

TEST REPORT

of

FCC Part 15 Subpart B&C §15.247

FCC ID : LSMXBI2H

Equipment Under Test	:	Chatter Box
Model Name	:	XBi2-H
Serial No.	:	N/A
Applicant	:	Hong Jin Cycle Corporation
Manufacturer	:	Hong Jin Cycle Corporation
Date of Test(s)	:	2010.04.21 ~ 2010.05.24
Date of Issue	:	2010.06.01

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Date

2010.06.01

Duke Ko

Approved By:

Date

2010.06.01

Charles Kim

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

INDEX

<u>Table of Contents</u>	<u>Page</u>
1. General Information -----	3
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission -----	7
3. 20 dB Bandwidth -----	24
4. Maximum Peak Output Power -----	29
5. Hopping Channel Separation -----	34
6. Number of Hopping Frequency -----	37
7. Time of Occupancy(Dwell Time) -----	41
8. Antenna Requirement -----	50
9. RF Exposure evaluation -----	51

1. General Information

1.1. Testing Laboratory

SGS Testing Korea Co., Ltd.

- 705, Dongchun-Dong Sooji-Gu, Yongin-Shi, Kyungki-Do, South Korea.
- Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

www.electrolab.kr.sgs.com

Telephone : +82 +31 428 5700

FAX : +82 +31 427 2371

1.2. Details of Applicant

Applicant : Hong Jin Cycle Corporation
Address : 19-6, YangJae-dong, Seocho-gu, Seoul, Korea
Contact Person : Jong-Sang Ahn
Phone No. : +82 +2 571 6101

1.3. Description of EUT

Kind of Product	Chatter Box
Model Name	XBi2-H
Serial Number	N / A
Power Supply	DC 3.6 V (Lithium battery)
Frequency Range	2 402 ~ 2 480 MHz(Bluetooth) 2 402 ~ 2 478 MHz(Binary CDMA)
Modulation Technique	GFSK
Number of Channels	79(Bluetooth), 16(Binary CDMA)
Antenna Type	Integral Type (Chip Antenna)
Antenna Gain	-6.67 dB i(Bluetooth), -4.66 dB i(Binary CDMA)

1.4. Declaration by the manufacturer

- N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

www.electrolab.kr.sgs.com

1.5. Information about the FHSS and Binary CDMA characteristics:

1.5.1. Pseudorandom Frequency Hopping Sequence

- Bluetooth

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

- Binary CDMA

The channel is represented by a RCI provides random hopping sequence hopping through the 16 RF channels. The nominal hop rate is 500 hops/s.

1.5.2. Equal Hopping Frequency Use

- Bluetooth

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

- Binary CDMA

Below is sample frequency use rate.

Frequency	%	Frequency	%	Frequency	%	Frequency	%
2402	5.6 %	2410	6.2 %	2415	6.3 %	2420	6.6 %
2425	6.2 %	2430	4.7 %	2435	6.7 %	2440	6.7 %
2445	6.2 %	2450	6.7 %	2455	4.7 %	2460	6.8 %
2465	6.7 %	2470	6.8 %	2475	6.8 %	2478	6.3 %

1.5.3. System Receiver Input Bandwidth

- Bluetooth

Each channel bandwidth is 1 MHz

- Binary CDMA

Each channel bandwidth is 1 MHz

1.6. Test Equipment List

Equipment	Manufacturer	Model	Cal Due.
Signal Generator	R & S	SMR40	Sep. 25, 2010
Spectrum Analyzer	R & S	FSV30	Mar. 31, 2011
Bluetooth Tester	TESOM	TC-3000B	Sep. 25, 2010
Directional Coupler	Narda	4226-20	Jan. 07, 2011
High Pass Filter	Wainwright	WHK3.0/18G-10SS	Sep. 29, 2010
DC power Supply	Agilent	U8002A	Jan. 06, 2011
Preamplifier	H.P.	8447F	Jul. 02, 2010
Preamplifier	Empower RF Systems, Inc	2002-BBS2C4AEL	Mar. 31, 2011
Test Receiver	R & S	ESU26	Jun. 04, 2010
Bilog Antenna	SCHWARZBECK MESSELEKTRONIK	VULB9163	Jul. 22, 2010
Horn Antenna	Rohde & Schwarz	HF 906	Oct. 08, 2011
Antenna Master	EMCO	1050	N.C.R
Turn Table	Daeil EMC	DI-1500	N.C.R
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	Jan. 27, 2011
Two-Line V-Network	R & S	ENV216	Jan. 06, 2011
Test Receiver	R & S	ESHS10	Jul. 13, 2010
Anechoic Chamber	SY Corporation	L × W × H (6.5 m × 3.5 m × 3.5 m)	N.C.R

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

1.7. Summary of Test Results

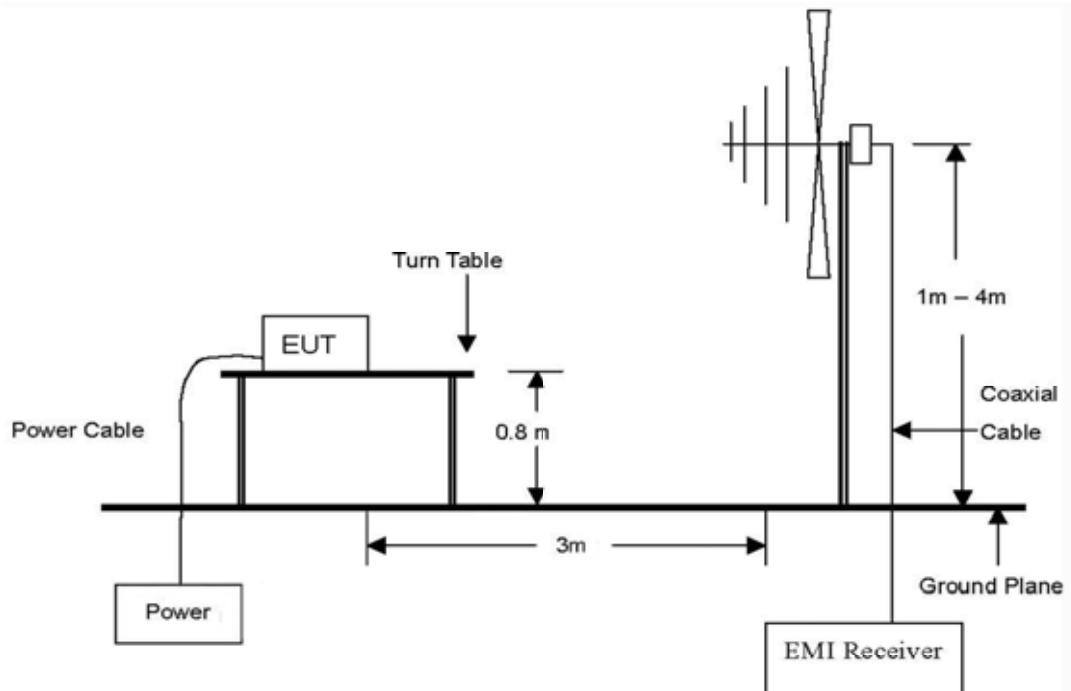
The EUT has been tested according to the following specifications:

