

# CETECOM ICT Services GmbH

Untertürkheimer Straße 6-10 . D-66117 Saarbrücken Phone: +49 (0) 681-598-0 Fax:-9075  
RSC-Laboratory



## Accredited testing-laboratory

**DAR registration number: DAT-P-176/94-D1**

**Federal Motor Transport Authority (KBA)**  
**DAR registration number: KBA-P 00070-97**

**Recognized by the Federal Communications Commission**  
**Anechoic chamber registration no.: 90462 (FCC)**  
**Anechoic chamber registration no.: 3463A-1 (IC)**

**Certification ID: DE 0001**  
**Accreditation ID: DE 0002**

**Accredited Bluetooth® Test Facility (BQTF)**  
*The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Cetecom ICT is under license*

Test report no. : 4-2380-16-06/07  
Type identification : MC2007S2  
Applicant : SAGEM Communication  
FCC ID : M9HMC07S2  
IC Reg. No. :  
Test standards : 47 CFR Part 22  
47 CFR Part 24  
RSS - 132 Issue 1  
RSS - 133 Issue 3

## Table of contents

|          |                                       |           |
|----------|---------------------------------------|-----------|
| <b>1</b> | <b>General information .....</b>      | <b>3</b>  |
| 1.1      | Notes .....                           | 3         |
| 1.2      | Testing laboratory.....               | 4         |
| 1.3      | Details of applicant.....             | 4         |
| 1.4      | Application details .....             | 4         |
| <b>2</b> | <b>Test standard/s:.....</b>          | <b>5</b>  |
| <b>3</b> | <b>Technical tests .....</b>          | <b>6</b>  |
| 3.1      | Details of manufacturer.....          | 6         |
| 3.1.1    | Test item.....                        | 6         |
| 3.2      | Test Setup.....                       | 7         |
| <b>4</b> | <b>Statement of Compliance.....</b>   | <b>8</b>  |
| 4.1      | Summary of Measurement Results.....   | 8         |
| 4.1.1    | PCS 1900 .....                        | 8         |
| 4.1.2    | GSM 850.....                          | 8         |
| <b>5</b> | <b>Measurements and results .....</b> | <b>9</b>  |
| 5.1      | PART PCS 1900 .....                   | 9         |
| 5.1.1    | RF Power Output.....                  | 9         |
| 5.1.2    | Radiated Emissions.....               | 13        |
| 5.1.3    | Receiver Radiated Emissions .....     | 20        |
| 5.1.4    | Conducted Spurious Emissions.....     | 23        |
| 5.2      | PART GSM 850 .....                    | 26        |
| 5.2.1    | RF Power Output.....                  | 26        |
| 5.2.2    | Radiated Emissions.....               | 29        |
| 5.2.3    | Receiver Radiated Emissions .....     | 36        |
| 5.2.4    | Conducted Spurious Emissions.....     | 39        |
| <b>6</b> | <b>Test Equipment utilized .....</b>  | <b>42</b> |

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

## 1 General information

### 1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

**Test laboratory manager:**

**2007-06-08      Detlev Gillmann**



---

Date                      Name                      Signature

**Technical responsibility for area of testing:**

**2007-06-08      Harro Ames**



---

Date                      Name                      Signature

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

## 1.2 Testing laboratory

**CETECOM ICT Services GmbH**

**Untertürkheimer Straße 6 - 10**

**66117 Saarbrücken**

**Germany**

**Phone: + 49 681 5 98 - 0**

**Fax: + 49 681 5 98 - 9075**

**e-mail: info@ICT.cetecom.de**

**Internet: http://www.cetecom-ict.de**

**State of accreditation:** The test laboratory (area of testing) is accredited according to  
DIN EN ISO/IEC 17025  
DAR registration number: DAT-P-176/94-D1

**Accredited by:** **Federal Motor Transport Authority (KBA)**  
DAR registration number: **KBA-P 00070-97**

**Testing location, if different from CETECOM ICT Services GmbH:**

**Name :**

**Street :**

**Town :**

**Country :**

**Phone :**

**Fax :**

## 1.3 Details of applicant

|                   |                                             |
|-------------------|---------------------------------------------|
| <b>Name:</b>      | SAGEM Communication<br><b>FR 0448018158</b> |
| <b>Street:</b>    | 2 rue du Petit Albi                         |
| <b>Town:</b>      | 95800 Cergy Pontoise                        |
| <b>Country:</b>   | France                                      |
| <b>Telephone:</b> | +33-1-5811 90 90                            |
| <b>Fax:</b>       | +33-1-5811 14 11                            |
| <b>Contact:</b>   | Jean Marquet                                |
| <b>E-mail:</b>    | jean.marquet@sagem.com                      |
| <b>Telephone:</b> | +33-1-5811 91 72                            |

## 1.4 Application details

**Date of receipt of order:** **2007-04-04**

**Date of receipt of test item:** **2007-06-04**

**Date of start test:** **2007-06-04**

**Date of end test** **2007-06-08**

**Persons(s) who have been present during the test:**

## 2 Test standard/s:

|                          |                |                                                                                                                                                                                              |
|--------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>47 CFR Part 22</b>    | <b>2006-10</b> | <b>Title 47 of the Code of Federal Regulations; Chapter I<br/>Federal Communications Commission<br/>subchapter B - common carrier services, Part 22-Public<br/>mobile services</b>           |
| <b>47 CFR Part 24</b>    | <b>2006-10</b> | <b>Title 47 of the Code of Federal Regulations; Chapter I<br/>Federal Communications Commission<br/>subchapter B - common carrier services, Part 24-Personal<br/>communications services</b> |
| <b>RSS - 132 Issue 1</b> | <b>2002-08</b> | <b>Spectrum Management and Telecommunications Policy -<br/>Radio Standards Specifications<br/>800 MHz Cellular Telephones Employing New Technologies</b>                                     |
| <b>RSS - 133 Issue 3</b> | <b>2005-06</b> | <b>Spectrum Management and Telecommunications Policy -<br/>Radio Standards Specifications<br/>2 GHz Personal Communication Services</b>                                                      |

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

## 3 Technical tests

### 3.1 Details of manufacturer

|          |                                          |
|----------|------------------------------------------|
| Name:    | <b>SAGEM Communication FR 0448018158</b> |
|          |                                          |
|          |                                          |
| Street:  | <b>2 rue du Petit Albi</b>               |
| Town:    | <b>95800 Cergy Pontoise</b>              |
| Country: | <b>France</b>                            |

#### 3.1.1 Test item

|                                   |                                                |
|-----------------------------------|------------------------------------------------|
| Kind of test item :               | GSM /WCDMA Mobile Phone                        |
| Type identification :             | <b>MC2007S2</b>                                |
| Serial Number :                   |                                                |
| Frequency :                       | 1850.2 – 1909.8 MHz and 824.2 – 848.8 MHz      |
| Type of modulation :              | 300KGXW (GMSK) / 300KG7W (8-PSK)               |
| Number of channels :              | 300 (PCS1900) and 125 (PCS850)                 |
| Antenna Type :                    | Integral antenna                               |
| Power supply (normal)             | DC                                             |
| Output power GSM 850 / GMSK       | cond.: 32.6 dBm Peak<br>ERP: 29.2 dBm (Burst); |
| Output power GSM 1900 / GMSK      | cond : 29.8 dBm Peak<br>EIRP: 30.0 dBm (Burst) |
| Output power GSM 850 / 8-PSK      | cond.: 32.0 dBm Peak<br>ERP: 28.7 dBm (Burst); |
| Output power GSM 1900 / 8-PSK     | cond : 29.4 dBm Peak<br>EIRP: 29.6 dBm (Burst) |
| Transmitter Spurious (worst case) | 1,1 µW / -29.4 dBm                             |
| Receiver Spurious (worst case)    | 48 µV/m @ 3 m                                  |
| FCC ID :                          | <b>M9HMC07S2</b>                               |
| Certification No. IC :            |                                                |
| Open Area Test Site IC No.        | IC 3463A-1                                     |
| IC Standards :                    | RSS132, Issue 2, RSS133, Issue 3               |

#### ATTESTATION:

#### DECLARATION OF COMPLIANCE:

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

**Laboratory Manager:**

**Detlev Gillmann**



---

Date

Name

Signature

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

## 3.2 Test Setup

Hardware : V0x

Software : E E1,xx

Mobile; (cond. measurements): 355270010002277

Mobile; (rad. measurements) : 355270010005114

The radiated measurements were performed with standard world wide charger.

## **4 Statement of Compliance**

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

### **4.1 Summary of Measurement Results**

- No deviations from the technical specifications were ascertained**
- There were deviations from the technical specifications ascertained

#### **4.1.1 PCS 1900**

| Section in this Report | Test Name                    | Verdict |
|------------------------|------------------------------|---------|
| 3.1.1                  | RF Power Output              | pass    |
| 3.1.3                  | Radiated Emissions           | pass    |
| 3.1.4                  | Receiver Radiated Emissions  | pass    |
| 3.1.5                  | Conducted Spurious Emissions | pass    |

#### **4.1.2 GSM 850**

| Section in this Report | Test Name                    | Verdict |
|------------------------|------------------------------|---------|
| 3.2.1                  | RF Power Output              | pass    |
| 3.2.3                  | Radiated Emissions           | pass    |
| 3.2.4                  | Receiver Radiated Emissions  | pass    |
| 3.2.5                  | Conducted Spurious Emissions | pass    |

## 5 Measurements and results

For Part 24/22 we use the substitution method ( TIA/EIA 603).

All measurements in this report are done in GSM mode. The device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link ). All relevant tests have been repeated in 8-PSK Modulation if EDGE Mode is supported.

### 5.1 PART PCS 1900

#### 5.1.1 RF Power Output

##### Reference

|      |                               |
|------|-------------------------------|
| FCC: | CFR Part 24.232, 2.1046       |
| IC:  | RSS 133, Issue 3, Section 4.3 |

##### Summary:

This paragraph contains both average/peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

##### Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0 MHz and 1909.8 MHz (bottom, middle and top of operational frequency range).

##### Limits:

| Power Step | Nominal Peak Output Power (dBm) | Tolerance (dB) |
|------------|---------------------------------|----------------|
| 0          | +30                             | ± 2            |

##### Test Results: Output Power (conducted) GMSK Mode

| Frequency (MHz)         | Power Class | Peak Output Power (dBm) | Average Output Power (dBm) |
|-------------------------|-------------|-------------------------|----------------------------|
| 1850.2                  | 0           | 29.8                    | 29.7                       |
| 1880.0                  | 0           | 29.8                    | 29.7                       |
| 1909.8                  | 0           | 29.7                    | 29.6                       |
| Measurement uncertainty |             | ±0.5 dB                 |                            |

##### Test Results: Output Power (conducted) 8-PSK Mode

| Frequency (MHz)         | Power Class | Peak Output Power (dBm) | Average Output Power (dBm) |
|-------------------------|-------------|-------------------------|----------------------------|
| 1850.2                  | 0           | 29.4                    | 26.0                       |
| 1880.0                  | 0           | 29.2                    | 25.8                       |
| 1909.8                  | 0           | 29.2                    | 25.7                       |
| Measurement uncertainty |             | ±0.5 dB                 |                            |

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

## EIRP Measurements

### Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms -equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements were performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

$E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.

(l) Repeat for all different test signal frequencies

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

## Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency : equal to the signal source

Resolution BW : 10 kHz

Video BW : same

Detector Mode : positive

Average : off

Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

$E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna): .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.

(f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

(g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.

(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.

(i) Tune the EMI Receivers to the test frequency.

(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

$P = P_1 - L_1 = (P_2 + L_2) - L_1 = P_3 + A + L_2 - L_1$

$EIRP = P + G_1 = P_3 + L_2 - L_1 + A + G_1$

$ERP = EIRP - 2.15 \text{ dB}$

Total Correction factor in EMI Receiver # 2 =  $L_2 - L_1 + G_1$

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port.

Correct the antenna gain if necessary.

