

An ESCO Technologies Company

30400 Solon Road

Solon OH 44139

(440) 528-7200

ENGINEERING TEST REPORT

RADIO-FREQUENCY EMISSIONS TEST REPORT

FOR

HIGH READ-RATE
GAS METER TRANSMITTING UNIT

Model 2011-006S, Rev. C
FCC ID: LLB11006S

December 5, 2011

Report Prepared by

James R. Pollock
Agency Certification Control Technician

TEST REPORT

INTRODUCTION

The Hexagram Model 2011-006S transceiver is a “Meter Transmitting Unit” (MTU) designed to provide remote meter reading capability for a gas meter. The transceiver is self-powered and mounts directly on a gas meter. On board batteries provide power. The transmitter provides a very short, intermittent radio frequency transmission to send a remote reading of the meter to a data collector unit. A microprocessor provides timing, control and data processing functions. The internal antenna is inaccessible to the user and no external antenna is provided. Two identical units were used as a test subjects for this report. The unit used for each test is identified under the test procedure. This report presents the data obtained in support of an application for Certification under Part 90 of the FCC rules.

MEASUREMENTS PERFORMED

Low Frequency Emissions	Page 3
Power Output and Spurious Emissions with test set up photographs	Page 4
Occupied Bandwidth	Page 11
Frequency Stability vs. Temperature	Page 13
Frequency Stability vs. Supply Voltage	Page 14
Transient Stability	Page 16

LOW FREQUENCY EMISSIONS

Low frequency emissions from the 2011-006S were examined from 9 kHz to 330 MHz using a vertical monopole antenna and a biconical antenna. Non-harmonic emissions above 330 MHz to 1000 MHz were determined with tuned dipoles.

All emissions observed between 9 kHz and 1 GHz, other than the harmonics of the transmitter were determined to be more than 30 dB below the limit levels of Part 90.210.

TEST EQUIPMENT USED

Spectrum Analyzer Hewlett-Packard Model 8593EM Spectrum Analyzer
SN: 3536A00147 Cal Due: 8/24/2012

Antennas AH Systems Model SAS-200/550-1 Vertical Monopole
SN::402 Frequency Range 6 kHz – 50 MHz
Cal Date: 6/9/2011 Cal Due: 6/9/2012

AH Systems Model FCC-4 Tuned Dipole
SN: 592A
Frequency Range 325 – 1000 MHz
Cal Date: 8/19/2011 Cal Due: 8/19/2012

AH Systems Model SAS-540 Biconical
SN: 705
Frequency Range 20 MHz – 330 MHz
Cal Date: 9/23/2011 Cal Due: 9/23/2012

Tests Performed: November 30, 2011

Unit Tested: 2011-006S Rev. C SN: 80003491

POWER OUTPUT AND SPURIOUS EMISSIONS

Within the tuning range of 450 – 470 MHz, the transmitter portion of the Model 2011-006S (EUT) was examined at three fundamental frequencies and their harmonics. Measurements below 1 GHz were made at a 3-meter distance on the Smith Electronics open area test site located at 8200 Snowville Road, Brecksville, OH. Data pertinent to this site is on file with the FCC (Reg. #90938). The harmonic measurements above 1 GHz were made at a distance of 1 meter over a suitable ground plane. The measurements were made using the substitution method described in TIA/EIA-603-C.

Tuned dipoles were used for measurements below 1000 MHz and a wave-guide antenna was used above 1000 MHz. A spectrum analyzer was used as a receiver.

The transmitter was placed on a remotely rotatable, non-conducting test stand. This general set up is shown in Pictorial 1. Because of the intermittent nature of the normally operating transmitter, the transmitter was forced to transmit continuously with a 30 seconds on and 30 seconds off cycle for these measurements. Power to the meter necessary to sustain the transmission was provided by an external 6 V battery.