APPLIED STANDARD:FCC Part15		
Section	Test Item	Result
15.205(a) 15.209 15.247(d)	Transmitter Radiated Spurious Emissions Conducted Spurious Emission	Complied
15.247(a)(1)	20 dB Bandwidth	Complied
15.247(b)(1)	Maximum Peak Output Power	Complied
15.247(a)(1)	Frequency Separation	Complied
15.247(b)(1) 15.247(a)(3)	Number of Hopping Frequency	Complied
15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Complied

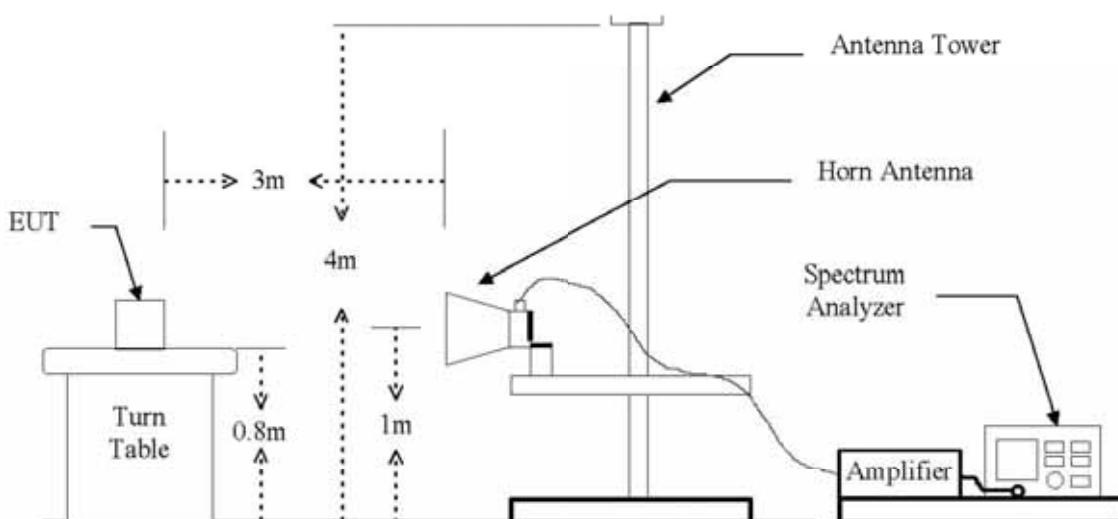
1.8 Test report revision

Revision	Report number	Description
0	F690501/RF-RTL003877	Initial

1.9. Conclusion of worst-case

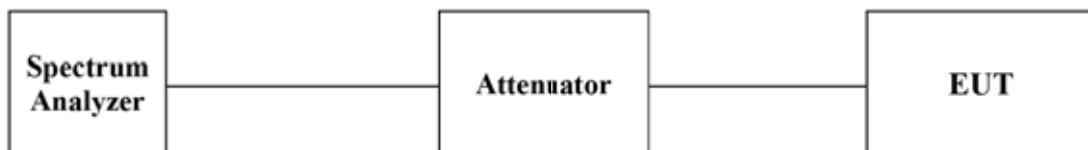

The field strength of spurious emission was measured in three orthogonal EUT positions(X-axis, Y-axis and Z-axis). Worst case is X-axis.

2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission


2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 24 GHz Emissions.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

2.1.2. Conducted Spurious Emissions

2.2. Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement , provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Distance (Meters)	Field Strength (dB μ V/m)	Field Strength (μ V/m)
30 - 88	3	40.0	100
88 - 216	3	43.5	150
216 - 960	3	46.0	200
Above 960	3	54.0	500

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

2.3.1. Test Procedures for Radiated Spurious Emissions

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE ;

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 GHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 GHz.

2.3.2. Test Procedures for Conducted Spurious Emissions

1. The transmitter output was connected to the spectrum analyzer.
2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=100 kHz, VBW=100 kHz.

2.4. Test Results

Ambient temperature : (24 ± 2) °C
Relative humidity : 47 % R.H.

2.4.1. Spurious Radiated Emission

2.4.1.1. Bluetooth

The frequency spectrum from 30 MHz to 1 000 MHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
160.020	35.7	Peak	H	8.03	-26.58	17.15	43.50	26.35
184.311	38.8	Peak	H	9.66	-26.37	22.09	43.50	21.41
245.785	41.6	Peak	H	11.60	-25.85	27.35	46.00	18.65
307.218	42.1	Peak	H	13.47	-25.67	29.90	46.00	16.10
Above 400.000	Not Detected	-	-	-	-	-	-	-

2.4.1.2. Binary CDMA

The frequency spectrum from 30 MHz to 1 000 MHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
183.018	33.3	Peak	V	9.54	-26.38	16.46	43.50	27.04
499.035	33.7	Peak	V	17.29	-26.54	24.45	46.00	21.55
595.308	33.7	Peak	V	19.13	-26.48	26.35	46.00	19.65
Above 600.000	Not Detected	-	-	-	-	-	-	-

Remark:

1. All spurious emission at channels are almost the same below 1 GHz, so that middle channel was chosen at representative in final test.
2. Actual = Reading + AF + AMP + CL

2.4.2. Spurious Radiated Emission

The frequency spectrum above 1 000 MHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB.

Operating Mode: Bluetooth

A. Low Channel (2 402 MHz)

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
*2 390.000	30.59	Peak	V	28.09	4.84	63.52	74.00	10.48
*2 390.000	17.66	Average	V	28.09	4.84	50.59	54.00	3.41

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4 804.000	52.57	Peak	V	32.95	-27.78	57.74	74.00	16.26
4 804.000	39.53	Average	V	32.95	-27.78	44.70	54.00	9.30
Above 4 900.000	Not Detected	-	-	-	-	-	-	-

B. Middle Channel (2 441 MHz)

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4 882.000	58.22	Peak	V	33.17	-27.56	63.83	74.00	10.17
4 882.000	38.69	Average	V	33.17	-27.56	44.30	54.00	9.70
Above 4 900.000	Not Detected	-	-	-	-	-	-	-

C. High Channel (2 480 MHz)

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
*2 483.500	31.07	Peak	V	28.09	4.78	63.94	74.00	10.06
*2 483.500	18.36	Average	V	28.09	4.78	51.23	54.00	2.77

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4 960.000	58.27	Peak	V	33.39	-27.41	64.25	74.00	9.75
4 960.000	40.71	Average	V	33.39	-27.41	46.69	54.00	7.31
Above 5 000.000	Not Detected	-	-	-	-	-	-	-

Operating Mode: Binary CDMA**A. Low Channel (2 402 MHz)**

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
*2 390.000	30.00	Peak	V	28.09	4.84	62.93	74.00	11.07
*2 390.000	17.37	Average	V	28.09	4.84	50.30	54.00	3.70

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4 803.670	45.87	Peak	V	32.95	-27.78	51.04	74.00	22.96
Above 4 900.000	Not Detected	-	-	-	-	-	-	-