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

## Limits:

| Power Step | Burst PEAK EIRP (dBm) |
|------------|-----------------------|
| 0          | <33                   |

## Test Results: Output Power (radiated) GMSK Mode

| Frequency (MHz)         | Power Class | Burst Peak EIRP (dBm) |
|-------------------------|-------------|-----------------------|
| 1850.2                  | 0           | 29.7                  |
| 1880.0                  | 0           | 30.0                  |
| 1909.8                  | 0           | 30.0                  |
| Measurement uncertainty |             | ±0.5 dB               |

## Test Results: Output Power (radiated) 8-PSK Mode

| Frequency (MHz)         | Power Class | Burst Peak EIRP (dBm) |
|-------------------------|-------------|-----------------------|
| 1850.2                  | 0           | 29.2                  |
| 1880.0                  | 0           | 29.5                  |
| 1909.8                  | 0           | 29.6                  |
| Measurement uncertainty |             | ±0.5 dB               |

## Sample Calculation:

| Freq   | SA Reading | SG Setting | Ant. gain | Dipol gain | Cable loss | EIRP Result |  |  |  |
|--------|------------|------------|-----------|------------|------------|-------------|--|--|--|
| MHz    | dB $\mu$ V | dBm        | dBi       | dBd        | dB         | dBm         |  |  |  |
| 1909.8 | 132.3      | 24.9       | 8.4       | 0.0        | 3.3        | 30.0        |  |  |  |

$$\text{EIRP} = \text{SG (dBm)} - \text{Cable Loss (dB)} + \text{Ant. gain (dBi)}$$

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

## 5.1.2 Radiated Emissions

### Reference

|      |                               |
|------|-------------------------------|
| FCC: | CFR Part 24.238, 2.1053       |
| IC:  | RSS 133, Issue 3, Section 4.4 |

### Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.
- e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

### Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least  $43 + 10\log(P)$  dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least  $43 + 10 \log(P)$  dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

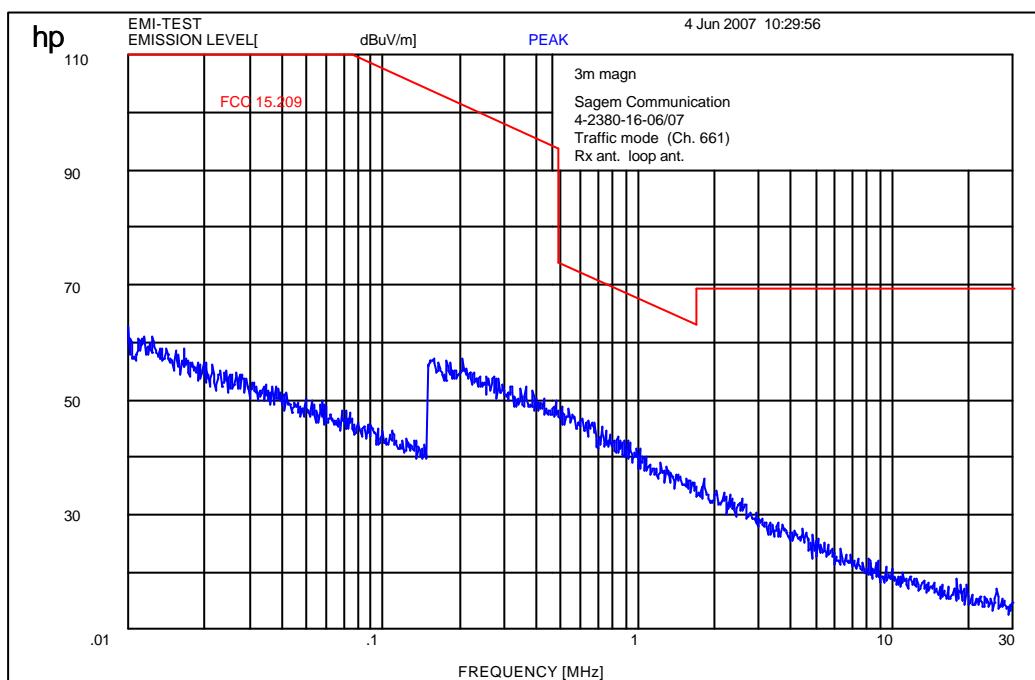
## Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1880.0 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

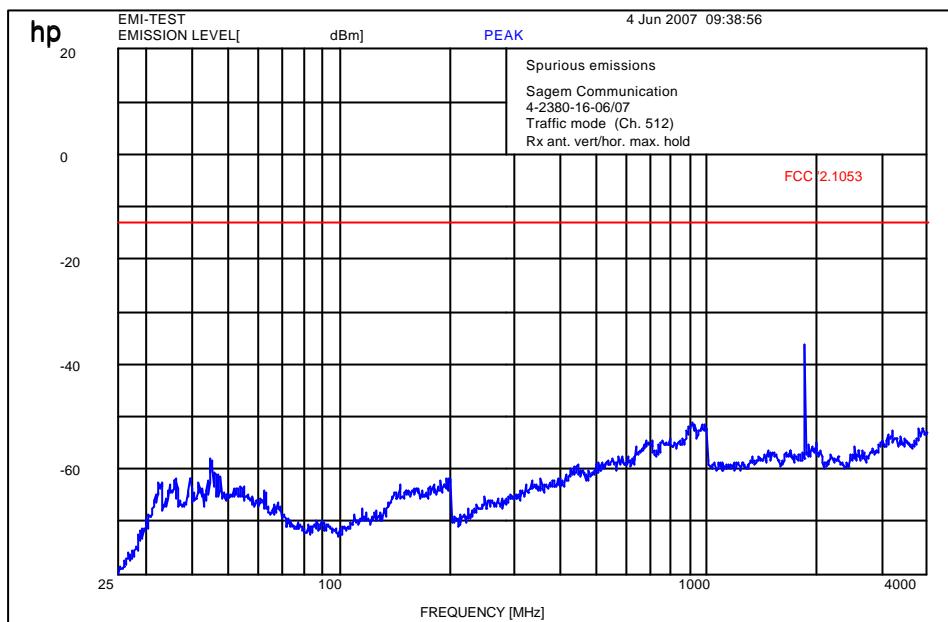
The final open field radiated levels are presented on the next table.

All measurements were done in horizontal and vertical polarization; the plots show the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

| Harmonic | Tx ch.-512<br>Freq. (MHz) | Level<br>(dBm) | Tx ch.-661<br>Freq. (MHz) | Level<br>(dBm) | Tx ch.-810<br>Freq. (MHz) | Level<br>(dBm) |
|----------|---------------------------|----------------|---------------------------|----------------|---------------------------|----------------|
| 2        | 3700.4                    | -              | 3760                      | -              | 3819.6                    | -              |
| 3        | 5550.6                    | -              | 5640                      | -              | 5729.4                    | -              |
| 4        | 7400.8                    | -              | 7520                      | -              | 7639.2                    | -              |
| 5        | 9251.0                    | -              | 9400                      | -              | 9549.0                    | -              |
| 6        | 11101.2                   | -              | 11280                     | -              | 11458.8                   | -              |
| 7        | 12951.4                   | -              | 13160                     | -              | 13368.6                   | -              |
| 8        | 14801.6                   | -              | 15040                     | -              | 15278.4                   | -              |
| 9        | 16651.8                   | -              | 16920                     | -              | 17188.2                   | -              |
| 10       | 18502.0                   | -              | 18800                     | -              | 19098.0                   | -              |


**No peaks found < 20 dB below limit.**

## Sample calculation:

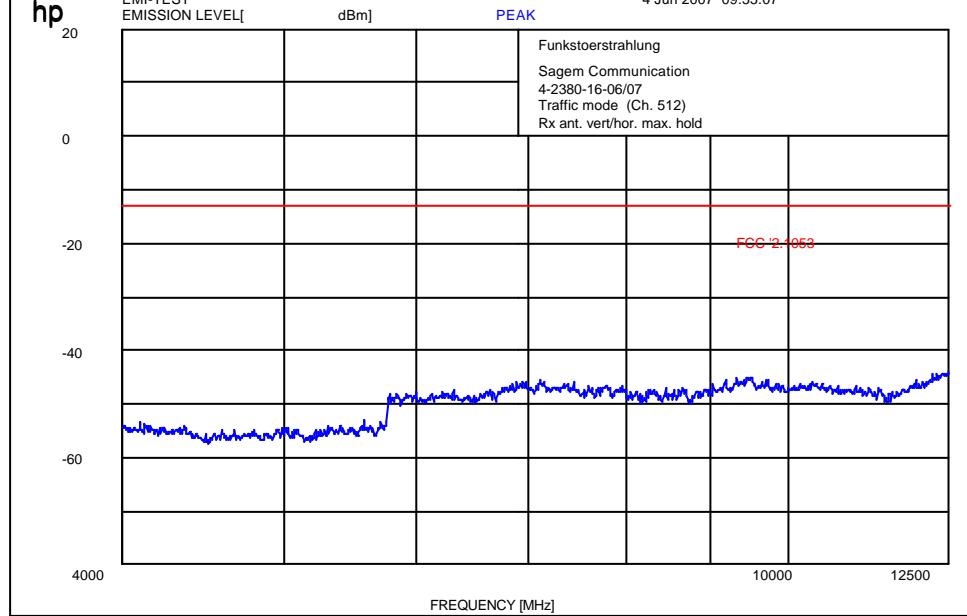

| Freq   | SA<br>Reading | SG<br>Setting | Ant.<br>gain | Dipol<br>gain | Cable<br>loss | EIRP<br>Result |  |  |  |
|--------|---------------|---------------|--------------|---------------|---------------|----------------|--|--|--|
| MHz    | dB $\mu$ V    | dBm           | dBi          | dBd           | dB            | dBm            |  |  |  |
| 1909.8 | 132.3         | 24.9          | 8.4          | 0.0           | 3.3           | 30.0           |  |  |  |

