are installed on Radiated Emission Test to meet the Commission requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

#### 4.5 Operating Condition of EUT

Same as Conducted Power Line Test which is listed in 3.5.

#### 4.6 Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Broadband antenna (calibrated bi-log and horn antenna) are used as a receiving antenna. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4-1992 on radiated measurement.

The bandwidth below 1Ghz setting on the field strength meter (R&S Test Receiver ESCS 30 ) is 120 KHz, above 1Ghz are 1 MHz.

The frequency range from 30Mhz to 1000Mhz is checked.

#### 4.7 Radiated Emission Data

The initial step in collecting radiated data is a spectrum analyzer peak scan of the measurement range for all the test modes. Then the worst modes were reported the following data pages.

The uncertainty is calculated in accordance with Namas NIS 81. The total uncertainty for this test is as follows:

- Uncertainty in the field strength measured:  $< \pm 4.0$  dB

## Radiated Emission Data

|              |   |                        |                 |   |           |
|--------------|---|------------------------|-----------------|---|-----------|
| Date of Test | : | December 9, 1998       | Temperature     | : | 25 °C     |
| EUT          | : | WL 3D Mouse for 900MHz | Humidity        | : | 61 %      |
| Test Mode    | : | Normal                 | Display Pattern | : | H Pattern |

| Frequency<br>MHz | Cable<br>Loss<br>dB | Ant<br>Factor<br>dB/m | Reading Level        | Emission Level       | Limits |      | Ant<br>Pos<br>cm | Table<br>Pos<br>deg |
|------------------|---------------------|-----------------------|----------------------|----------------------|--------|------|------------------|---------------------|
|                  |                     |                       | Horizontal<br>dBuV/m | Horizontal<br>dBuV/m | uV/m   | uV/m |                  |                     |
| 72.015           | 1.55                | 7.56                  | 22.19                | 31.30                | 36.74  | 100  | 213              | 60                  |
| 171.315          | 2.51                | 10.72                 | 13.12                | 26.36                | 20.79  | 150  | 174              | 72                  |
| 210.669          | 2.89                | 10.29                 | 16.50                | 29.68                | 30.49  | 150  | 147              | 165                 |
| 331.716          | 3.92                | 14.54                 | 17.52                | 35.97                | 62.90  | 200  | 259              | 30                  |
| 558.996          | 5.10                | 18.96                 | 12.66                | 36.72                | 68.53  | 200  | 118              | 68                  |
| * 894.897        | 6.85                | 20.91                 | 15.38                | 43.14                | 143.54 | 200  | 99               | 138                 |

## Remarks:

1. All Readings below 1GHz are Quasi-Peak, above are average value.
2. “ \* ”, means this data is the worse emission level.
3. Emission Level = Reading Level + Antenna Factor + Cable loss

## Radiated Emission Data

|              |   |                        |                 |   |                  |
|--------------|---|------------------------|-----------------|---|------------------|
| Date of Test | : | December 9, 1998       | Temperature     | : | 25 °C            |
| EUT          | : | WL 3D Mouse for 900MHz | Humidity        | : | 61 %             |
| Test Mode    | : | Normal                 | Display Pattern | : | <b>H Pattern</b> |

| Frequency<br>MHz | Cable<br>Loss<br>dB | Ant<br>Factor<br>dB/m | Reading Level<br>Vertical<br>dBuV/m | Emission Level<br>Vertical<br>dBuV/m | Limits<br>uV/m | Ant Table |            |       |
|------------------|---------------------|-----------------------|-------------------------------------|--------------------------------------|----------------|-----------|------------|-------|
|                  |                     |                       |                                     |                                      |                | Pos<br>cm | Pos<br>deg | Table |
| 72.015           | 1.55                | 8.53                  | 25.06                               | 35.14                                | 57.17          | 100       | 191        | 103   |
| 171.318          | 2.51                | 8.99                  | 9.86                                | 21.37                                | 11.70          | 150       | 99         | 130   |
| 210.669          | 2.89                | 9.69                  | 15.12                               | 27.70                                | 24.26          | 150       | 99         | 104   |
| 331.711          | 3.92                | 14.18                 | 14.93                               | 33.03                                | 44.82          | 200       | 225        | 10    |
| 558.995          | 5.10                | 18.75                 | 10.80                               | 34.65                                | 54.02          | 200       | 99         | 201   |
| * 894.901        | 6.85                | 21.12                 | 10.77                               | 38.74                                | 86.49          | 200       | 99         | 121   |

## Remarks:

1. All Readings below 1GHz are Quasi-Peak, above are average value.
2. “ \* ”, means this data is the worse emission level.
3. Emission Level = Reading Level + Antenna Factor + Cable loss

## 5. Summarization of Test Results

The test results in the conducted and radiated emission were performed according to the requirements of measurement standard and process. QuieTek Corporation is assumed full responsibility for the accuracy and completeness of these measurements. The summarization of the worst value of conducted and radiated emission test is described as below:

### ➤ The worse value of Conducted Emission Test

| Frequency<br>(MHz) | Line | Measurement Level<br>dB(uV) | Limit Level<br>dB(uV) | Comment |
|--------------------|------|-----------------------------|-----------------------|---------|
| 27.692             | L1   | 34.35                       | 48                    | Pass    |
| 27.691             | L2   | 33.17                       | 48                    | Pass    |

### ➤ The worse value of Radiated Emission Test

| Frequency<br>(MHz) | Polarization | Measurement Level<br>dB(uV) | Limit Level<br>dB(uV) | Comment |
|--------------------|--------------|-----------------------------|-----------------------|---------|
| 894.897            | H            | 43.14                       | 46                    | Pass    |
| 894.901            | V            | 38.74                       | 46                    | Pass    |

## **6. EMI Reduction Method During Compliance Testing**

No modification was made during testing.

**FCC Test Report  
Application for Certification  
(Additional Test Data)**

**On Behalf Of  
RF-Link Systems Inc.  
WL 3D Mouse for 900MHz (Receiver)  
Model # : RF 50202**

**FCC ID : MIBRF50202**

*TESTED AS*

*#2*  
*RECEIVER*

**Prepared For:  
RF-Link Systems Inc.  
1F, No.9, Chan Yeh Road 1, Science-Based  
Industrial Park, HsinChu, Taiwan, R.O.C.**

**Report By : QuieTek Corporation  
No.75-1, Wang-Yeh Valley, Yung-Hsing  
Tsuen, Chiung-Lin, Hsin-Chu County,  
Taiwan, R.O.C.  
Tel : (03) 592-8858  
Fax : (03) 592-8859**

The test results are traceable to the national or international standards  
Test results given in this report only relate to the specimen(s) tested or measured.

This report shall not be reproduced excepted in full, without the written consent of QuieTek.  
This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government