B. Middle Channel (2 441 MHz)

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4 885.470	50.20	Peak	V	33.18	-27.54	55.84	74.00	18.16
4 885.470	41.10	Average	V	33.18	-27.54	46.74	54.00	7.26
Above 4 900.000	Not Detected	-	-	-	-	-	-	-

C. High Channel (2 478 MHz)

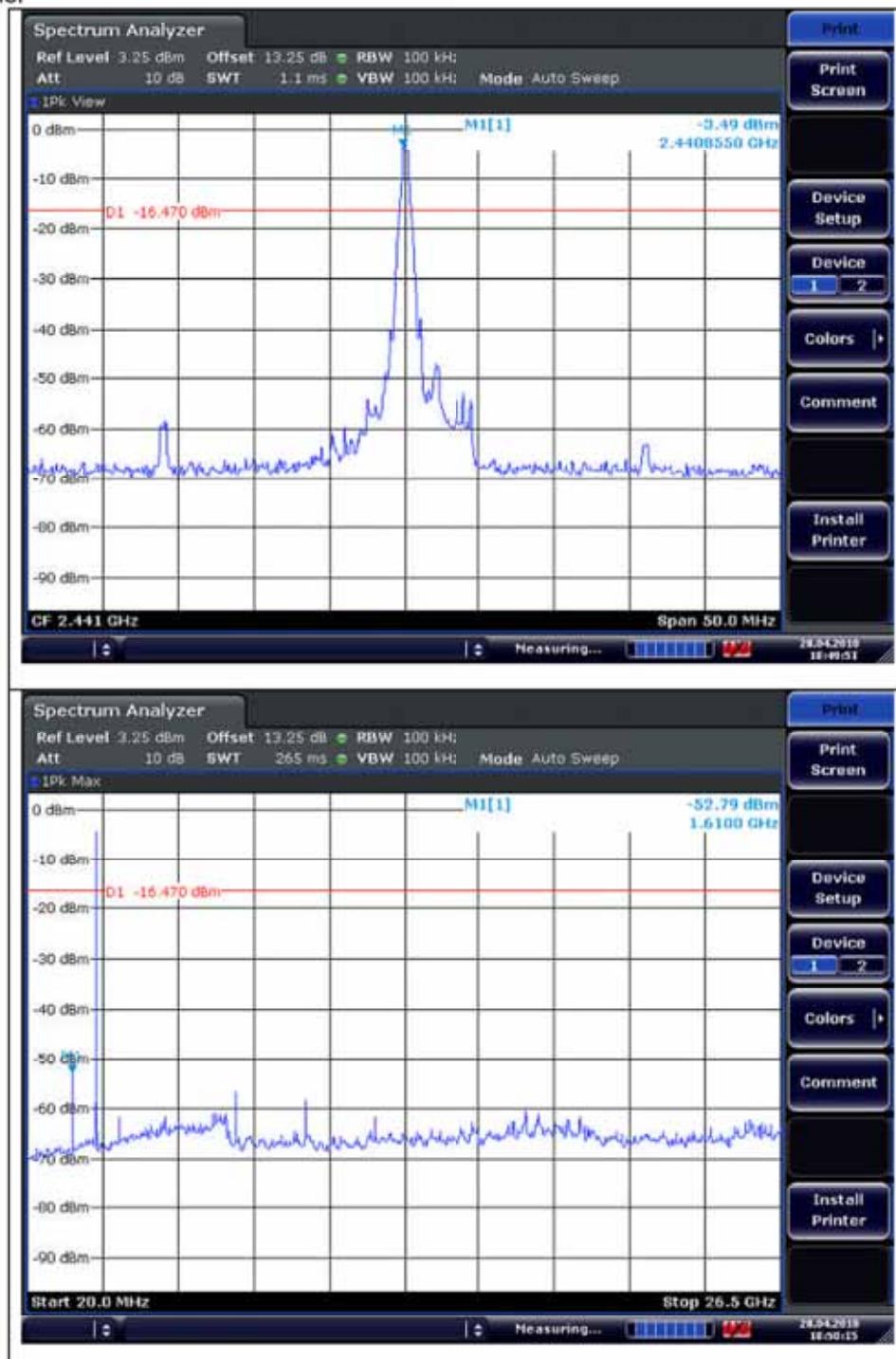
Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
*2 483.500	29.64	Peak	V	28.09	4.78	62.51	74.00	11.49
*2 483.500	17.99	Average	V	28.09	4.78	50.86	54.00	3.14

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4 956.440	52.50	Peak	V	33.38	-27.38	58.50	74.00	15.50
4 956.440	44.21	Average	V	33.38	-27.38	50.21	54.00	3.79
Above 5 000.000	Not Detected	-	-	-	-	-	-	-

Remarks :

1. ** means the restricted band.
2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental Frequency.
3. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.
4. Average test would be performed if the peak result were greater than the average limit.
5. Actual = Reading + AF + AMP + CL

2.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission Operating Mode: Bluetooth