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

## Traffic mode up to 30 MHz (Valid for all 3 channels)



**Channel 512 (30 MHz - 4 GHz)**

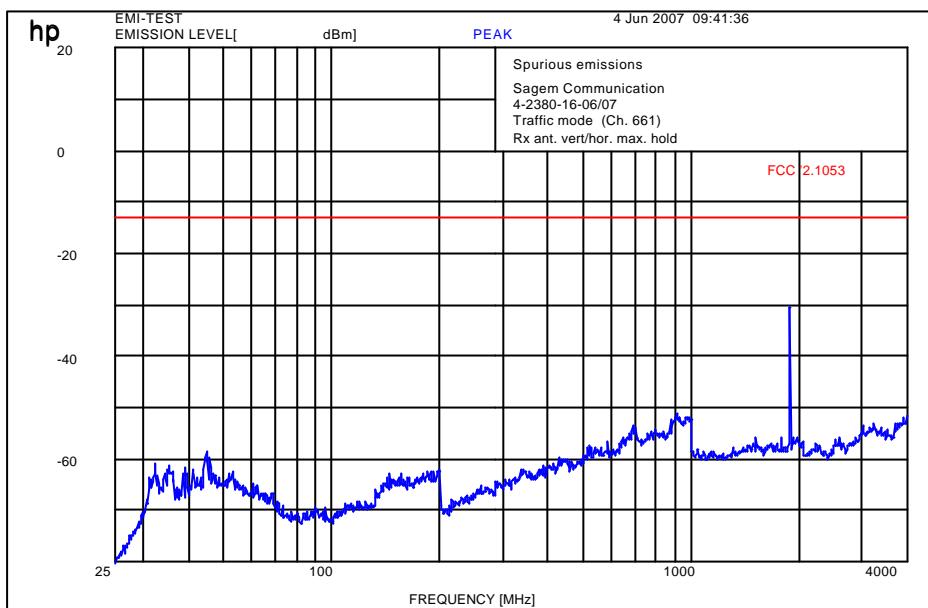



$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz

$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz

Carrier suppressed with a rejection filter

**Channel 512 (4 GHz – 12.5 GHz)**

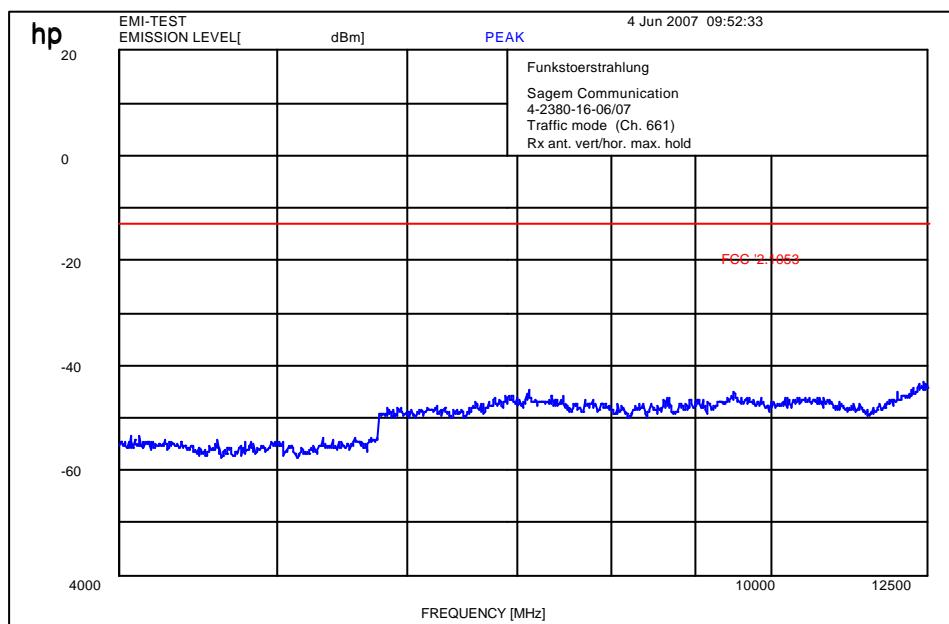



$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

## Channel 661 (30 MHz - 4 GHz)



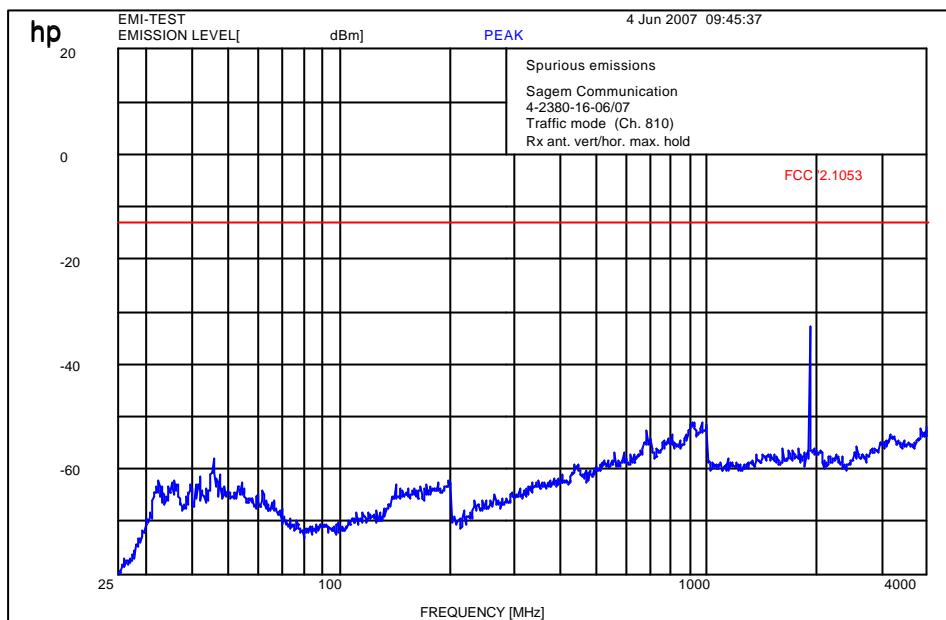

$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz

Carrier suppressed with a rejection filter

$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz

## Channel 661 (4 GHz – 12.5 GHz)



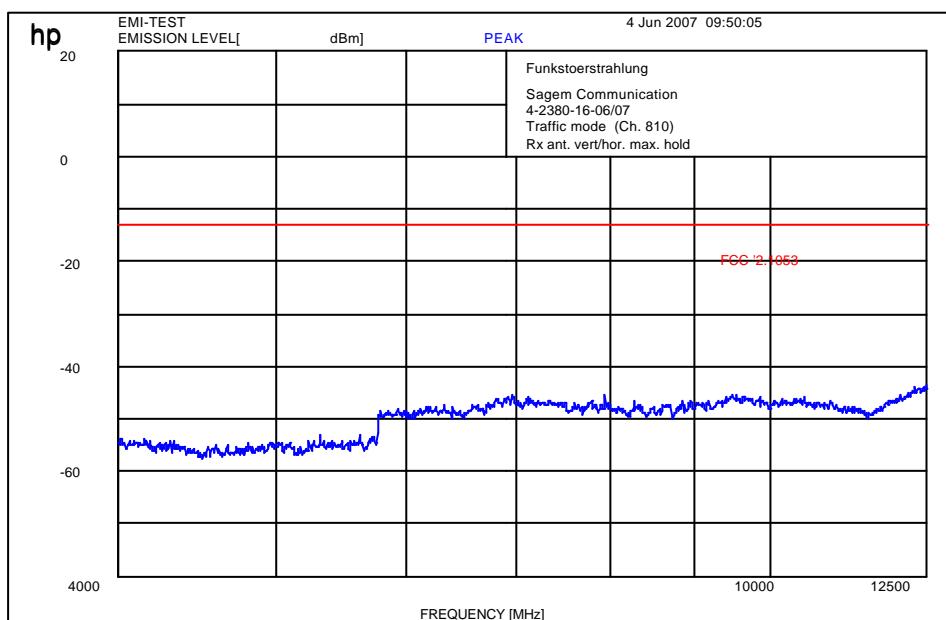

$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz

$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

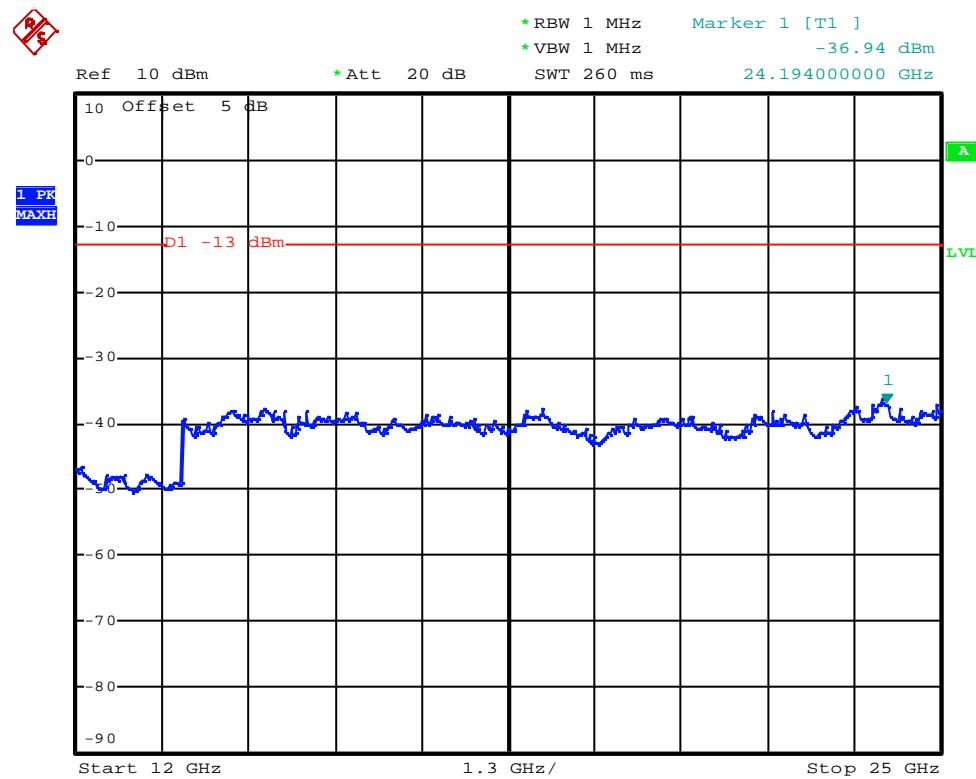
## Channel 810 (30 MHz - 4 GHz)




$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz

Carrier suppressed with a rejection filter

$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz


## Channel 810 (4 GHz – 12.5 GHz)



$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz

$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz

## Channel 512 (12 GHz - 25 GHz) valid for all 3 channels



Date: 5.JUN.2007 10:54:58

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

## 5.1.3 Receiver Radiated Emissions

### Reference

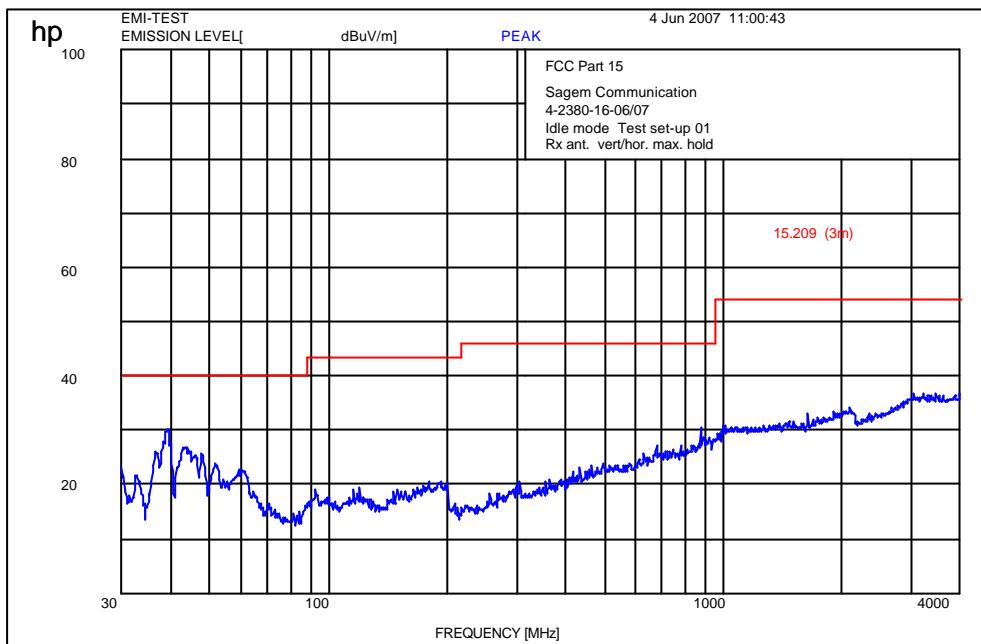
|      |                               |
|------|-------------------------------|
| FCC: | CFR Part 15.109, 2.1053       |
| IC:  | RSS 133, Issue 3, Section 4.5 |

### Measurement Results

| SPURIOUS EMISSIONS LEVEL ( $\mu$ V/m) |          |                    |            |          |                    |         |          |                    |
|---------------------------------------|----------|--------------------|------------|----------|--------------------|---------|----------|--------------------|
| Idle mode                             |          |                    |            |          |                    |         |          |                    |
| f (MHz)                               | Detector | Level ( $\mu$ V/m) | f (MHz)    | Detector | Level ( $\mu$ V/m) | f (MHz) | Detector | Level ( $\mu$ V/m) |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| Measurement uncertainty               |          |                    | $\pm 3$ dB |          |                    |         |          |                    |

f < 1 GHz : RBW/VBW: 100 kHz

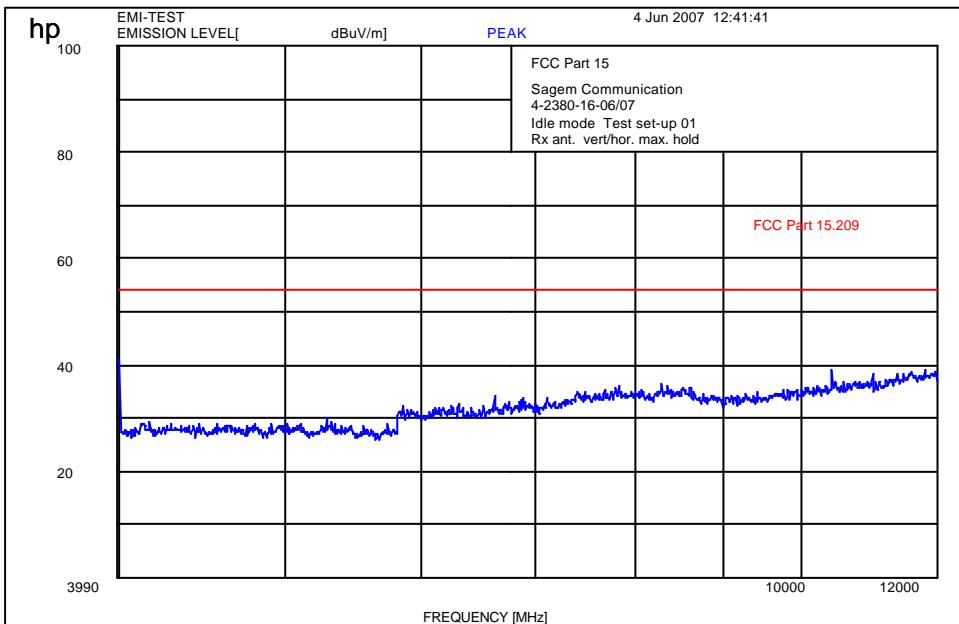
f  $\geq$  1 GHz : RBW/VBW: 1 MHz


H = Horizontal ; V= Vertical

For measurement distance see table below

### Limits: § 15.109

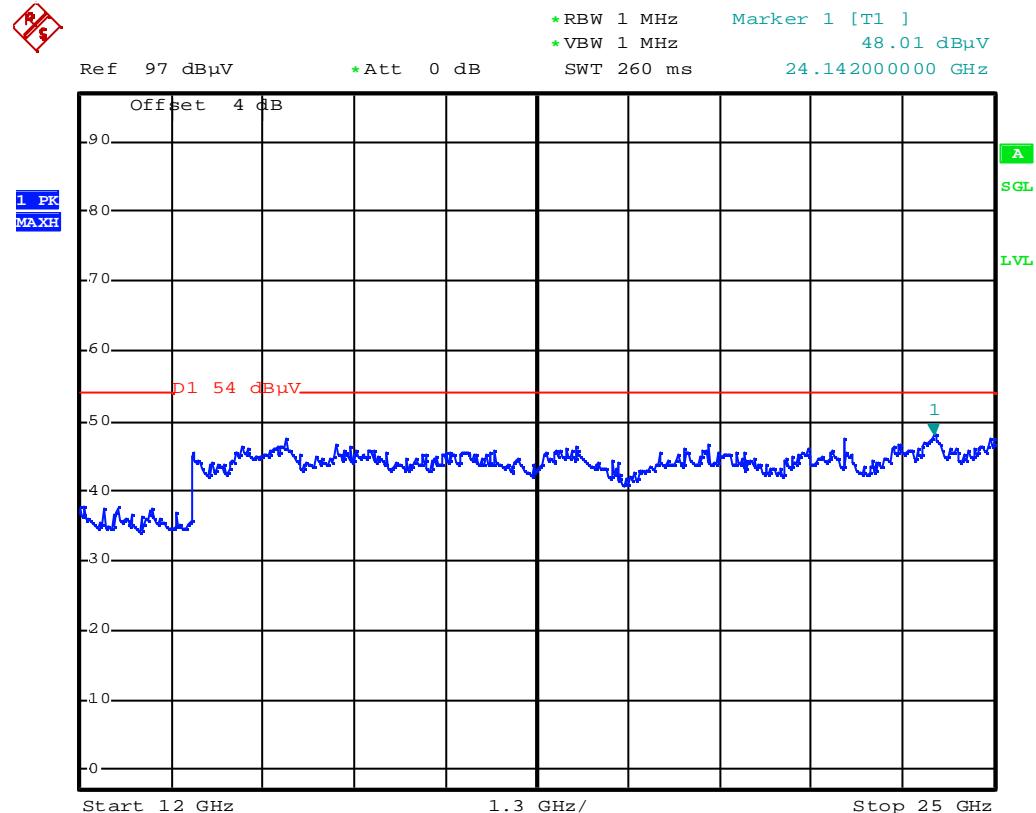
| Frequency (MHz) | Field strength ( $\mu$ V/m) | Measurement distance (m) |
|-----------------|-----------------------------|--------------------------|
| 30 - 88         | 100                         | 3                        |
| 88 - 216        | 150                         | 3                        |
| 216 - 960       | 200                         | 3                        |
| above 960       | 500                         | 3                        |


**IDLE MODE (30 MHz - 4 GHz)**



$f < 1$  GHz : RBW/VBW: 100 kHz

$f \geq 1$  GHz : RBW / VBW 1 MHz


**Idle Mode (4 GHz – 12.0 GHz)**



$f < 1$  GHz : RBW/VBW: 100 kHz

$f \geq 1$  GHz : RBW / VBW 1 MHz

## Idle Mode (12 GHz - 25 GHz)



Date: 5.JUN.2007 10:57:33

### 5.1.4 Conducted Spurious Emissions

#### Reference

|      |                               |
|------|-------------------------------|
| FCC: | CFR Part 24.238, 2.10.51      |
| IC:  | RSS 133, Issue 3, Section 4.4 |

#### Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

#### USPCS Transmitter Channel Frequency:

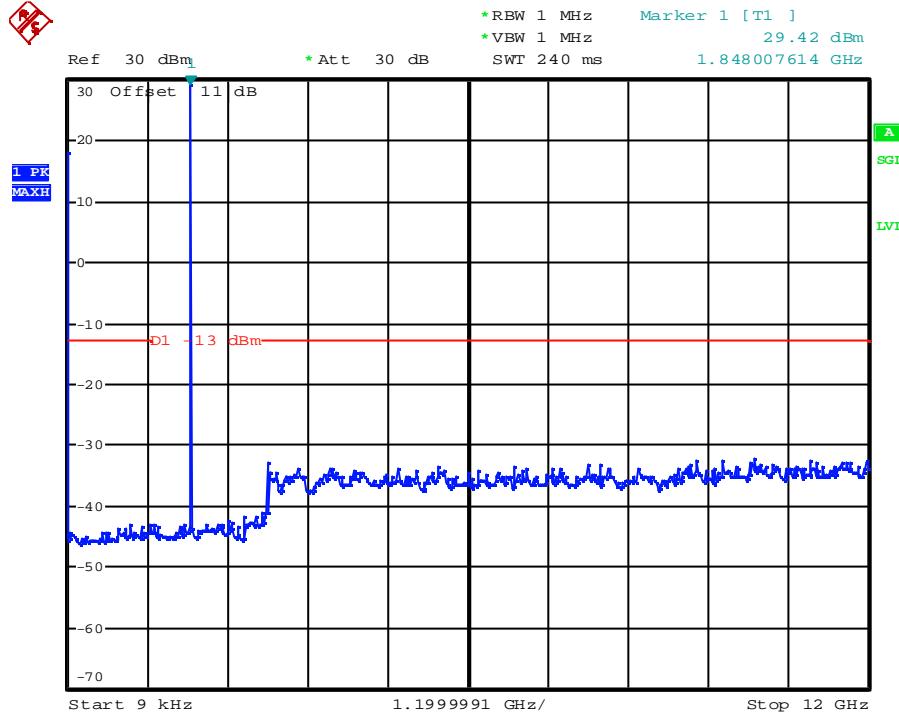
512 1850.2 MHz

661 1880.0 MHz

810 1909.8 MHz

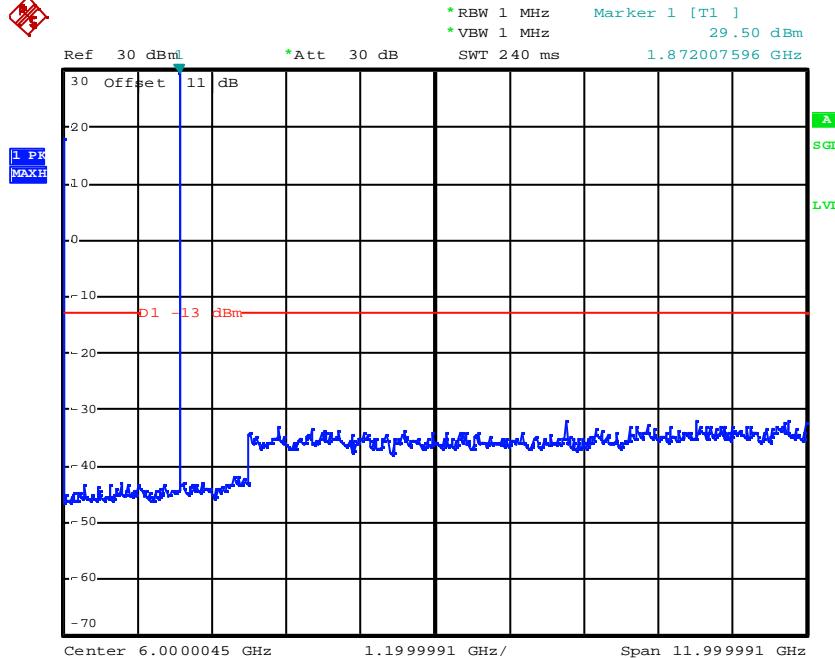
#### Measurement Limit:

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least  $43+10\log(P)$  dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.


#### Measurement Results:

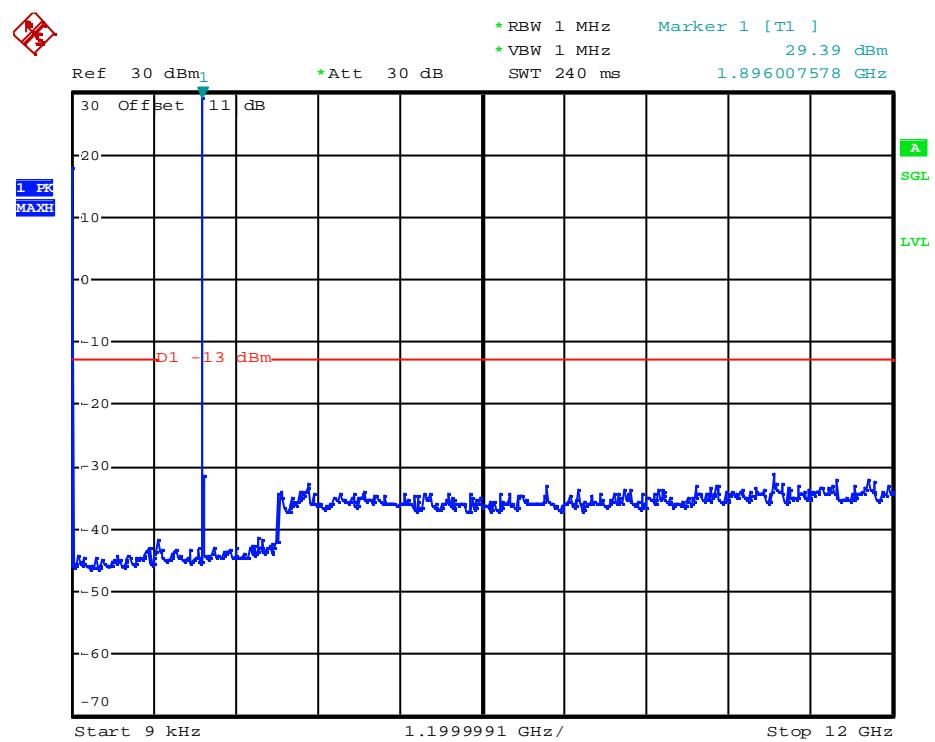
| Harmonic | Tx ch.-512 Freq. (MHz) | Level (dBm) | Tx ch.-661 Freq. (MHz) | Level (dBm) | Tx ch.-810 Freq. (MHz) | Level (dBm) |
|----------|------------------------|-------------|------------------------|-------------|------------------------|-------------|
| 2        | 3700.4                 | -           | 3760                   | -           | 3819.6                 | -           |
| 3        | 5550.6                 | -           | 5640                   | -           | 5729.4                 | -           |
| 4        | 7400.8                 | -           | 7520                   | -           | 7639.2                 | -           |
| 5        | 9251.0                 | -           | 9400                   | -           | 9549.0                 | -           |
| 6        | 11101.2                | -           | 11280                  | -           | 11458.8                | -           |
| 7        | 12951.4                | -           | 13160                  | -           | 13368.6                | -           |
| 8        | 14801.6                | -           | 15040                  | -           | 15278.4                | -           |
| 9        | 16651.8                | -           | 16920                  | -           | 17188.2                | -           |
| 10       | 18502.0                | -           | 18800                  | -           | 19098.0                | -           |

# CETECOM ICT Services GmbH


Test report no.: **4-2380-16-06/07**

## Channel: 512




Date: 5.JUN.2007 10:23:55

## Channel 661



Date: 5.JUN.2007 10:22:24

## Channel 810



Date: 5.JUN.2007 10:21:13

## 5.2 PART GSM 850

### 5.2.1 RF Power Output

#### Reference

|      |                                       |
|------|---------------------------------------|
| FCC: | CFR Part 22.9.1.3, 2.1046             |
| IC:  | RSS 132, Issue 2, Section 4.4 and 6.4 |

#### Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

#### Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 824.2 MHz, 836.4 MHz and 848.8 MHz (bottom, middle and top of operational frequency range).

#### Limits:

| Power Step | Nominal Peak Output Power (dBm) | Tolerance (dB) |
|------------|---------------------------------|----------------|
| 5          | +33                             | ± 2            |

#### Measurements Results Output Power (conducted)

| Frequency (MHz)         | Power Class | Peak Output Power (dBm) | Average Output Power (dBm) |
|-------------------------|-------------|-------------------------|----------------------------|
| 824.2                   | 5           | 32.5                    | 32.4                       |
| 836.4                   | 5           | 32.6                    | 32.5                       |
| 848.8                   | 5           | 32.1                    | 32.0                       |
| Measurement uncertainty |             | ±0.5 dB                 |                            |

#### Measurements Results Output Power (conducted) 8-PSK Mode

| Frequency (MHz)         | Power Class | Peak Output Power (dBm) | Average Output Power (dBm) |
|-------------------------|-------------|-------------------------|----------------------------|
| 824.2                   | 5           | 32.0                    | 28.4                       |
| 836.4                   | 5           | 32.0                    | 28.5                       |
| 848.8                   | 5           | 31.7                    | 28.1                       |
| Measurement uncertainty |             | ±0.5 dB                 |                            |

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

## ERP Measurements

Description: This is the test for the maximum radiated power from the phone.

Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements were performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

$E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.

(l) Repeat for all different test signal frequencies

## Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

Center Frequency : equal to the signal source

Resolution BW : 10 kHz

Video BW : same

Detector Mode : positive

Average : off

Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

$E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna): .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.

(f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

(g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.

(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.

(i) Tune the EMI Receivers to the test frequency.

(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

$P = P_1 - L_1 = (P_2 + L_2) - L_1 = P_3 + A + L_2 - L_1$

$EIRP = P + G_1 = P_3 + L_2 - L_1 + A + G_1$

$ERP = EIRP - 2.15 \text{ dB}$

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

Total Correction factor in EMI Receiver # 2 =  $L_2 - L_1 + G_1$

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

## Limits:

| Power Step | Burst Peak<br>(dBm) |
|------------|---------------------|
| 0          | <33                 |

## Measurement Results Output Power (Radiated) GMSK Mode

| Frequency<br>(MHz)      | Power Class | BURST Peak<br>(dBm) |
|-------------------------|-------------|---------------------|
| 824.2                   | 5           | 29.1                |
| 836.4                   | 5           | 29.2                |
| 848.8                   | 5           | 29.0                |
| Measurement uncertainty |             | ±0.5 dB             |

## Measurement Results Output Power (Radiated) 8-PSK Mode

| Frequency<br>(MHz)      | Power Class | BURST Peak<br>(dBm) |
|-------------------------|-------------|---------------------|
| 824.2                   | 5           | 28.7                |
| 836.4                   | 5           | 28.6                |
| 848.8                   | 5           | 28.4                |
| Measurement uncertainty |             | ±0.5 dB             |

## Sample calculation:

| Freg  | SA<br>Reading | SG<br>Setting | Ant.<br>gain | Dipol<br>gain | Cable<br>loss | ERP  | Substitution Antenna     |
|-------|---------------|---------------|--------------|---------------|---------------|------|--------------------------|
| MHz   | dB $\mu$ V    | dBm           | dBi          | dBd           | dB            | dBm  |                          |
| 836.4 | 126.2         | 24.1          | 8.4          | 0.0           | 3.3           | 29.2 | UHAP Schwarzbeck S/N 460 |

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

\*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dB

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

## 5.2.2 Radiated Emissions

### Reference

|      |                                       |
|------|---------------------------------------|
| FCC: | CFR Part 22.917, 2.1053               |
| IC:  | RSS 132, Issue 2, Section 4.5 and 6.5 |

### Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission ( here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:
- e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603 .

### Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee' s frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least  $43+10\log(P)$  dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least  $43 + 10 \log (P)$  dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

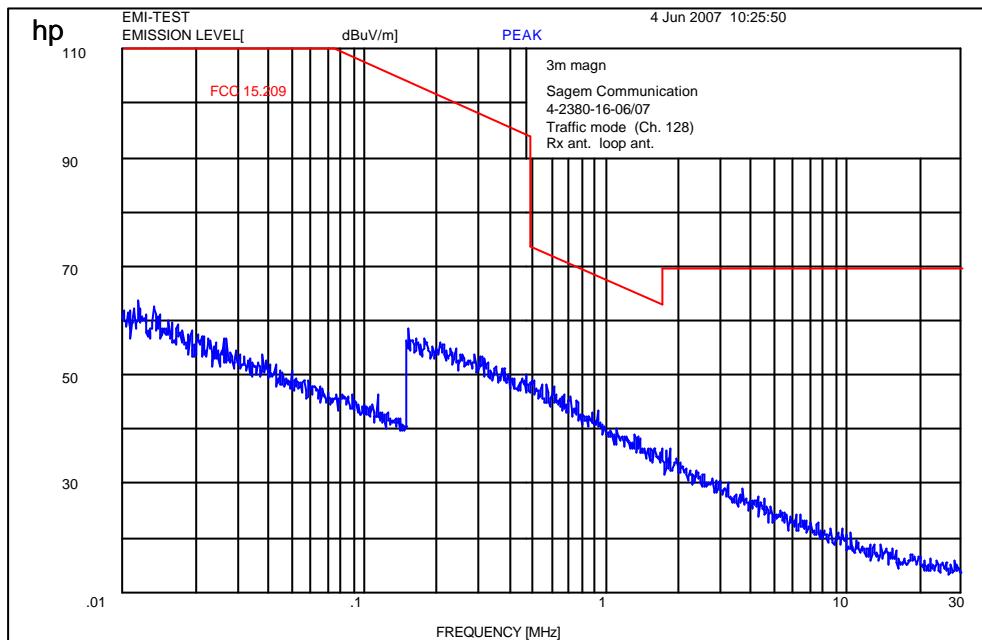
## Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (824.2 MHz, 836.4 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

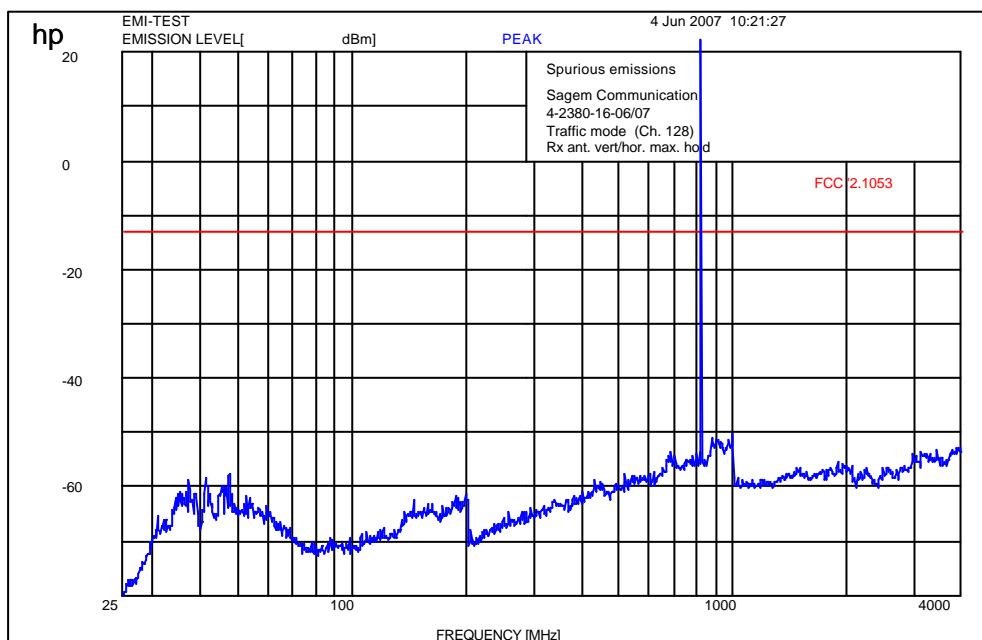
The final open field radiated levels are presented on the next pages.

