RF Exposure Calculation

The wireless sensor, model number ELRT, has a maximum RF power into the antenna of 20.34 dBm or 108.14 mW. The antenna gain is 0.7 dBi. The unit is designed to be mounted in a fixed position on a wall or inside a cabinet or safe and therefore the distance from the antenna to any person will be greater than 20 cm. The power density for continuous transmit would be calculated as:

$$(\underline{108\text{mW})\ (0.7)}$$
 = 150.4 mW/m²
 $4\pi(0.2\text{m})^2$

The limit for general population uncontrolled exposure at 2.4GHz is 10 W/m².

Equations for Predicting RF Fields

Calculations can be made to predict RF field strength and power density levels around typical RF sources. For example, in the case of a single radiating antenna, a prediction for power density in the far-field of the antenna can be made by use of the general Equations (3) or (4) below [for conversion to electric or magnetic field strength see Equation (1) in Section 1]. These equations are generally accurate in the far-field of an antenna but will over-predict power density in the near field, where they could be used for making a "worst case" or conservative prediction.

$$S = \frac{PG}{4\pi R^2} \tag{3}$$

where: S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

4.2 RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Averaging Time (minutes)
0.003-1	280	2.19	-	6
1-10	280/f	2.19/ <i>f</i>	-	6
10-30	28	2.19/f	_	6
30-300	28	0.073	2*	6
300-1500	$1.585 f^{0.5}$	$0.0042 f^{0.5}$	<i>f</i> /150	6
1500-15000	<mark>61.4</mark>	<mark>0.163</mark>	10	<mark>6</mark>
15000-150000	61.4	0.163	10	616000/f
150000-300000	0.158 <i>f</i> ^{0.5}	$4.21 \times 10^{-4} f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/f