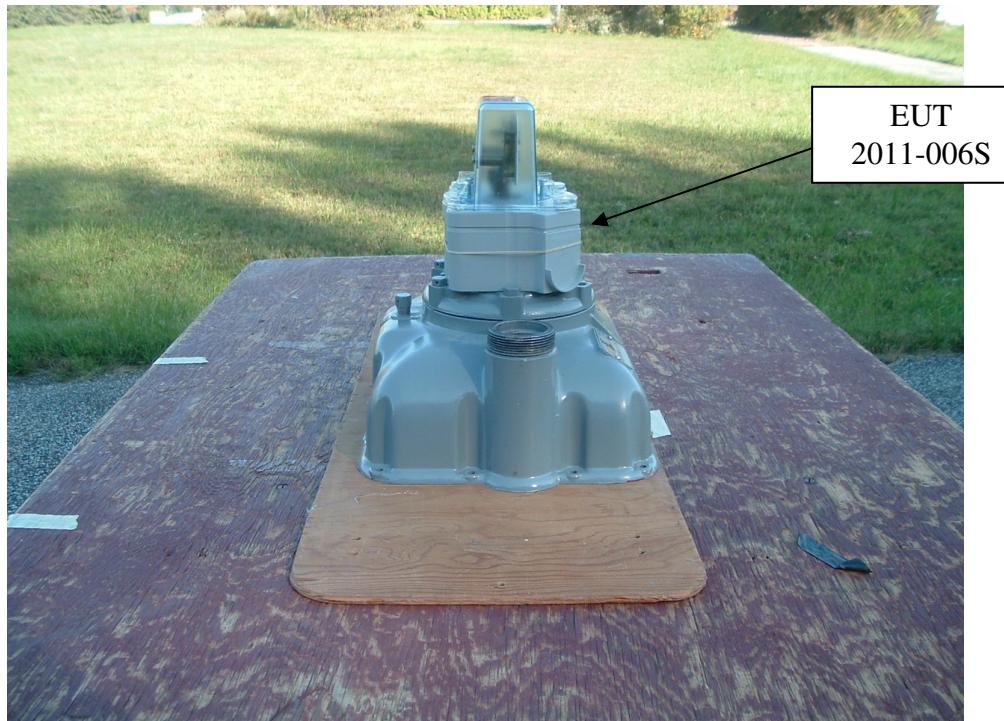
With the transmitter powered and the test receiver tuned to the unmodulated signal, the transmitter under test was rotated to the position of maximum signal. The receiving antenna was then varied between 1 and 4 meters in height to again maximize the signal. Measurements were made with the antennas positioned both vertically and horizontally and the maximum signals recorded.

Peak detection was used for the signals below 1000 MHz and average detection above 1000 MHz.

After the maximum received meter readings were obtained for each frequency and polarity, the transmitter under test was removed from the area and replaced by a signal generator and transmitting antenna. With the transmit antenna placed as close as possible to the position of the test unit, the signal generator was activated at a test frequency. With the signal detected, the receiving antenna was positioned for maximum reception. The signal generator output was then adjusted until the received signal was equal to the previously received signal from the unit under test. These measurements were repeated for each frequency and antenna orientation and the maximum values obtained are noted in Tables 1a – 1c.

In order to convert the signal generator output value to equivalent radiated power from a dipole, the following equation is used:

$$P_d = P_g - \text{cable loss(dB)} + \text{antenna gain(dB}_d\text{)}$$


where:

P_d is the dipole equivalent power in dBm, P_g is the generator output into the substitution antenna, also in dBm, and “antenna gain” is the dB gain of the substitution antenna with respect to a theoretical dipole.

According to 90.210(d)(3) all emissions greater than 12.5 kHz from the center of the authorized band shall be attenuated below the unmodulated carrier by $50 + 10\log(P)$. The determined power outputs, the required harmonic attenuation as well as the attenuation for each harmonic are found in Tables 1a – 1c.