All measurements were done in horizontal and vertical polarization, the plots shows the worst case.  
As can be seen from this data, the emissions from the test item were within the specification limit.

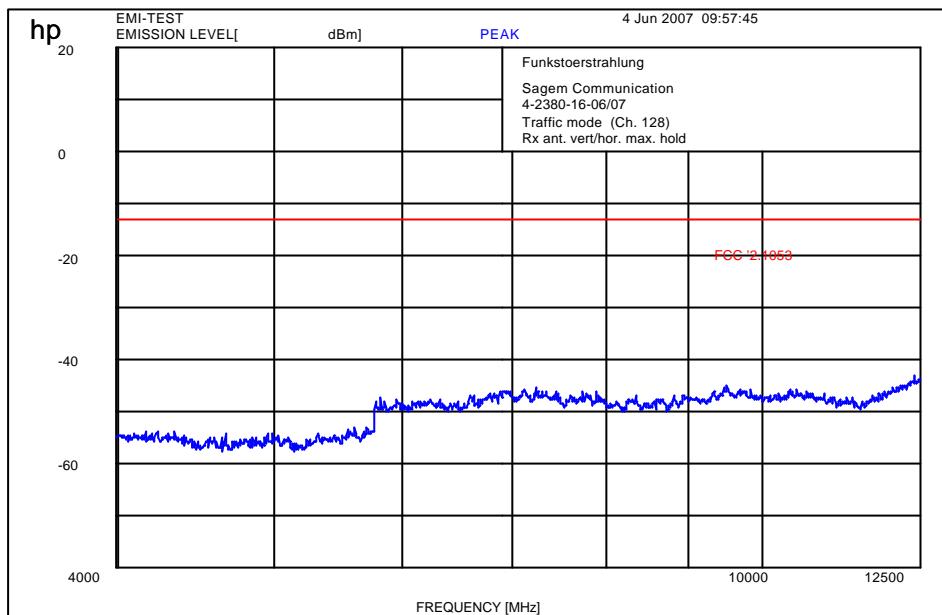
| Harmonic | Tx ch.-128<br>Freq. (MHz) | Level<br>(dBm) | Tx ch.-189<br>Freq. (MHz) | Level<br>(dBm) | Tx ch.-251<br>Freq. (MHz) | Level<br>(dBm) |
|----------|---------------------------|----------------|---------------------------|----------------|---------------------------|----------------|
| 2        | 1648.4                    | -              | 1672.8                    | -              | 1697.6                    | -              |
| 3        | 2472.6                    | -              | 2509.2                    | -              | 2546.4                    | -              |
| 4        | 3296.8                    | -              | 3345.6                    | -              | 3395.2                    | -              |
| 5        | 4121.0                    | -              | 4182.0                    | -              | 4244.0                    | -              |
| 6        | 4945.2                    | -              | 5018.4                    | -              | 5092.8                    | -              |
| 7        | 5769.4                    | -              | 5854.8                    | -              | 5941.6                    | -              |
| 8        | 6593.6                    | -              | 6691.2                    | -              | 6790.4                    | -              |
| 9        | 7417.8                    | -              | 7527.6                    | -              | 7639.2                    | -              |
| 10       | 8242.0                    | -              | 8364.0                    | -              | 8488.0                    | -              |


## Sample calculation:

| Freg  | SA<br>Reading | SG<br>Setting | Ant.<br>gain | Dipol<br>gain | Cable<br>loss | ERP  | Substitution Antenna     |
|-------|---------------|---------------|--------------|---------------|---------------|------|--------------------------|
| MHz   | dB $\mu$ V    | dBm           | dBi          | dBd           | dB            | dBm  |                          |
| 836.4 | 126.2         | 24.1          | 8.4          | 0.0           | 3.3           | 29.2 | UHAP Schwarzbeck S/N 460 |


$$\text{ERP} = \text{SG (dBm)} - \text{Cable Loss (dB)} + \text{Ant. gain (dB)}$$

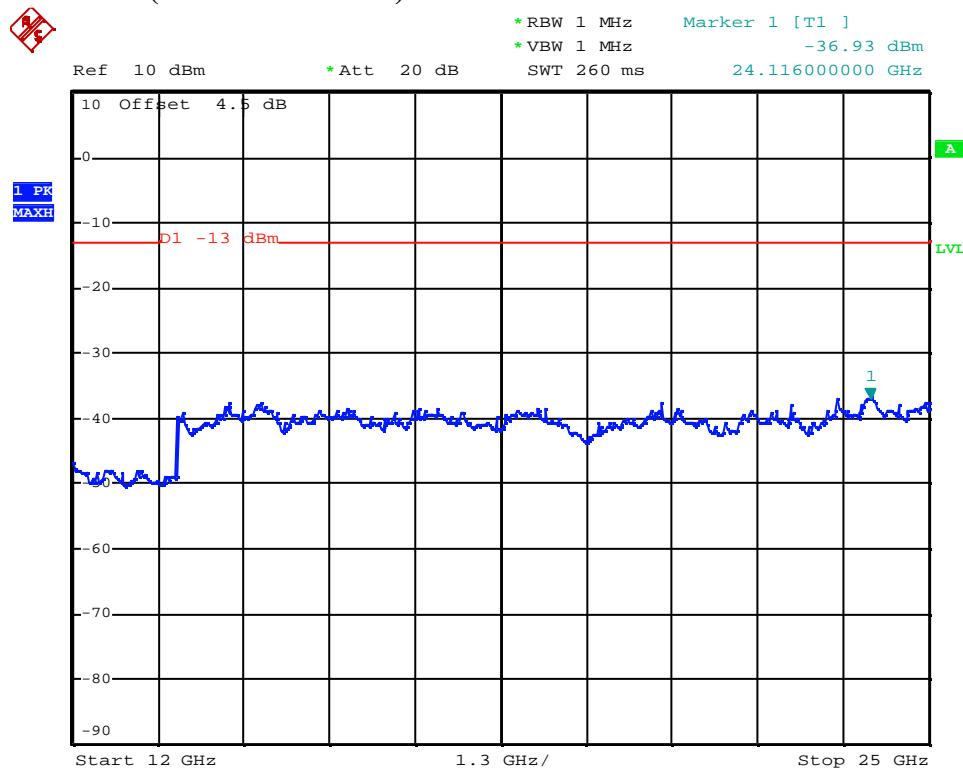
\*ERP can be calculated from EIRP by subtracting the gain of the dipole,  $\text{ERP} = \text{EIRP} - 2.1 \text{dB}$


**Traffic mode up to 30 MHz (Valid for all 3 channels)**



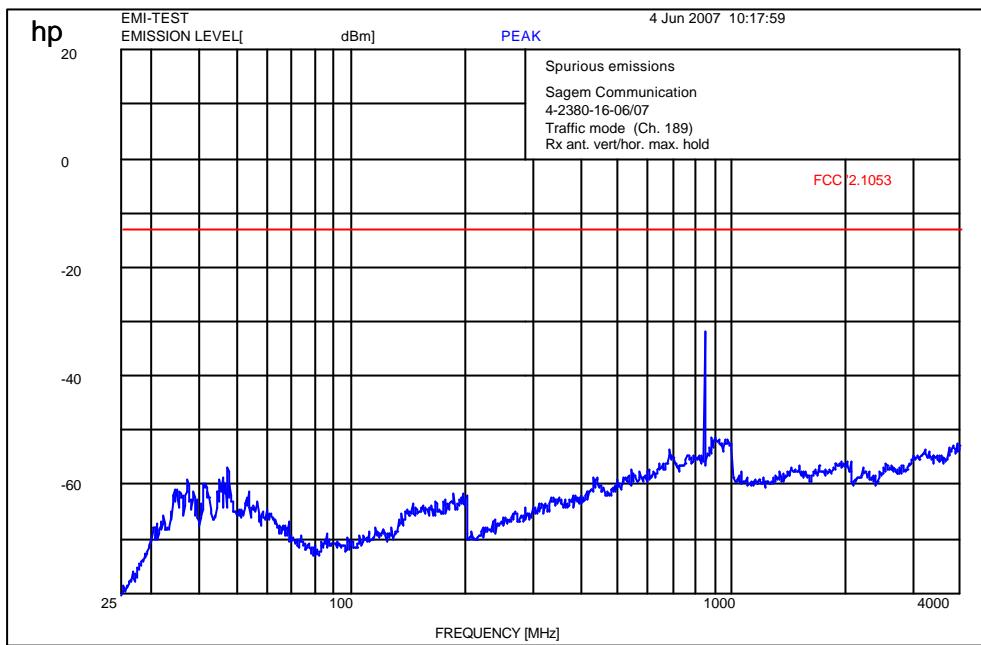
**Channel 128 (30 MHz - 4 GHz)**




**Channel 128 (4 GHz – 12.5 GHz)**



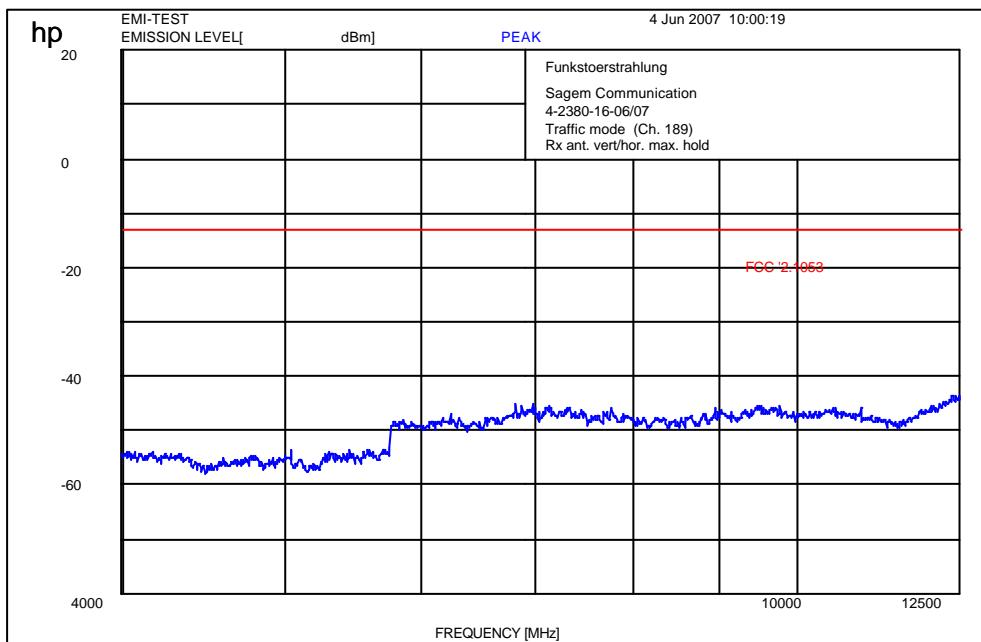
$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz


$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz

**Channel 128 (12 GHz - 25 GHz) valid for all 3 channels**



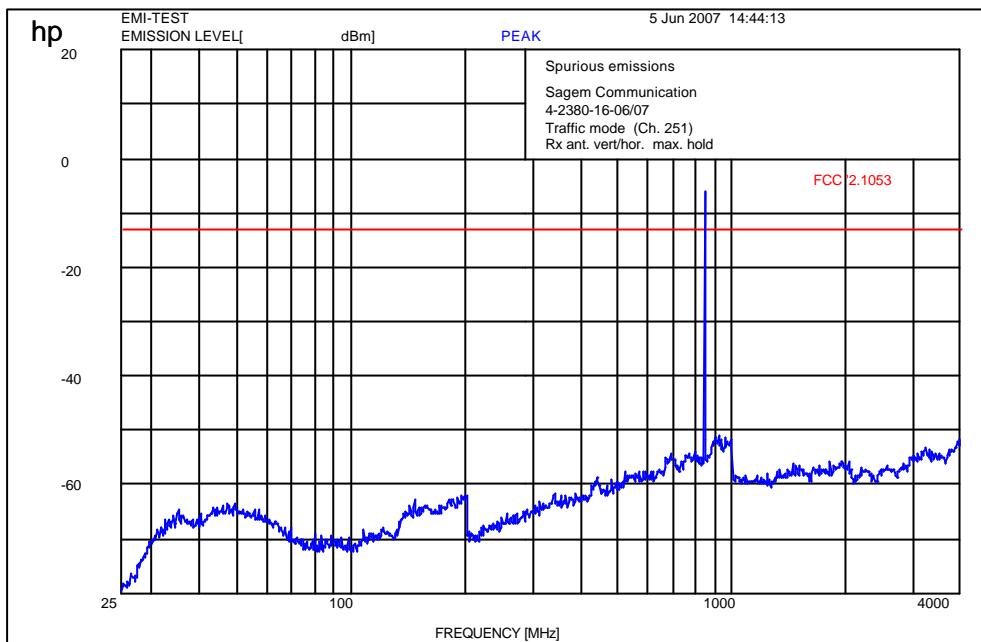
Date: 5.JUN.2007 10:53:46


**Channel 189 (30 MHz - 4 GHz)**



$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz  
Carrier suppressed with a rejection filter

