

ACLARA RF SYSTEMS
Former HEXAGRAM Inc.
30400 Solon Road .
Solon, OH 44139
440-528-7200

Dec 6th, 2011

LLB11006X
RF Exposure calculations
Based on FCC 1.1307 & 2.1091, FCC OET Bulletin 65.

(1) Categorically Exclusion from RF exposure Evaluation: According to FCC regulations, RF exposure evaluation is Categorically Excluded if transmitter's operation frequency is less than 1.5 GHz and ERP is less than 1.5 watt.

(2) Absolute Maximum specifications of LLB11006X transmitter

- Operational frequency band 450 MHz to 470 MHz.
- The LLB11006X transmitter is measured for Max RF Power = 0.708 W.
- Absolute Maximum transmission time (duration) for any Hexagram transmitters does not exceed 100 mS (0.10second).
- Transmission period – Absolute maximum is 4 transmissions per hour.
- All Hexagram Transmitters utilize FSK modulation.

(3) Average RF Power Calculation:

FCC regulations on permissible RF exposure are not based on peak envelope power (PEP), but on average power (P_{ave}) over a 30-minute time period for uncontrolled environments. As mentioned in (2), during any 30 minute Hexagram MTU can transmit only two times. Duration = 0.10 second. With maximum RF radiation equal to .708 W, the Average RF Power over 30 minutes is: P_{ave} (worst case) at 30 minute = $.708 \text{ W} * 2 * [0.10\text{sec}/(30*60)\text{sec}] = 0.078\text{mW}$

(4) Maximum Radiated Power Density prediction (S): To predict power density (S) at distance $R=20 \text{ cm}$ from transmitter with $P_{ave} = .078\text{mW}$, next formula is used: $S = P_{ave}/(4*(\text{PI})*R^2)$ For the worst of the worst worst-case prediction of power density at or near a transmitter surface let's use: $S = P_{ave}/(\text{PI})*R^2 = 0.078\text{mW}/(4*3.14*20\text{cm}^2) = 15.5 \text{ uW/cm}^2$. This is the worst case of the near field power density of LLB11006X transmitter.

(5) Maximum Permissible Exposure (MPE) from LLB11006X: AS FCC require, the maximum permissible exposure for general public in "uncontrolled situation" at 20 cm is: $MPE = 460\text{MHz}/1500 = 10.440 \text{ mW/cm}^2$. By comparing results in (4) and (5), $S=15.5 \text{ uW/cm}^2 < MPE=0.440 \text{ mW/cm}^2$. We see that LLB11006X fully complies with RF safety at a distance of 20 cm.

Sincerely,

Siva Jambulingam
Principal Engineer
440-528-7200
sjambulingam@aclara.com