PICTORIAL 1
HEXAGRAM MODEL 2011-006S MTU
OUTPUT POWER AND SPURIOUS EMISSIONS
TYPICAL TEST SETUP

PICTORIAL 2
HEXAGRAM MODEL 2011-006S MTU
OUTPUT POWER AND SPURIOUS EMISSIONS
TYPICAL TEST SETUP

TABLE 1a
HEXAGRAM MODEL 2011-006S TRANSMITTER
SUBSTITUTION METHOD
450 MHz

Horizontal 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBr)	Dipole Eq. Power (dBm)	Difference (dB)
450	15.9	2.1	-1.0	12.8	
900	-45.1	3.2	-0.7	-49	-61.8

Output = 12.8dBm
= 0.019 W
Req. Att.= 32.8 dBm

Horizontal 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBr)	Dipole Eq. Power (dBm)	Difference (dB)
1350	-66.8	0.8	6.5	-61.1	-73.9
1800	-85.9	1.0	7.4	-79.5	-92.3
2250	-83.9	1.2	6.2	-78.9	-91.7
2700	-72.5	1.3	6.4	-67.4	-80.2
3150	-77.0	1.4	7.2	-71.2	-84.0
3600	-68.7	1.6	8.3	-62.0	-74.8
4050	-72.0	1.7	8.0	-65.7	-78.5
4500	-74.2	1.8	8.6	-67.4	-80.2

Vertical 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBr)	Dipole Eq. Power (dBm)	Difference (dB)
450	25.9	2.1	-1.0	22.8	
900	-39.4	3.2	-0.7	-43.3	-66.1

Output = 22.8 dBm
= 0.191 W
Req. Att.= 42.8 dBm

Vertical 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBr)	Dipole Eq. Power (dBm)	Difference (dB)
1350	-67.8	0.8	6.5	-62.1	-84.9
1800	-84.5	1.0	7.4	-78.1	-100.9
2250	-79.9	1.2	6.2	-74.9	-97.7
2700	-75.8	1.3	6.4	-70.7	-93.5
3150	-80.2	1.4	7.2	-74.4	-97.2
3600	-70.5	1.6	8.3	-63.8	-86.6
4050	-73.3	1.7	8.0	-67.0	-89.8
4500	-75.3	1.8	8.6	-68.5	-91.3

TABLE 1b
HEXAGRAM MODEL 2011-006S TRANSMITTER
SUBSTITUTION METHOD
460 MHz

Horizontal 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBr)	Dipole Eq. Power (dBm)	Difference (dB)
460	18	2.2	-1.1	14.7	
920	-44.1	3.3	-1.1	-48.5	-63.2

Output = 14.7 dBm
= 0.030 W
Req. Att.= 34.7 dBm

Horizontal 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBr)	Dipole Eq. Power (dBm)	Difference (dB)
1380	-70.1	0.9	6.8	-64.2	-78.9
1840	-73.7	1.0	7.2	-67.5	-82.2
2300	-76	1.2	6.2	-71.0	-85.7
2760	-65.2	1.3	6.5	-60.0	-74.7
3220	-67.5	1.4	7.5	-61.4	-76.1
3680	-61.1	1.6	8.3	-54.4	-69.1
4140	-62.6	1.7	8.1	-56.2	-70.9
4600	-67.3	1.8	8.4	-60.7	-75.4

Vertical 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBr)	Dipole Eq. Power (dBm)	Difference (dB)
460	28	2.2	-1.1	24.7	
920	-43.6	3.3	-1.1	-48	-72.7

Output = 24.7 dBm
= 0.295 W
Req. Att.= 44.7 dBm

Vertical 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBr)	Dipole Eq. Power (dBm)	Difference (dB)
1380	-70.9	0.9	6.8	-65	-89.7
1840	-75.4	1.0	7.2	-69.2	-93.9
2300	-76.1	1.2	6.2	-71.1	-95.8
2760	-67.3	1.3	6.5	-62.1	-86.8
3220	-66.7	1.4	7.5	-60.6	-85.3
3680	-61.3	1.6	8.3	-54.6	-79.3
4140	-60.6	1.7	8.1	-54.2	-78.9
4600	-66.6	1.8	8.4	-60	-84.7

TABLE 1c
HEXAGRAM MODEL 2011-006S TRANSMITTER
SUBSTITUTION METHOD
470 MHz

Horizontal 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBd)	Dipole Eq. Power (dBm)	Difference (dB)
470	19.6	2.2	-1.2	16.2	
940	-44.9	3.3	-1.1	-49.3	-65.5