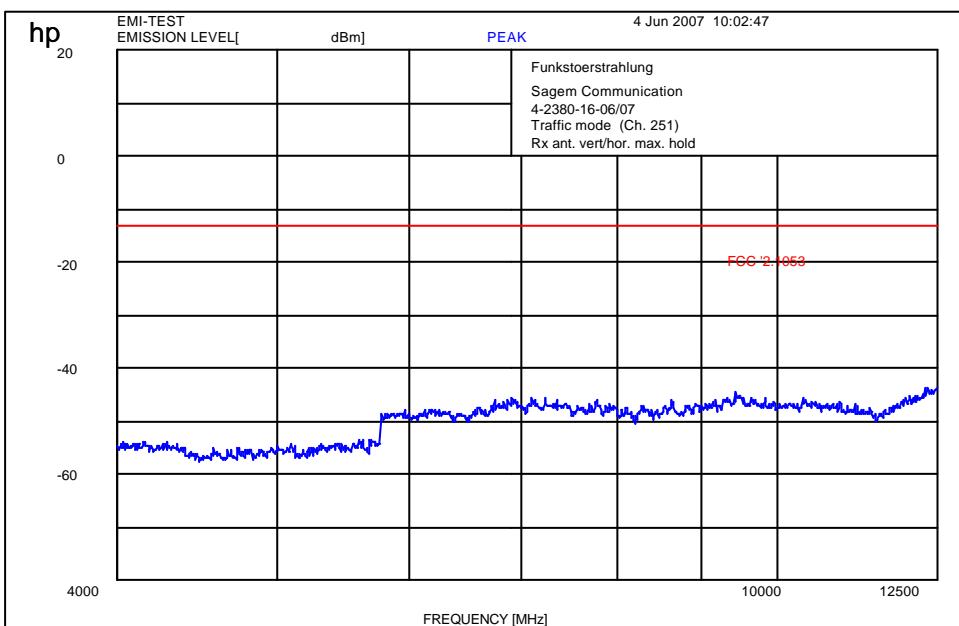
$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz


**Channel 189 (4 GHz – 12.5 GHz)**



$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz

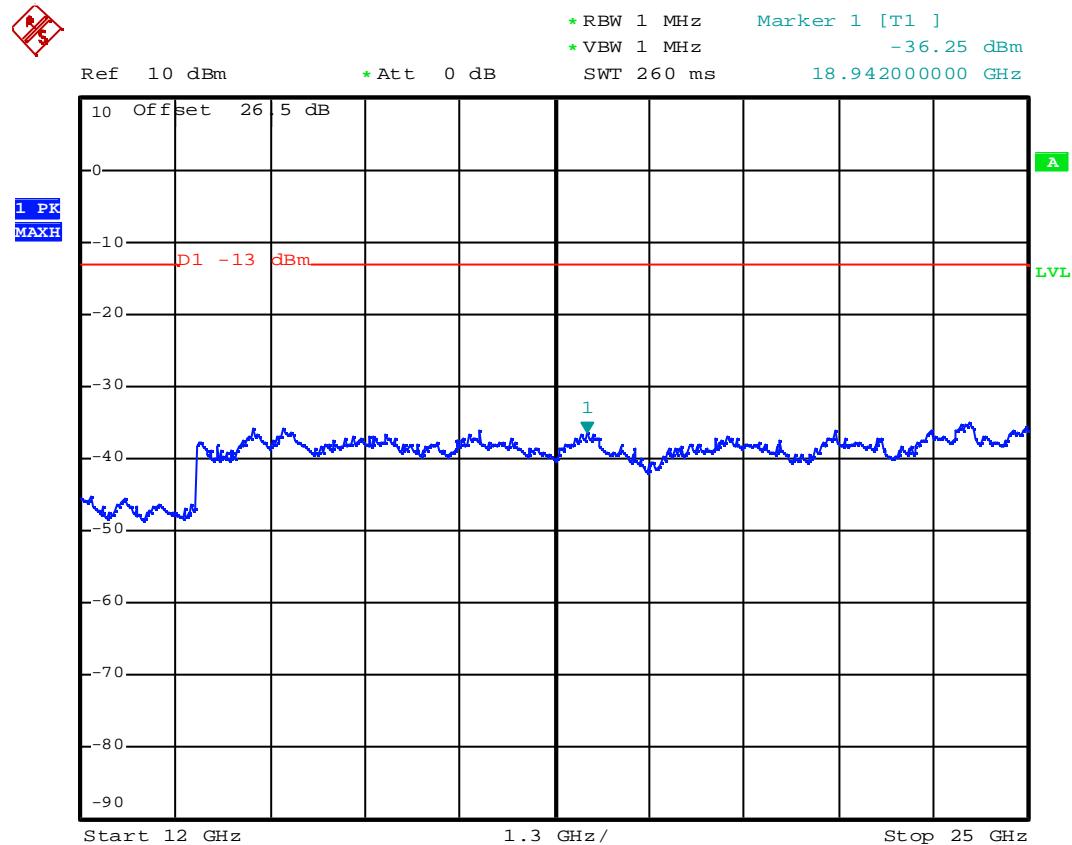
$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz


**Channel 251 (30 MHz - 4 GHz)**



$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz  
Carrier suppressed with a rejection filter

$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz


**Channel 251 (4 GHz – 12.5 GHz)**



$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz

$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz

## Channel 128 (12 GHz - 25 GHz) valid for all 3 channels



Date: 5.JUN.2007 11:18:23

### 5.2.3 Receiver Radiated Emissions

#### Reference

|      |                                       |
|------|---------------------------------------|
| FCC: | CFR Part 15.109, 2.1053               |
| IC:  | RSS 132, Issue 2, Section 4.6 and 6.6 |

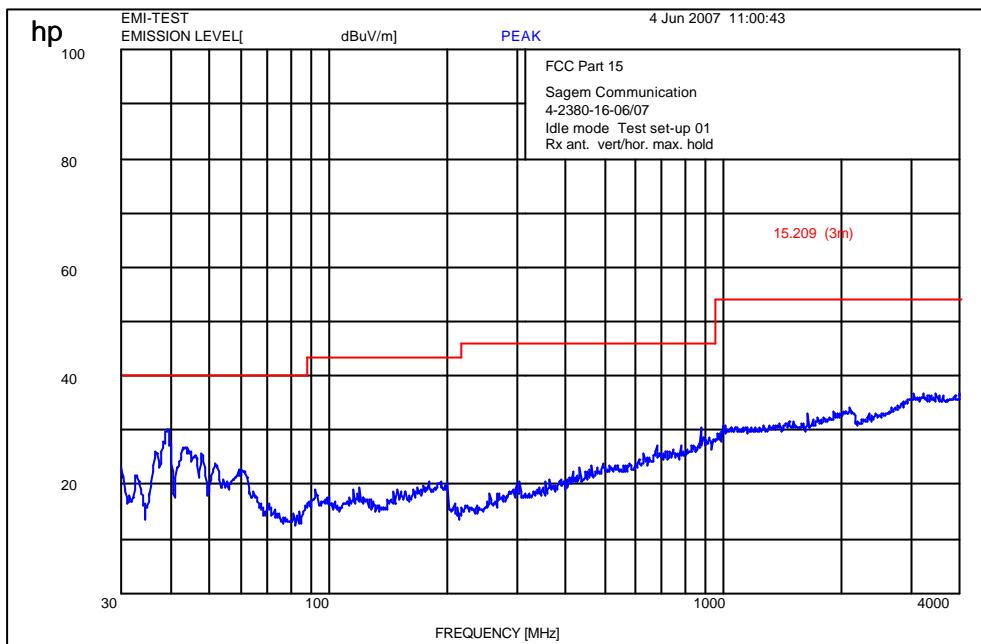
| SPURIOUS EMISSIONS LEVEL ( $\mu$ V/m) |          |                    |            |          |                    |         |          |                    |
|---------------------------------------|----------|--------------------|------------|----------|--------------------|---------|----------|--------------------|
| Idle Mode                             |          |                    |            |          |                    |         |          |                    |
| f (MHz)                               | Detector | Level ( $\mu$ V/m) | f (MHz)    | Detector | Level ( $\mu$ V/m) | f (MHz) | Detector | Level ( $\mu$ V/m) |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| -                                     | -        | -                  | -          | -        | -                  | -       | -        | -                  |
| Measurement uncertainty               |          |                    | $\pm 3$ dB |          |                    |         |          |                    |

$f < 1$  GHz : RBW/VBW: 100 kHz

$f \geq 1$  GHz : RBW/VBW: 1 MHz

H = Horizontal; V= Vertical

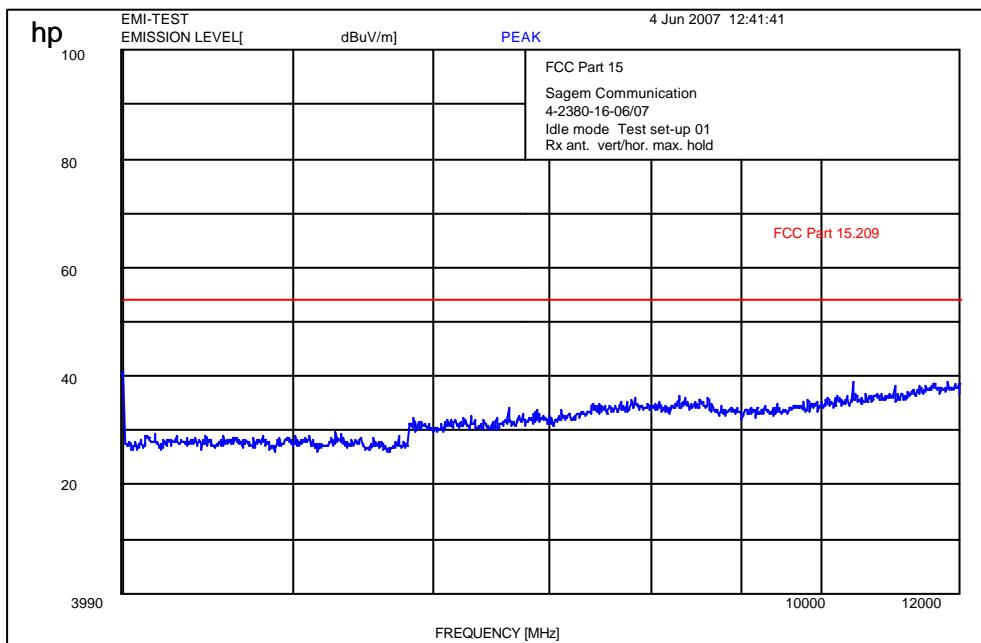
Measurement distance see table


#### Limits: § 15.109

| Frequency (MHz) | Field strength ( $\mu$ V/m) | Measurement distance (m) |
|-----------------|-----------------------------|--------------------------|
| 30 - 88         | 100                         | 3                        |
| 88 - 216        | 150                         | 3                        |
| 216 - 960       | 200                         | 3                        |
| above 960       | 500                         | 3                        |

# CETECOM ICT Services GmbH

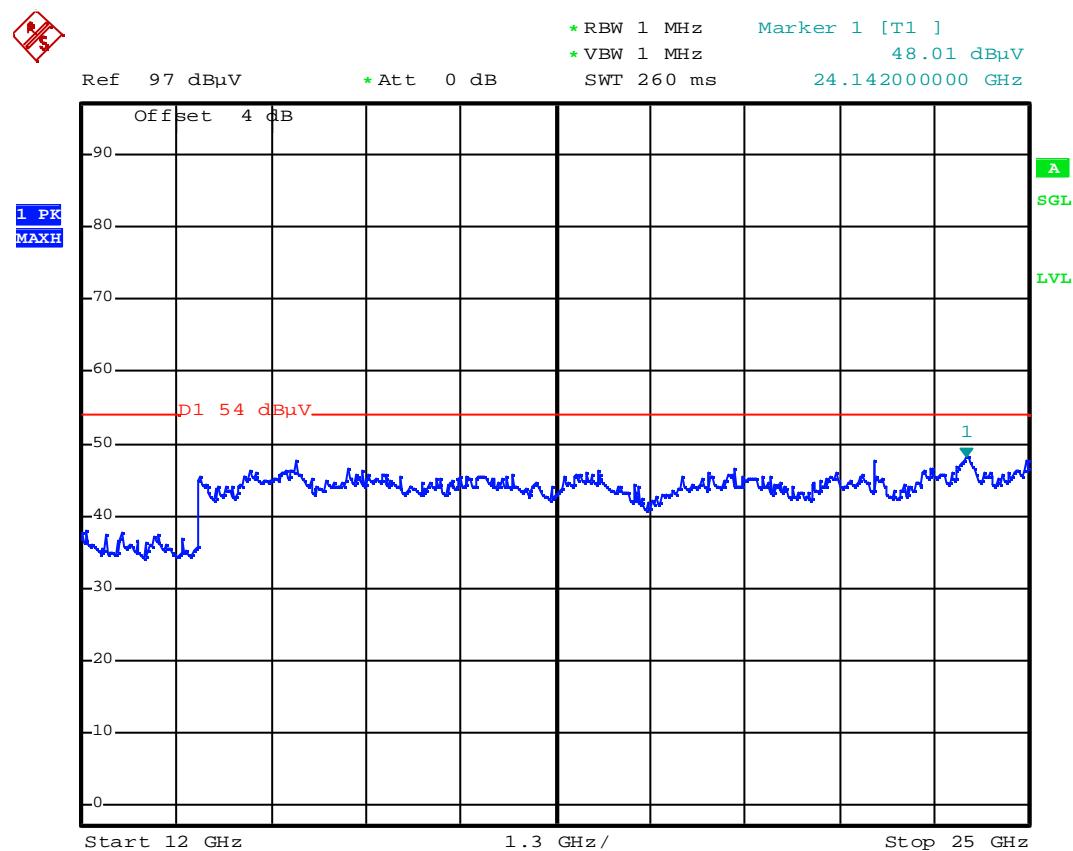
Test report no.: **4-2380-16-06/07**


## Idle-Mode (30 MHz - 4 GHz)



$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz

$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz


## IDLE-MODE (4 GHz – 12.0 GHz)



$f < 1 \text{ GHz}$  : RBW/VBW: 100 kHz

$f \geq 1 \text{ GHz}$  : RBW / VBW 1 MHz

## IDLE-MODE (12 GHz - 25 GHz)



Date: 5.JUN.2007 10:57:33

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

---

## 5.2.4 Conducted Spurious Emissions

### Reference

|      |                                       |
|------|---------------------------------------|
| FCC: | CFR Part 22.917, 1.1051               |
| IC:  | RSS 132, Issue 2, Section 4.5 and 6.5 |