Low Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

High Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

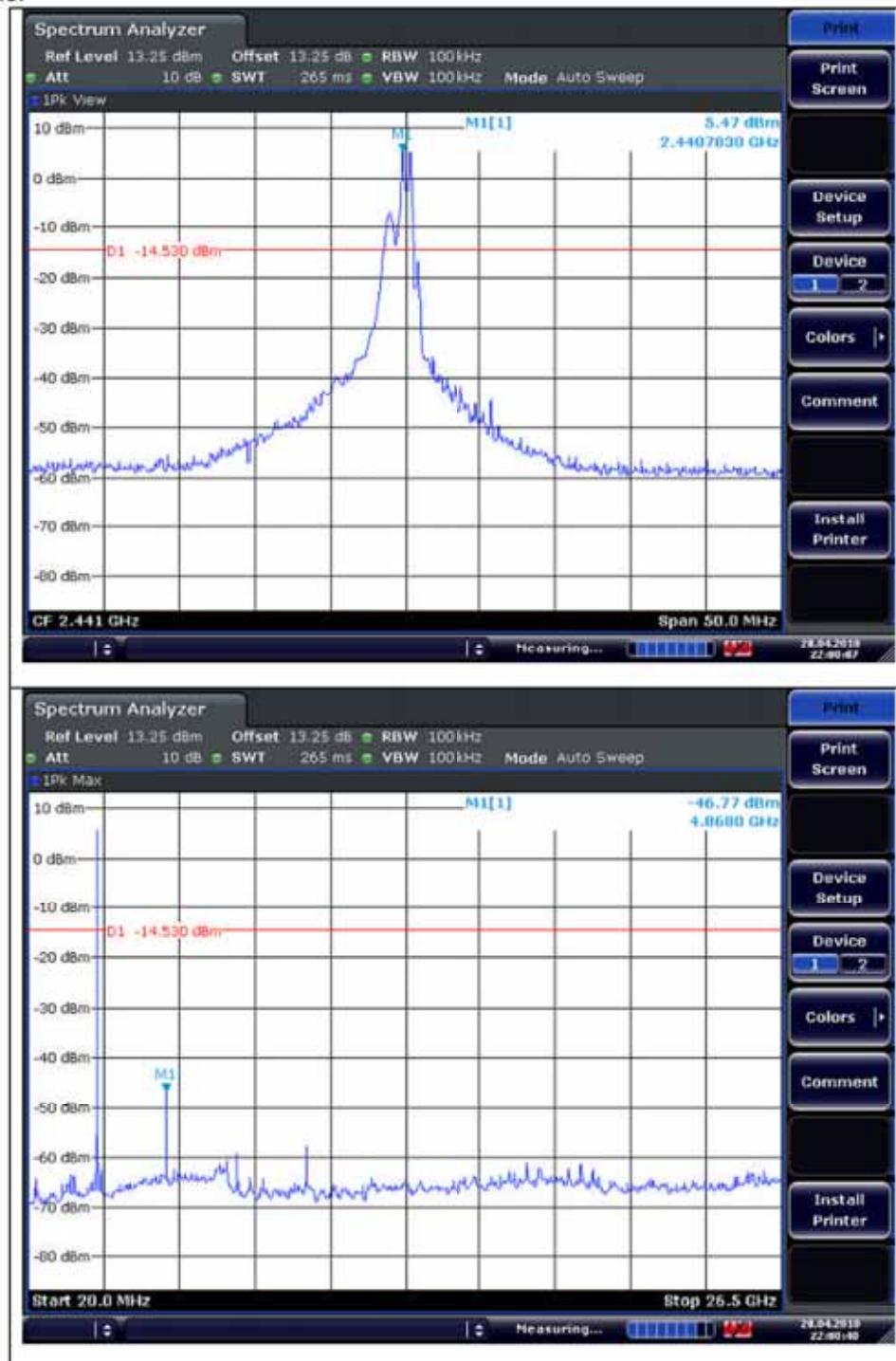
Bandedge at Hopping



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

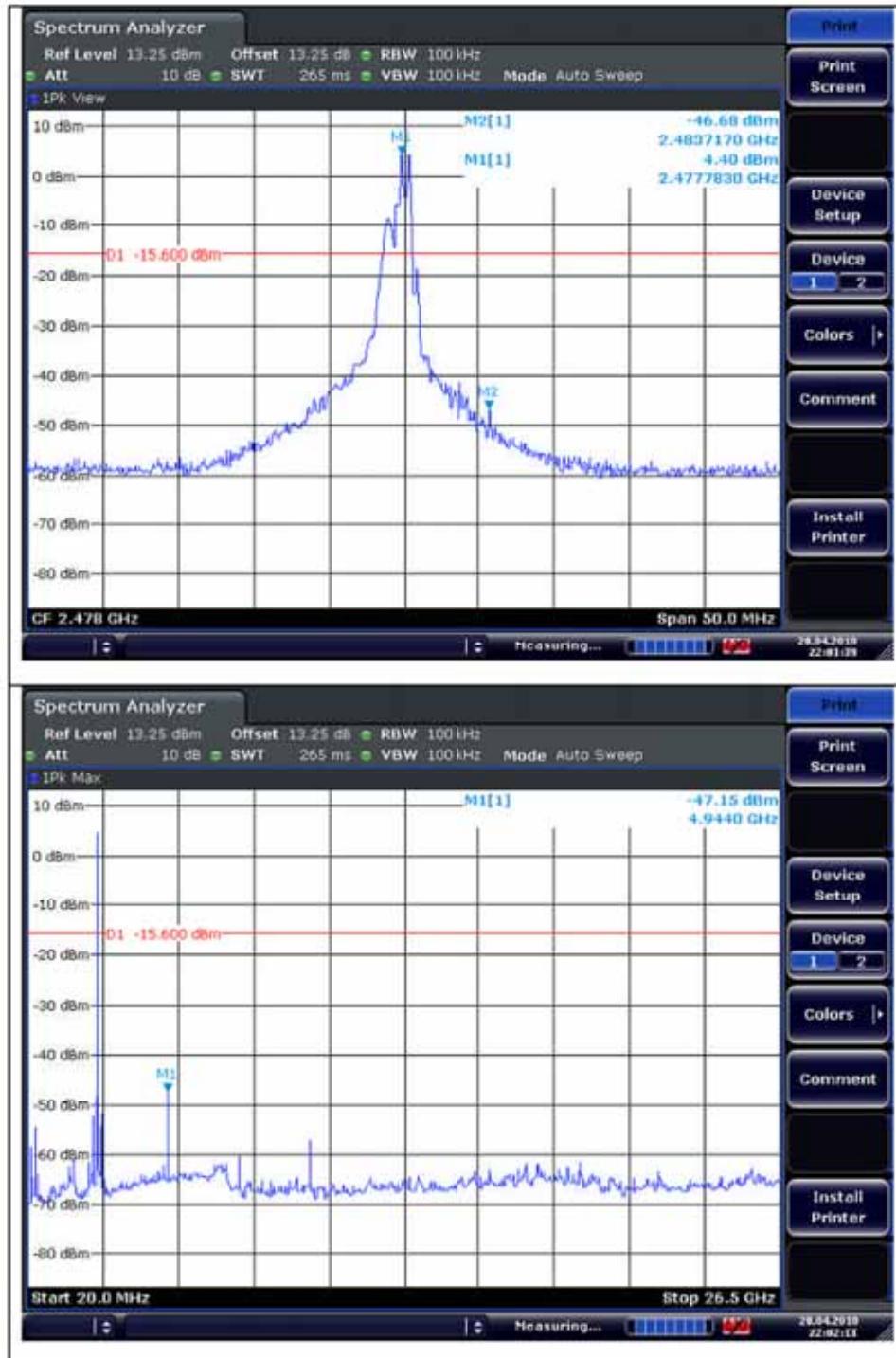
Operating Mode : Binary CDMA


Low Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

Middle Channel

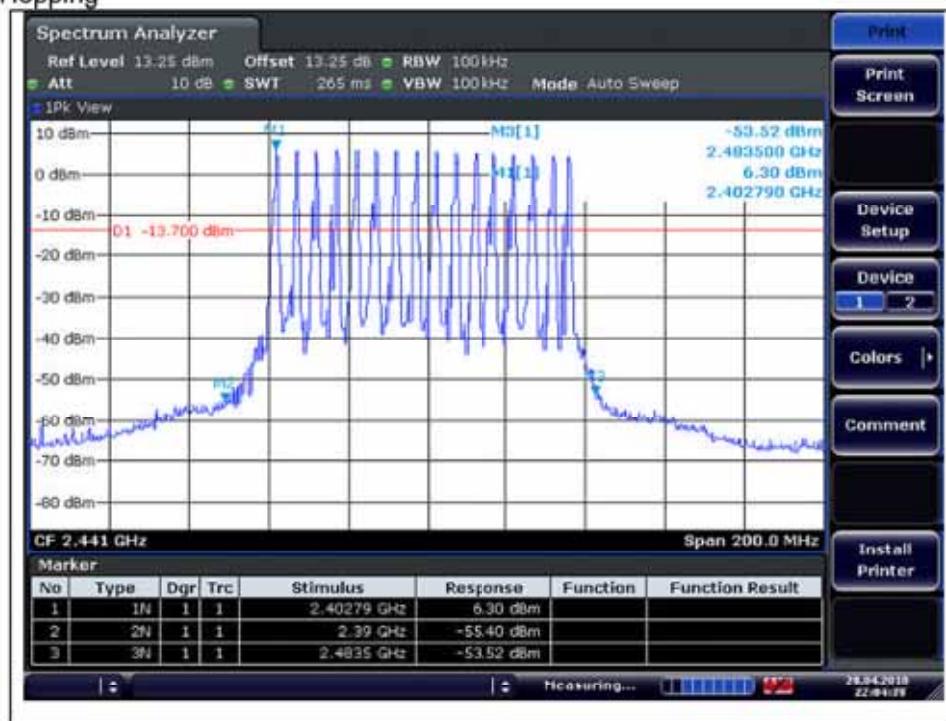


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

www.electrolab.kr.sgs.com

High Channel

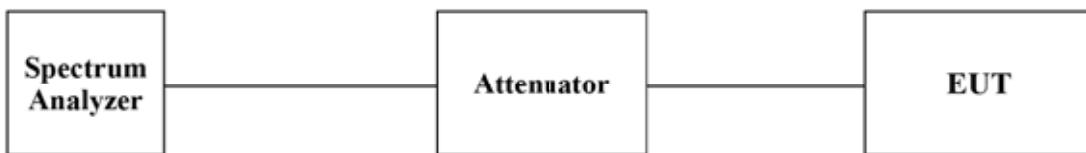


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

www.electrolab.kr.sgs.com

Bandedge at Hopping