### Measurement Procedure

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

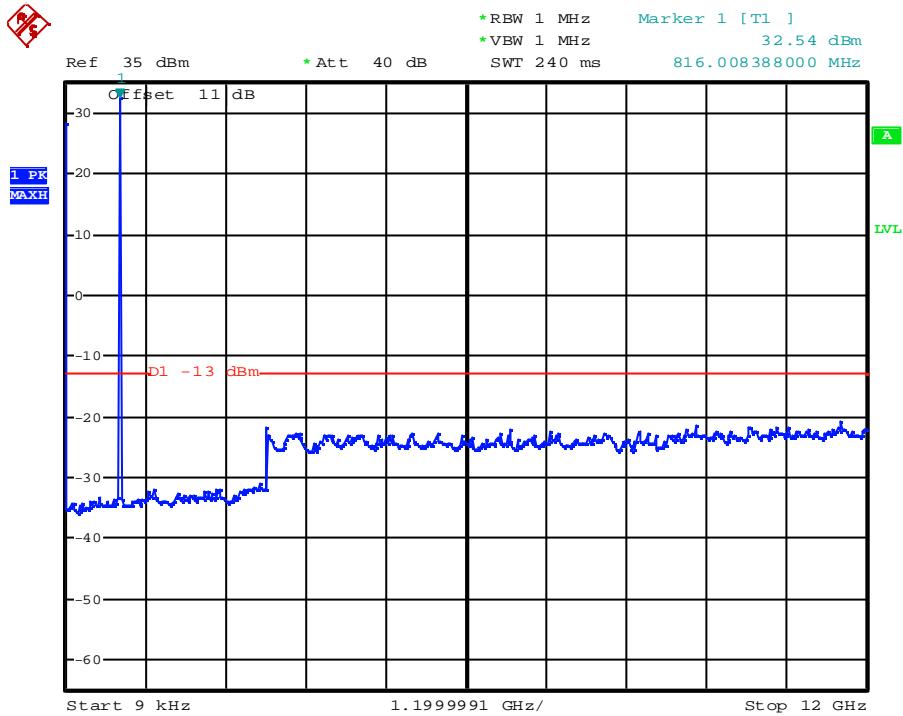
1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

#### USPCS Transmitter Channel Frequency

128 824.2 MHz  
189 836.4 MHz  
251 848.8 MHz

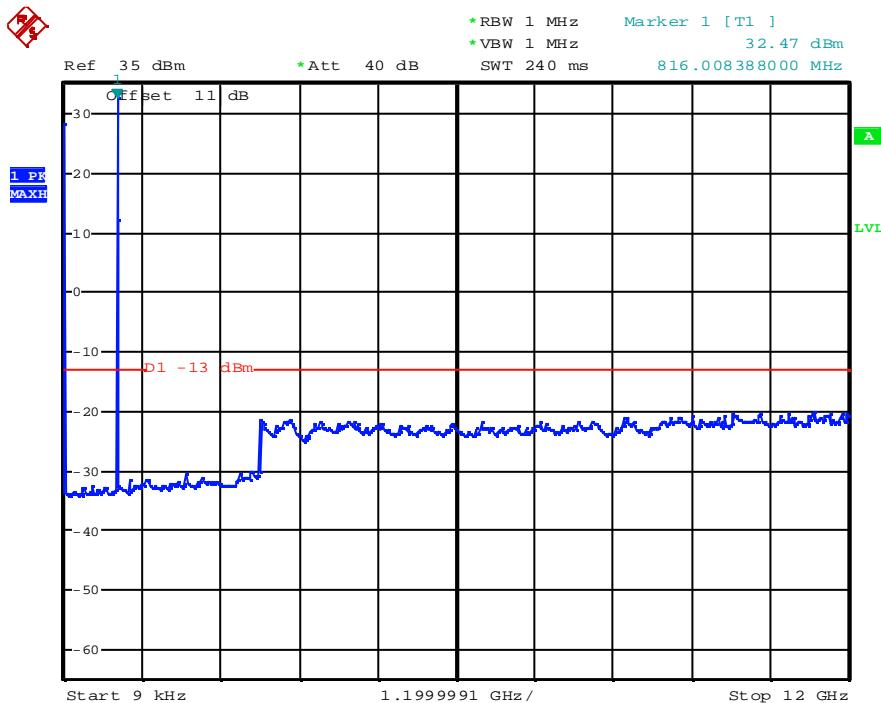
### Measurement Limit

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least  $43+10\log(P)$  dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.


### Measurement Results

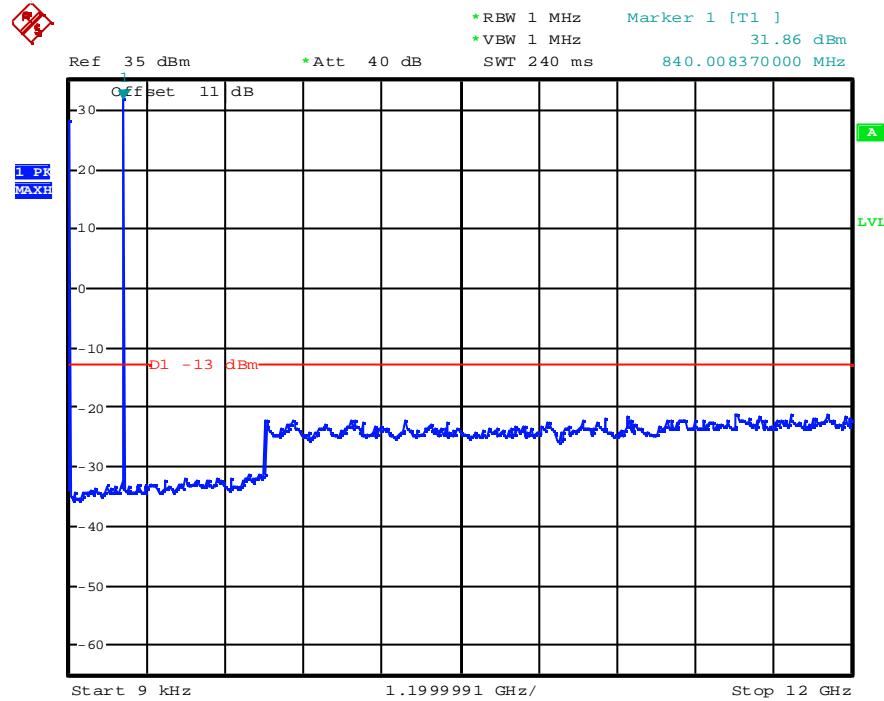
| Harmonic | Tx ch.-<br>128<br>Freq. (MHz) | Level<br>(dBm) | Tx ch.-<br>189<br>Freq. (MHz) | Level<br>(dBm) | Tx ch.-<br>251<br>Freq. (MHz) | Level<br>(dBm) |
|----------|-------------------------------|----------------|-------------------------------|----------------|-------------------------------|----------------|
| 2        | 1648.4                        | -              | 1672.8                        | -              | 1697.6                        | -              |
| 3        | 2472.6                        | -              | 2509.2                        | -              | 2546.4                        | -              |
| 4        | 3296.8                        | -              | 3345.6                        | -              | 3395.2                        | -              |
| 5        | 4121.0                        | -              | 4182.0                        | -              | 4244.0                        | -              |
| 6        | 4945.2                        | -              | 5018.4                        | -              | 5092.8                        | -              |
| 7        | 5769.4                        | -              | 5854.8                        | -              | 5941.6                        | -              |
| 8        | 6593.6                        | -              | 6691.2                        | -              | 6790.4                        | -              |
| 9        | 7417.8                        | -              | 7527.6                        | -              | 7639.2                        | -              |
| 10       | 8242.0                        | -              | 8364.0                        | -              | 8488.0                        | -              |

# CETECOM ICT Services GmbH


Test report no.: **4-2380-16-06/07**

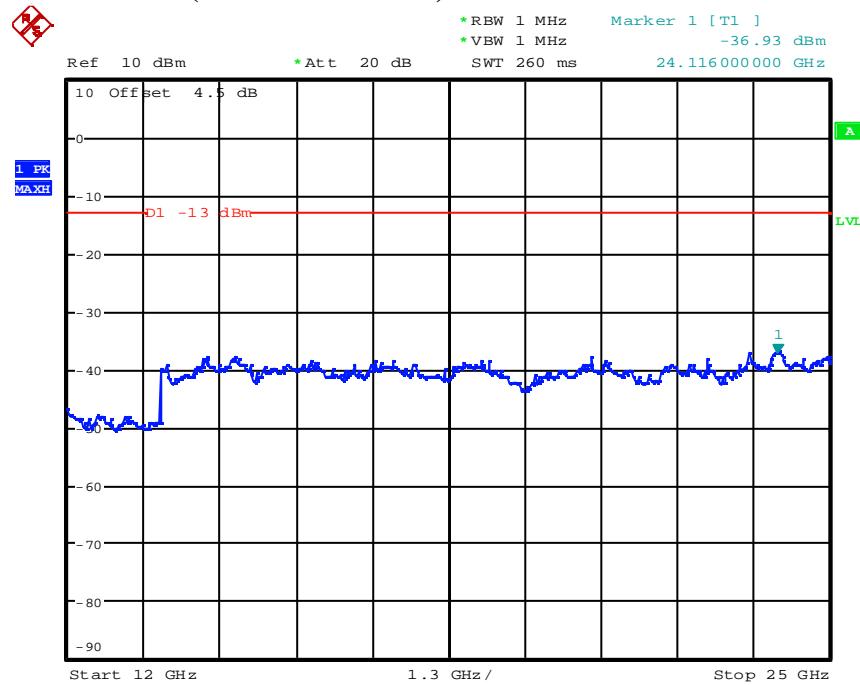
## Channel: 128




Date: 5.JUN.2007 10:25:21

## Channel 189




Date: 5.JUN.2007 10:36:13

**Channel 251**



Date: 5.JUN.2007 10:36:57

**Channel 251 (12 GHz - 25 GHz) valid for all 3 channels**



Date: 5.JUN.2007 10:53:46

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

## 6 Test Equipment utilized

To simplify the identification of the test equipment used on each page of the test report, each item of test equipment and ancillaries such as probes are identified throughout the report by numbers in brackets according to the table below.