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

www.electrolab.kr.sgs.com

3. 20 dB Bandwidth Measurement

3.1. Test Setup

3.2. Limit

Limit: Not Applicable

3.3. Test Procedure

1. The 20 dB band width was measured with a spectrum analyzer connected to RF antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer. Display Line and Marker Delta functions, the 20 dB band width of the emission was determined.
2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 10 kHz, VBW = 10 kHz, Span = 5 MHz.

3.4. Test Results

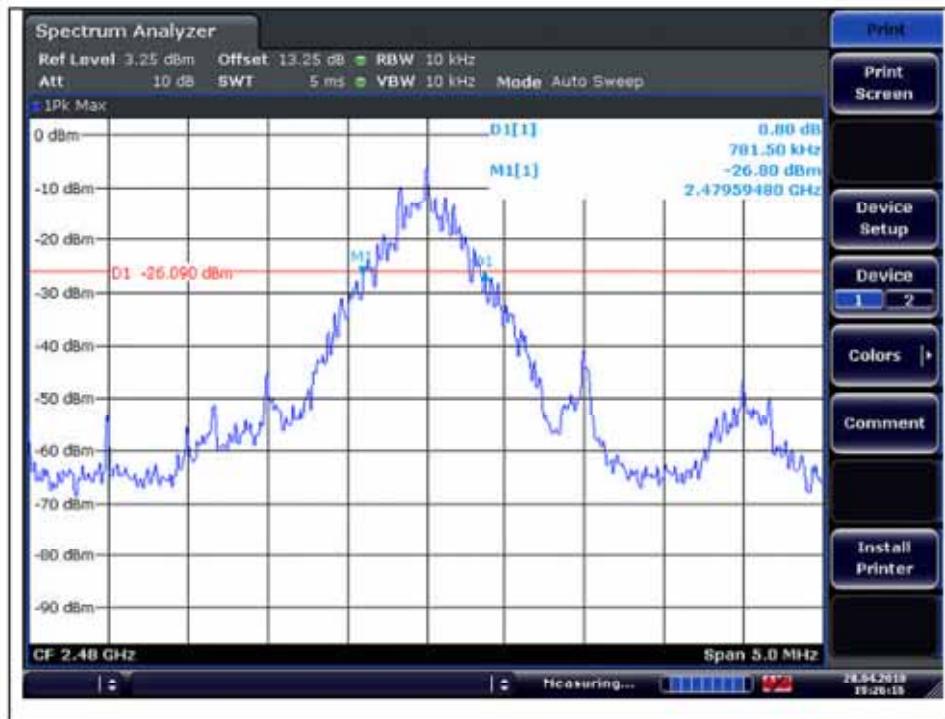
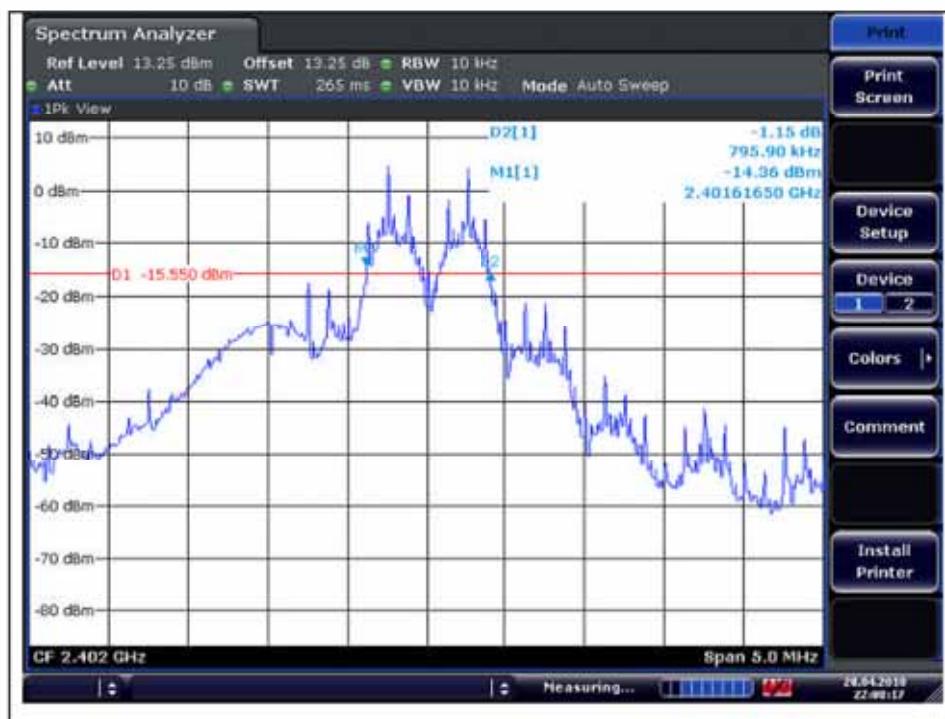
Ambient temperature : (24 ± 2) °C

Relative humidity : 47 % R.H.

Operation Mode	Channel	Channel Frequency (MHz)	20 dB Bandwidth (kHz)
Bluetooth	Low	2 402	774.20
	Middle	2 441	788.70
	High	2 480	781.50
Binary CDMA	Low	2 402	795.90
	Middle	2 441	774.20
	High	2 478	774.20

20 dB Bandwidth**Operating Mode: Bluetooth**

Low Channel



Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.


www.electrolab.kr.sgs.com

High Channel**Operating Mode: Binary CDMA****Low Channel**

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

Middle Channel

High Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

www.electrolab.kr.sgs.com

4. Maximum Peak Output Power Measurement

4.1. Test Setup

4.2. Limit

The maximum peak output power of the intentional radiator shall not exceed the following :

1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
2. §15.247(b)(1), For frequency hopping systems operating in the 2 400 – 2 483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 – 5 805 MHz band: 1 Watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

5.3. Test Procedure

1. The RF power output was measured with a Spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. A spectrum analyzer was used to record the shape of the transmit signal.
2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using ;
Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel
RBW \geq 20dB BW
VBW \geq RBW
Sweep = auto
Detector function = peak
Trace = max hold

4.4. Test Results

Ambient temperature : (24 ± 2) °C

Relative humidity : 47 % R.H.


Operation Mode	Channel	Channel Frequency (MHz)	Peak Power Output (dB m)	Peak Power Limit (dB m)
Bluetooth	Low	2 402	-2.98	30.00
	Middle	2 441	-3.05	30.00
	High	2 480	-3.45	30.00
Binary CDMA	Low	2 402	7.21	20.97
	Middle	2 441	6.54	20.97
	High	2 478	5.37	20.97

Operating Mode: Bluetooth

Low Channel

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

High Channel**Operating Mode: Binary CDMA****Low Channel**

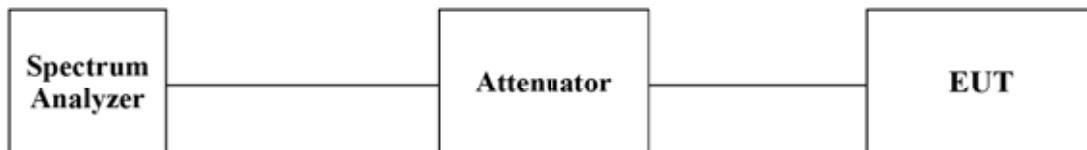
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

www.electrolab.kr.sgs.com

Middle Channel

High Channel


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

www.electrolab.kr.sgs.com

5. Hopping Channel Separation

5.1. Test Setup

5.2. Limit

§15.247(a)(1) Frequency hopping system operating in 2 400 – 2 483.5 MHz. Band may have hopping channel carrier frequencies that are separated by 25 kHz or two-third of 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.3. Test Procedure

- Bluetooth

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
3. By using the MaxHold function record the separation of adjacent channels.
4. Measure the frequency difference of these two adjacent channels by spectrum analyzer MARK function. And then plot the result on spectrum analyzer screen.
5. Repeat above procedures until all frequencies measured were complete.
6. Set center frequency of spectrum analyzer = middle of hopping channel.
7. Set the spectrum analyzer as RBW = 100 kHz, VBW = 100 kHz, Span = 5 MHz and Sweep = auto.

- Binary CDMA

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
3. By using the MaxHold function record the separation of adjacent channels.
4. Measure the frequency difference of these two adjacent channels by spectrum analyzer MARK function. And then plot the result on spectrum analyzer screen.
5. Repeat above procedures until all frequencies measured were complete.
6. Set center frequency of spectrum analyzer = middle of hopping channel.
7. Set the spectrum analyzer as RBW = 100 kHz, VBW = 100 kHz, Span = 20 MHz and Sweep = auto.

5.4. Test Results

Ambient temperature : (24 ± 2) °C

Relative humidity : 47 % R.H.

Operation Mode	Channel (Middle)	Adjacent Hopping Channel Separation (kHz)	Two-third of 20 dB Bandwidth (kHz)	Minimum Bandwidth (kHz)
Bluetooth	2 441 MHz	1 000	525.80	25
Binary CDMA	2 441 MHz	5 000	516.13	25

Note :

20 dB bandwidth measurement, the measured channel separation should be greater than two-third of 20 dB bandwidth or Minimum bandwidth.

Operating Mode: Bluetooth**Operating Mode: Binary CDMA**

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

www.electrolab.kr.sgs.com

6. Number of Hopping Frequency

6.1. Test Setup

6.2. Limit

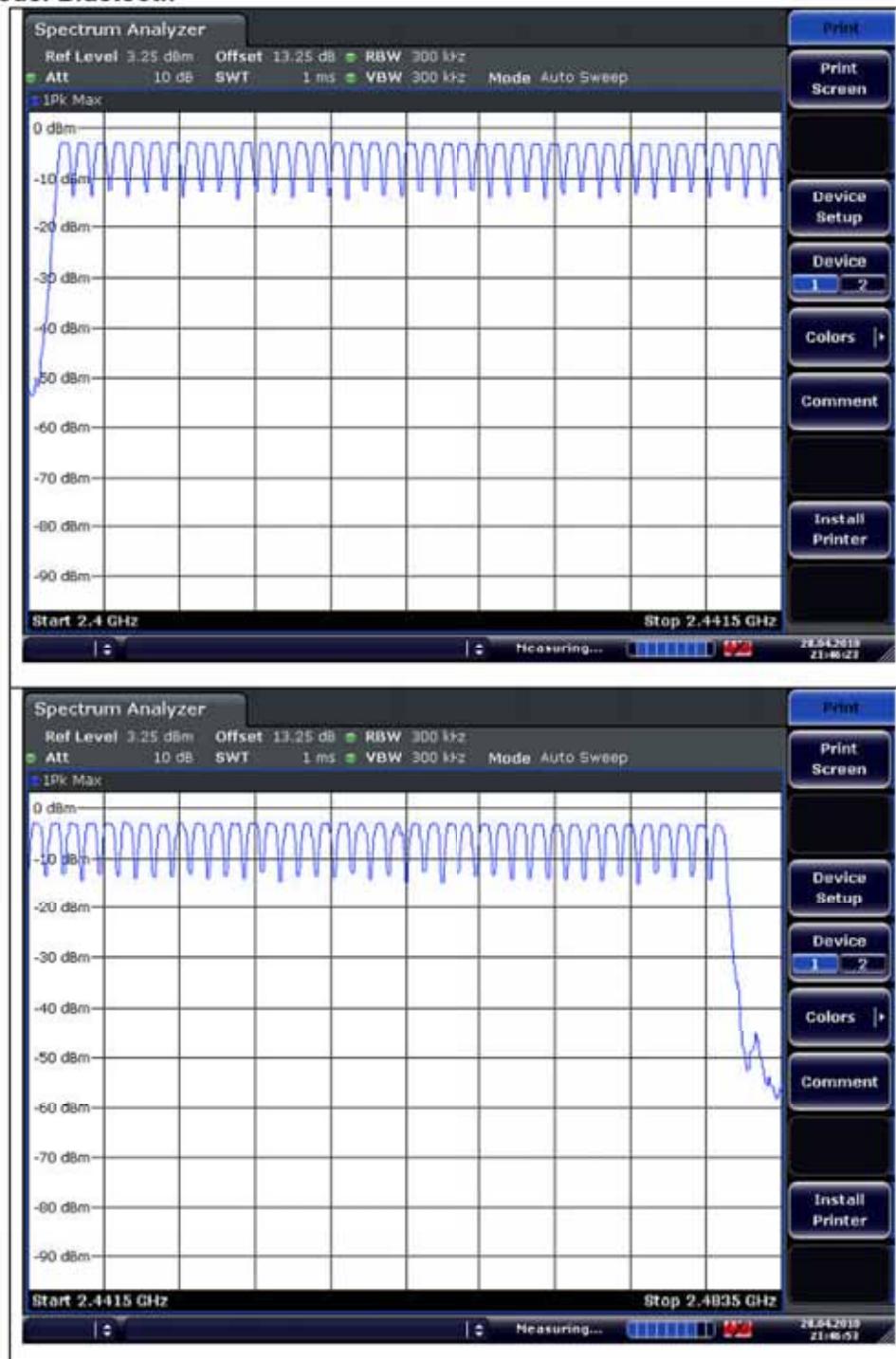
- Bluetooth

§15.247(b)(1), For frequency hopping systems operating in the 2 400 – 2 483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 – 5 805 MHz band: 1 Watt.