| No.                                     | Instrument/<br>Ancillary                | Manufacturer       | Type                | Serial-No.             | Internal ID No. |
|-----------------------------------------|-----------------------------------------|--------------------|---------------------|------------------------|-----------------|
| <b>Radiated emission in chamber C</b>   |                                         |                    |                     |                        |                 |
| 1.                                      | Fully anechoic chamber                  | MWB                |                     | 87400/02               | 300000996       |
| 2.                                      | Bi conical antenna                      | EMCO               | 3104C               | 9909-4868              | 300002590       |
| 3.                                      | Log. Per. antenna                       | EMCO               | 3146                | 2130                   | 300001603       |
| 4.                                      | Double ridge horn                       | EMCO               | 3115P               | 3088                   | 300001032       |
| 5.                                      | Active loop antenna                     | EMCO               | 6502                | 2210                   | 300001015       |
| 6.                                      | Loop antenna                            | Rohde & Schwarz    | HFH2-Z2             | 891847-35              | 300001169       |
| 7.                                      | Spectrum analyzer                       | Hewlett-Packard    | 8566B               | 2747A05306             | 300001000       |
| 8.                                      | Spectrum analyzer display               | Hewlett-Packard    | 85662A              | 2816A16541             | 300002297       |
| 9.                                      | Quasi peak adapter                      | Hewlett-Packard    | 85650A              | 2811A01131             | 300000999       |
| 10.                                     | RF pre selector                         | Hewlett-Packard    | 85685A              | 2833A00768             | 400000081       |
| 11.                                     | Workstation                             | Hewlett-Packard    | Vectra VL           |                        | 300001688       |
| 12.                                     | Software                                | Hewlett-Packard    | EMI Halle C         |                        | 300000983       |
| 13.                                     | Power attenuator                        | Byrd               | 8325                | 1530                   | 300001595       |
| 14.                                     | Band reject filter                      | Wainwright         | WRCG1855/1910       | 7                      | 300003350       |
| 15.                                     | Band reject filter                      | Wainwright         | WRCG2400/2483       | 11                     | 300003351       |
| 16.                                     | Power supply unit                       | Hewlett-Packard    | 6032A               | 2818A03450             | 300001040       |
| 17.                                     | Universal communication tester          | Rohde & Schwarz    | CMU 200             | 103992                 | 300003231       |
| <b>Laboratories Short Range Devices</b> |                                         |                    |                     |                        |                 |
| 18.                                     | Amplifier                               | Parzich GMBH       | js42-00502650-28-5a | 928979                 | 300003143       |
| 19.                                     | Analog-/Digital multi-meter             |                    | DF-971A             | 438309, 438320, 438361 | 400000082       |
| 20.                                     | Audio Analyzer 2Hz - 300 kHz            | Rohde & Schwarz    | UPD                 | 841074/009             | 300001236       |
| 21.                                     | Bit error analyzer                      | Hewlett-Packard    | 37732A              | 3606U03073             | 300001446       |
| 22.                                     | Communication tester                    | Rohde & Schwarz    | CMD55               | 831050/082             | 300003018       |
| 23.                                     | Communication test Set                  | Schlumberger       | 4040                | 1725117                | 300001387       |
| 24.                                     | Directional coupler                     | Amplifier Research | DC 3010             | 12709                  | 300001226       |
| 25.                                     | Directional coupler                     | EMV                | DC3010              | 12306                  | 300001429       |
| 26.                                     | Field strength meter (Near field probe) | EMCO               | 7405                | 9202-2150              | 300001203       |
| 27.                                     | Frequency Counter                       | Hewlett-Packard    | 5386A               | 2704A01243             | 300000998       |
| 28.                                     | Climatic chamber                        | Heraeus Voetsch    | VT 4002             | 5,8566E+13             | 300003019       |
| 29.                                     | Climatic chamber                        | Heraeus Voetsch    | VT 4002             | 521/83761              | 300002326       |
| 30.                                     | Power measuring head                    | Hewlett-Packard    | 8484A               | 2237A10156             | 300001140       |
| 31.                                     | Power measuring head                    | Hewlett-Packard    | 8482A               | 2237A06016             | 300001139       |
| 32.                                     | Power measuring head                    | Hewlett-Packard    | 8484A               | 2237A10494             | 300001666       |
| 33.                                     | Power measuring head                    | Hewlett-Packard    | 8482A               | 1925A04674             | 300001667       |
| 34.                                     | Power measuring head                    | Hewlett-Packard    | 8485A               | 2238A00849             | 300001668       |
| 35.                                     | Power measuring head                    | Hewlett-Packard    | 8482A               | 2237A06009             | 300001267       |
| 36.                                     | Power measuring head (attenuator)       | Hewlett-Packard    | 8482B               | 2703A02586             | 300001492       |
| 37.                                     | Local Oscillator                        | Hewlett-Packard    | 70900A              | 2842A02221             | 300002019       |
| 38.                                     | Measurement Receiver                    | Rohde & Schwarz    | ESH 2               | 871921/095             | 300002505       |
| 39.                                     | Multi-meter (Hand)                      | Siemens            | Multizet            |                        | 300001102       |
| 40.                                     | Multi-meter (Hand)                      | Goerz              | 6EP                 |                        | 300001116       |
| 41.                                     | Multi-meter (Hand)                      | MetraWatt          | MA4S                |                        | 300001740       |
| 42.                                     | Multi-meter digital                     | Rohde & Schwarz    | UDS 5               | 872677/042             | 300001325       |
| 43.                                     | Power supply                            | Hewlett-Packard    | 6038A               | 3122A11097             | 300001204       |
| 44.                                     | Power supply                            | Hewlett-Packard    | 6038A               | 2848A07027             | 300001174       |
| 45.                                     | Power supply                            | Zentro             | 2X30V               | 2007                   | 300001109       |
| 46.                                     | Power supply                            | Hewlett-Packard    | 6038A               | 2752A04866             | 300001161       |
| 47.                                     | Power supply                            | Heiden             | 1108-32             | 1701                   | 300001392       |
| 48.                                     | Power supply                            | Heiden             | 1108-32             | 1802                   | 300001383       |
| 49.                                     | Power supply                            | Heiden             | 1108-32             | 3202                   | 300001187       |

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

| No.                         | Instrument/<br>Ancillary         | Manufacturer       | Type           | Serial -No. | Internal ID No. |
|-----------------------------|----------------------------------|--------------------|----------------|-------------|-----------------|
| 50.                         | Power supply                     | Zentro             | LA 2x30/5GB2   | 2012        | 300001275       |
| 51.                         | Power supply                     | Systron            | M5P 40/15A     | 828233      | 300001291       |
| 52.                         | V-network AC                     | Rohde & Schwarz    | ESH3-Z5        | 828576/020  | 300001210       |
| 53.                         | Oscilloscope                     | Hewlett-Packard    | 54502A         | 2934A01917  | 300001374       |
| 54.                         | Power meter                      | Hewlett-Packard    | 436A           | 2101A12378  | 300001136       |
| 55.                         | Power meter                      | Hewlett-Packard    | 436A           | 2031U01461  | 300001105       |
| 56.                         | Precision – frequency –reference | Hewlett-Packard    | 70310A         | 2736A00707  | 300002018       |
| 57.                         | Radio communication analyzer     | Rohde & Schwarz    | CMTA 54        | 894043/010  | 300001175       |
| 58.                         | Radio communication analyzer     | Rohde & Schwarz    | CMTA 84        | 894199/012  | 300001176       |
| 59.                         | Radio communication analyzer     | Rohde & Schwarz    | CMTA 84        | 894581/013  | 300001355       |
| 60.                         | Signal generator                 | Hewlett-Packard    | 8111A          | 2215G00867  | 300001117       |
| 61.                         | Signal generator                 | Rohde & Schwarz    | SMPC           | 882416/019  | 300001162       |
| 62.                         | Function signal generator        | Rohde & Schwarz    | AFGU           | 862490/032  | 300001201       |
| 63.                         | Function signal generator        | Rohde & Schwarz    | APN-04         | 894326/014  | 300001184       |
| 64.                         | Signal generator 0.01-1280 MHz   | Hewlett-Packard    | 8662A          | 2224A01012  | 300001110       |
| 65.                         | Signal generator 0.01-1280 MHz   | Hewlett-Packard    | 8662A          | 2232A01038  | 300001264       |
| 66.                         | Signal generator 0.1-2000 MHz    | Rohde & Schwarz    | SMH            | 864219/033  | 300001410       |
| 67.                         | Signal generator 0.1-2000 MHz    | Rohde & Schwarz    | SMH            | 883909/010  | 300001183       |
| 68.                         | Signal generator 0.1-2060 MHz    | Hewlett-Packard    | 8657A          | 2838U00736  | 300001009       |
| 69.                         | Signal generator 0.1-4200 MHz    | Hewlett-Packard    | 8665A          | 2833A00109  | 300001177       |
| 70.                         | Signal generator 0.1-4200 MHz    | Hewlett-Packard    | 8665A          | 2833A00112  | 300001373       |
| 71.                         | Signal generator 0.1-4320 MHz    | Rohde & Schwarz    | SMHU           | 2790575     | 300001404       |
| 72.                         | Signal generator 0.1-4320 MHz    | Rohde & Schwarz    | SMHU           | 894055/005  | 300001190       |
| 73.                         | Signal generator DC-600 KHz      | Hewlett-Packard    | 8904A          | 2822A01213  | 300001157       |
| 74.                         | Signal generator DC-600 KHz      | Hewlett-Packard    | 8904A          | 2822A01214  | 300001158       |
| 75.                         | Signal generator DC-600 KHz      | Hewlett-Packard    | 8904A          | 2822A01203  | 300001367       |
| 76.                         | Function signal generator        | Rohde & Schwarz    | APN 04         | 2273637     | 300001395       |
| 77.                         | Signal generator NF              | Rohde & Schwarz    | SPN            | 880139/068  | 300001142       |
| 78.                         | Spectrum Analyzer                | Rohde & Schwarz    | FSiQ26         | 835111/0004 | 300002678       |
| 79.                         | Spectrum analyzer                | Hewlett-Packard    | 71210A (70000) | 2731A02347  | 300000321       |
| 80.                         | Spectrum analyzer                | Rohde & Schwarz    | FSMS           | 826067/004  | 300001223       |
| 81.                         | Spectrum analyzer 2              | Hewlett-Packard    | 85660B         | 3138A07614  | 300001207       |
| 82.                         | Spectrum analyzer 3              | Hewlett-Packard    | 8566A          | 1925A00257  | 300001098       |
| 83.                         | Spectrum analyzer Display        | Hewlett-Packard    | 70206A         | 2840A01553  | 300002017       |
| 84.                         | Spectrum analyzer Display 2      | Hewlett-Packard    | 85662A         | 3144A20627  | 300001208       |
| 85.                         | Spectrum analyzer Display 3      | Hewlett-Packard    | 85662          | 1925A00860  | 300002306       |
| 86.                         | Isolating transformer            | Erfi               | 913501         |             | 300001205       |
| 87.                         | Isolating transformer            | Erfi               | MPL            | 91350       | 300001155       |
| 88.                         | Isolating transformer            | Erfi               | MPL            | 91350       | 300001151       |
| 89.                         | Isolating transformer            | Erfi               | 6210           |             | 300001179       |
| 90.                         | Isolating transformer            | Grundig            | RT5A           | 8781        | 300001277       |
| 91.                         | Isolating transformer            | Grundig            | RT5A           | 9242        | 300001263       |
| 92.                         | Amplifier                        | Hewlett-Packard    | 8447D          | 2648A04780  | 300001360       |
| 93.                         | Amplifier                        | EMV                | 10W1000        | 9549        | 300001377       |
| 94.                         | Amplifier                        | EMV                | 25W1000        | 12948       | 300001440       |
| 95.                         | Amplifier 5W                     | Amplifier Research | 5W1000         | 9725        | 300001592       |
| 96.                         | Spectrum Analyzer                | Rohde & Schwarz    | FSU 50         | 2012        | 300003084       |
| <b>Laboratory Bluetooth</b> |                                  |                    |                |             |                 |
| 97.                         | Power splitter                   | Inmet Corp.        | 1499382        |             | 300002841       |
| 98.                         | Power measuring head             | Rohde & Schwarz    | NRV-Z1         | 833894/011  | 300002681-0010  |
| 99.                         | Signal generator                 | Rohde & Schwarz    | SMIQ03         | 836206/0092 | 300002680       |
| 100.                        | Bluetooth RF-test system         | Rohde & Schwarz    | TS8960         |             | 300002681-0000  |
| 101.                        | Signal generator                 | Rohde & Schwarz    | SMIQ03         | 835541/055  | 300002681-0001  |
| 102.                        | Signal generator                 | Rohde & Schwarz    | SMIQ03         | 835541/056  | 300002681-0002  |
| 103.                        | Signal generator                 | Rohde & Schwarz    | SMP02          | 835133/011  | 300002681-0003  |
| 104.                        | Power meter                      | Rohde & Schwarz    | NRVD           | 835430/044  | 300002681-0004  |
| 105.                        | Spectrum - analyzer              | Rohde & Schwarz    | FSIQ           | 835540/018  | 300002681-0005  |
| 106.                        | Switch unit                      | Rohde & Schwarz    | SSCU           |             | 300002681-0006  |
| 107.                        | Attenuator-step                  | Rohde & Schwarz    | RSP            | 834500/010  | 300002681-0007  |
| 108.                        | Frequency normal                 | Rohde & Schwarz    | Rubidium       |             | 300002681-0009  |
| 109.                        | Power measuring head             | Rohde & Schwarz    | NRV-Z1         | 833894/012  | 300002681-0013  |

# CETECOM ICT Services GmbH

Test report no.: **4-2380-16-06/07**

| No.                                           | Instrument/<br>Ancillary | Manufacturer    | Type    | Serial -No. | Internal ID No. |
|-----------------------------------------------|--------------------------|-----------------|---------|-------------|-----------------|
| <b>Conducted emission on AC line Room 006</b> |                          |                 |         |             |                 |
| 110.                                          | Measurement receiver     | Rohde & Schwarz | ESH3    | 881515/002  | 300002490       |
| 111.                                          | Measurement receiver     | Rohde & Schwarz | ESVP    | 881487/021  | 300002491       |
| 112.                                          | Measurement receiver     | Rohde & Schwarz | ESH3    | 890174/002  | 30000296        |
| 113.                                          | V-network AC             | Rohde & Schwarz | ESH3 Z5 | 892475/017  | 300002209       |
| 114.                                          | V-network AC             | Rohde & Schwarz | ESH3-Z5 | 892239/020  | 300002506       |
| 115.                                          | Software                 | Rohde & Schwarz | ESK-1   |             |                 |
| 116.                                          | DC power supply          | Hewlett-Packard | 6032A   | 2743A02600  | 300001498       |
| 117.                                          | V-network AC             | Rohde & Schwarz | ESH3-Z5 | 861189/014  | 300001458       |
| 118.                                          | V-network DC             | Rohde & Schwarz | ESH3-Z6 | 893689/012  | 300001504       |
| 119.                                          | V-network DC             | Rohde & Schwarz | ESH3-Z6 | 861406/005  | 300001518       |
| 120.                                          |                          |                 |         |             |                 |
| 121.                                          |                          |                 |         |             |                 |
| 122.                                          |                          |                 |         |             |                 |
| 123.                                          |                          |                 |         |             |                 |
| 124.                                          |                          |                 |         |             |                 |
| 125.                                          |                          |                 |         |             |                 |
| 126.                                          |                          |                 |         |             |                 |
| 127.                                          |                          |                 |         |             |                 |
| 128.                                          |                          |                 |         |             |                 |
| 129.                                          |                          |                 |         |             |                 |
| 130.                                          |                          |                 |         |             |                 |
| 131.                                          |                          |                 |         |             |                 |
| 132.                                          |                          |                 |         |             |                 |
| 133.                                          |                          |                 |         |             |                 |
| 134.                                          |                          |                 |         |             |                 |
| 135.                                          |                          |                 |         |             |                 |
| 136.                                          |                          |                 |         |             |                 |
| 137.                                          |                          |                 |         |             |                 |
| 138.                                          |                          |                 |         |             |                 |
| 139.                                          |                          |                 |         |             |                 |
| 140.                                          |                          |                 |         |             |                 |
| 141.                                          |                          |                 |         |             |                 |
| 142.                                          |                          |                 |         |             |                 |
| 143.                                          |                          |                 |         |             |                 |
| 144.                                          |                          |                 |         |             |                 |
| 145.                                          |                          |                 |         |             |                 |
| 146.                                          |                          |                 |         |             |                 |
| 147.                                          |                          |                 |         |             |                 |
| 148.                                          |                          |                 |         |             |                 |