- Binary CDMA

§15.247(a)(3), Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

6.3. Test Procedure


1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna the port to the Spectrum analyzer
3. Set spectrum analyzer Start = 2400 MHz, Stop = 2 441.5 MHz, Sweep=auto and Start = 2 441.5 MHz, Stop = 2483.5 MHz, Sweep = auto.
4. Set the spectrum analyzer as RBW, VBW=300 kHz.
5. Max hold, view and count how many channel in the band.

6.4. Test Results

Ambient temperature : (24 ± 2) °C

Relative humidity : 47 % R.H.

Operation Mode	Number of Hopping Frequency	Limit
Bluetooth	79	≥ 75
Binary CDMA	16	≥ 15

Operating Mode: Bluetooth

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

Operating Mode : Binary CDMA

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

7. Time Of Occupancy (Dwell Time)

7.1. Test Set up

7.2. Limit

- Bluetooth

§15.247(a)(1)(iii) For frequency hopping system operating in the 2 400 – 2 483.5 MHz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

A period time = 0.4(s) * 79 = 31.6(s)

- Binary CDMA

§15.247(a)(1)(iii) For frequency hopping system operating in the 2 400 – 2 483.5 MHz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 6.4 second period.

A period time = 0.4(s) * 16 = 6.4(s)

8.3. Test Procedure

- Bluetooth

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable.
3. Adjust the center frequency of spectrum analyzer or any frequency be measured and set spectrum analyzer to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
5. Repeat above procedures until all frequencies measured were complete.
6. The Bluetooth has 3 type of payload, DH1, DH3, DH5. The hopping rate is 1 600 per second.

- Binary CDMA

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable.
3. Adjust the center frequency of spectrum analyzer or any frequency be measured and set spectrum analyzer to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
5. Repeat above procedures until all frequencies measured were complete.

7.4. Test Results

Ambient temperature : (24 ± 2) °C

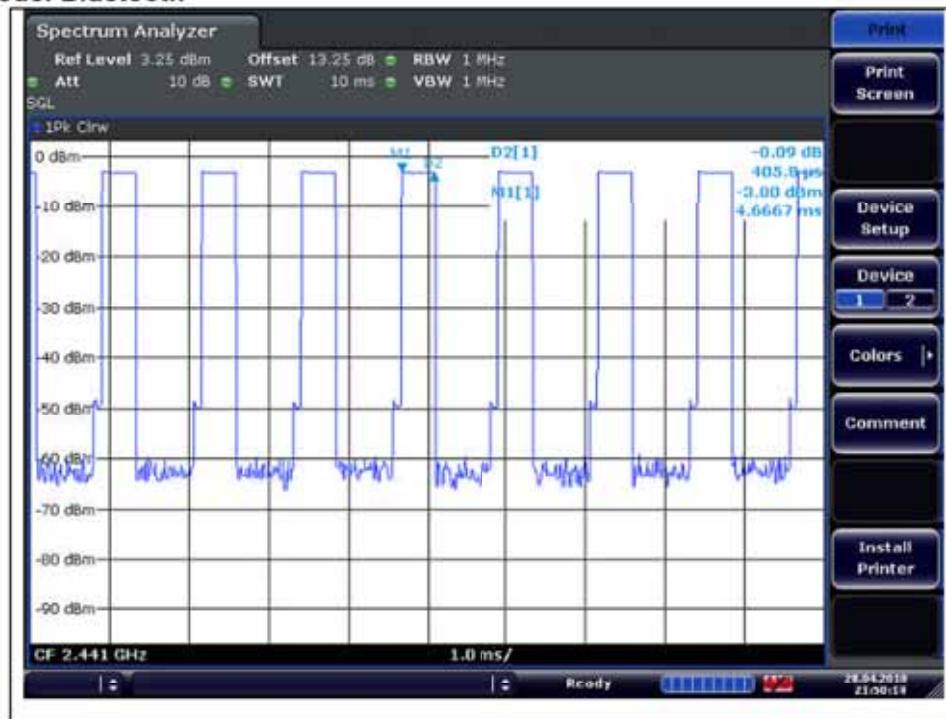
Relative humidity : 47 % R.H.

- Bluetooth

Time of occupancy on the TX channel in 31.6sec

= time domain slot length × (hop rate ÷ number of hop per channel) × 31.6

- Binary CDMA


Time of occupancy on the TX channel in 6.4sec

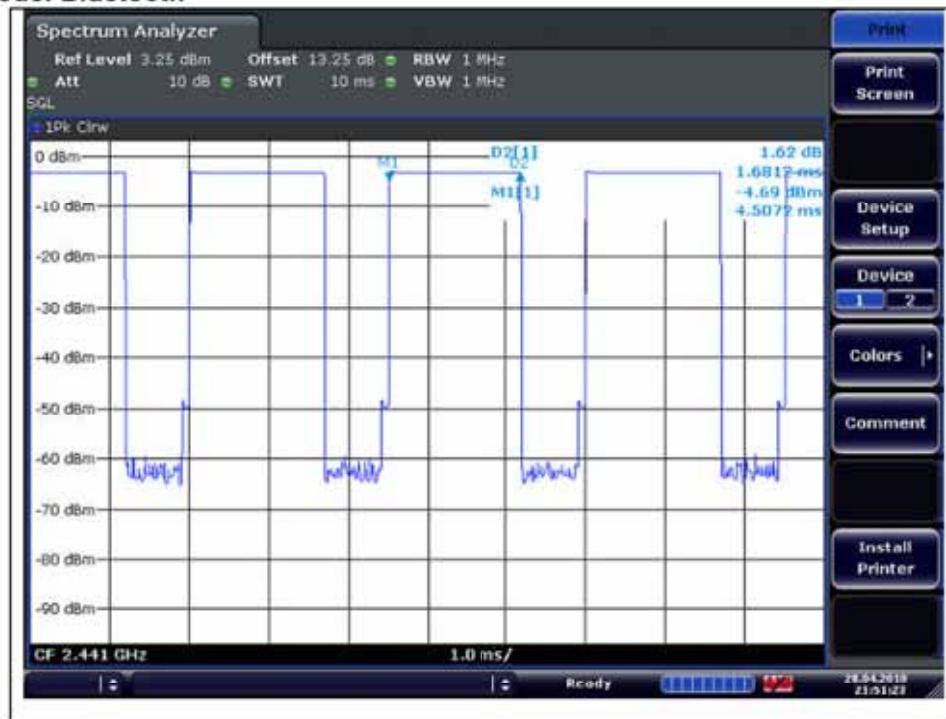
= time domain slot length × (hop rate ÷ number of hop per channel) × 6.4

7.4.1. Packet Type: DH1

Operation Mode	Frequency	Dwell Time (ms)	Time of occupancy on the Tx Channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx Channel in 31.6 sec (ms)
Bluetooth	2 441 MHz	0.406	129.92	400

2 441 MHz : 0.406 (ms) × [(1 600 ÷ 2) ÷ 79] × 31.6(s) = 129.92 (ms)

Operating Mode: Bluetooth


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

7.4.2. Packet Type: DH3

Operation Mode	Frequency	Dwell Time (ms)	Time of occupancy on the Tx Channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx Channel in 31.6 sec (ms)
Bluetooth	2 441 MHz	1.681	268.96	400

$$2441 \text{ MHz} : 1.681 \text{ (ms)} \times [(1600 \div 4) \div 79] \times 31.6(\text{s}) = 268.96 \text{ (ms)}$$

Operating Mode: Bluetooth

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

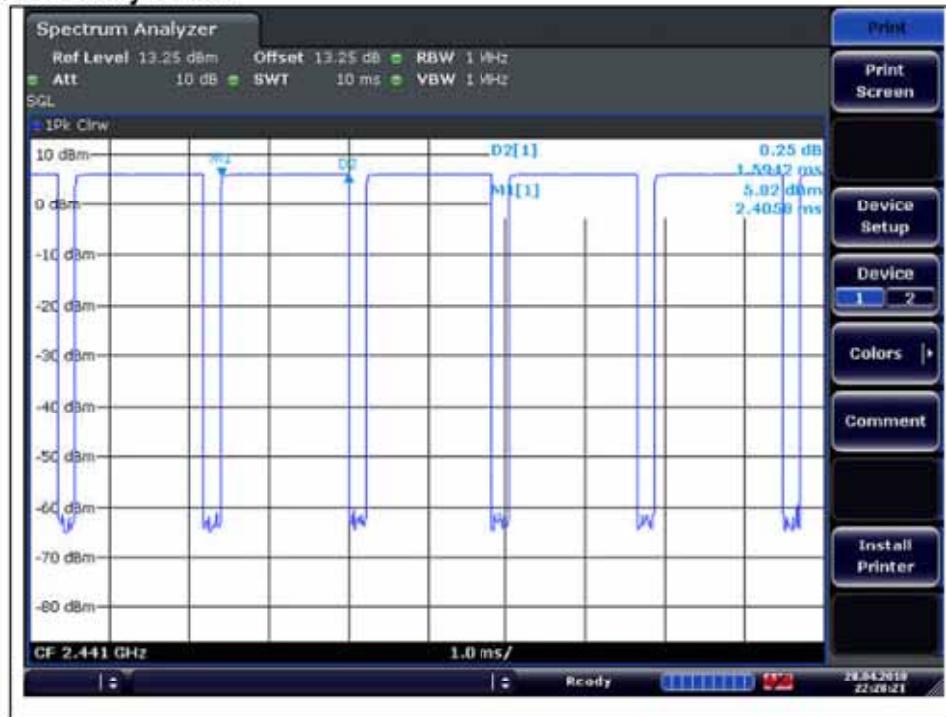
SGS Testing Korea Co., Ltd.

7.4.3. Packet Type: DH5

Operation Mode	Frequency	Dwell Time (ms)	Time of occupancy on the Tx Channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx Channel in 31.6 sec (ms)
Bluetooth	2 441 MHz	2.928	312.32	400

$$2\ 441\ \text{MHz} : 2.928\ (\text{ms}) \times [(1\ 600 \div 6) \div 79] \times 31.6(\text{s}) = 312.32\ (\text{ms})$$

Operating Mode: Bluetooth


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

7.4.3. Binary CDMA

Operation Mode	Frequency	Dwell Time (ms)	Time of occupancy on the Tx Channel in 6.4 sec (ms)	Limit for time of occupancy on the Tx Channel in 6.4 sec (ms)
Binary CDMA	2 441 MHz	1.594	159.4	400

$$2\ 441\ \text{MHz} : 1.594\ (\text{ms}) \times [(500 \div 2) \div 16] \times 6.4(\text{s}) = 159.4\ (\text{ms})$$

Operating Mode: Binary CDMA

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Testing Korea Co., Ltd.

www.electrolab.kr.sgs.com

8. Antenna Requirement

8.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

8.2. Antenna Connected Construction

- Bluetooth

Antenna used in this product is Integral type (Chip Antenna) gain of -6.67 dB i.

- Binary CDMA

Antenna used in this product is Integral type (Chip Antenna) gain of -4.66 dB i.

9. RF Exposure Evaluation

9.1 Environmental evaluation and exposure limit according to FCC CFR 47 part 1, 1.1307(b), 1.1310

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in §1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength(V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time
(A) Limits for Occupational /Control Exposures				
300 – 1500	--	--	F/300	6
1500 - 100000	--	--	5	6
(B) Limits for General Population/Uncontrol Exposures				
300 – 1500	--	--	F/1500	6
<u>1500 - 100000</u>	--	--	<u>1</u>	<u>30</u>

9.1.1. Friis transmission formula: $P_d = (P_{out} \cdot G) / (4 \cdot \pi \cdot R^2)$

Where P_d = power density in mW/cm^2

P_{out} = output power to antenna in mW

G = gain of antenna in linear scale

$\pi = 3.1416$

R = distance between observation point and center of the radiator in cm

P_d the limit of MPE, 1 mW/cm^2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

9.1.2. Test Result of RF Exposure Evaluation

Test Item : RF Exposure Evaluation Data

Test Mode : Normal Operation

9.1.3. Output Power into Antenna & RF Exposure Evaluation Distance

FHSS : Bluetooth

Channel	Channel Frequency (MHz)	Output Average Power to Antenna (dB m)	Antenna Gain (dB i)	Power Density at 20 cm (mW/cm ²)	LIMITS (mW/cm ²)
Low	2 402	-7.70	-6.67	0.0000073	1
Middle	2 441	-8.08	-6.67	0.0000067	1
High	2 480	-8.34	-6.67	0.0000063	1

Binary CDMA

Channel	Channel Frequency (MHz)	Output Average Power to Antenna (dB m)	Antenna Gain (dB i)	Power Density at 20 cm (mW/cm ²)	LIMITS (mW/cm ²)
Low	2 402	4.89	-4.66	0.00021	1
Middle	2 441	3.86	-4.66	0.00017	1
High	2 478	2.68	-4.66	0.00013	1

Note :

1. The power density P_d (5th column) at a distance of 20 cm calculated from the friis transmission formula is far below the limit of 1 mW/cm² .