Output = 16.2 dBm
= 0.042W
Req. Att. = 36.2 dBm

Horizontal 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBd)	Dipole Eq. Power (Dbm)	Difference (dB)
1410	-69.6	0.9	7.0	-63.5	-79.7
1880	-74.1	1.0	7.0	-68.1	-84.3
2350	-75.2	1.2	6.3	-70.1	-86.3
2820	-61.6	1.3	6.5	-56.4	-72.6
3290	-63.2	1.5	7.8	-56.9	-73.1
3760	-49.9	1.6	8.2	-43.3	-59.5
4230	-63.2	1.7	8.2	-56.7	-72.9
4700	-69.5	1.8	8.2	-63.1	-79.3

Vertical 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBd)	Dipole Eq. Power (dBm)	Difference (dB)
470	28.9	2.2	-1.2	25.5	
940	-42.6	3.3	-1.1	-47.0	-72.5

Output = 25.5 dBm
= 0.355 W
Req. Att. = 45.5 dBm

Vertical 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBd)	Dipole Eq. Power (Dbm)	Difference (dB)
1410	-64.8	0.9	7.0	-58.7	-84.2
1880	-74.9	1.0	7.0	-68.9	-94.4
2350	-72.8	1.2	6.3	-67.7	-93.2
2820	-58.6	1.3	6.5	-53.4	-78.9
3290	-63.8	1.5	7.8	-57.5	-83.0
3760	-53.0	1.6	8.2	-46.4	-71.9
4230	-60.3	1.7	8.2	-53.8	-79.3
4700	-70.1	1.8	8.2	-63.7	-89.2

TEST EQUIPMENT USED

<u>Spectrum Analyzer</u>	Hewlett-Packard Model 8593EM Spectrum Analyzer SN: 3536A00147 Cal Due: 8/24/2012
<u>Antennas</u>	ETS-Lindgren Model DB-4 Tuned Dipole SN: 69064 Receive Only Frequency Range 400 – 1000 MHz Cal N/A
	A.H. Systems Model FCC-4 Tuned Dipole SN: 592A Transmit Only Frequency Range 325 – 1000 MHz Cal Date: 8/19/2011 Cal Due: 8/19/2012
	ETS-Lindgren Model 3115 Double Ridged Guide Horn SN: 69713 Receive Only Frequency Range 0.75 – 18 GHz Cal N/A
	A.H. Systems Model SAS-571 Double Ridged Guide Horn SN: 1488 Transmit Only Frequency Range 0.7 – 18 GHz Cal Date: 8/19/2011 Cal Due: 8/19/2012
<u>Signal Generator</u>	Hewlett-Packard Model 8340B, S/N 3010A01889 Cal Due: 6/10/2012
<u>Miscellaneous</u>	12.2 m RG-213/U coaxial cable 22.5 m LMR-400 coaxial cable 3.0 m RG-213/U coaxial cable 3.0 m RG-213/U coaxial cable
<u>Tests Performed</u>	November 8, 2011 - November 16, 2011

Unit Tested: 2011-006S Rev. C SN: 80003490

OCCUPIED BANDWIDTH

The emissions close to the center of the specified channel are limited by the emissions masks described in 90.210. For the frequency range of the 2011-006S transmitter, Mask D is specified. From the center frequency of the band ± 5.625 kHz, 0 dB of attenuation is required. From 5.625 kHz to 12.5 kHz from the center frequency, attenuation must be at least $7.27(f_d - 2.88)$ dB, where f_d is the displacement frequency from the center of the band in kHz.

At more than 12.5 kHz from the band center, the attenuation must be 70 dB or $50 + 10 \log(P)$, whichever is less. The maximum dipole equivalent power was determined to be 25.5 dBm or 0.355 W and $50 + 10 \log(0.355)$ equals 45.5 dB. The mask measurement was a conducted measurement, and as seen in Fig. 1, the measured output power was 24.8 dBm so the maximum allowed is shown on the plot as -20 dBm or 44.8 dB below the measured level.

Both modulated and unmodulated transmissions were stored on the spectrum analyzer display. The plot of Fig. 1 shows both signals with Mask D superimposed on the plot. The plot indicates that the modulated emission does comply with the requirement for occupied bandwidth as found in 90.210.

For purposes of this test, the modulated signal was PN9 modulated at the specified 7200 bits per second data rate.

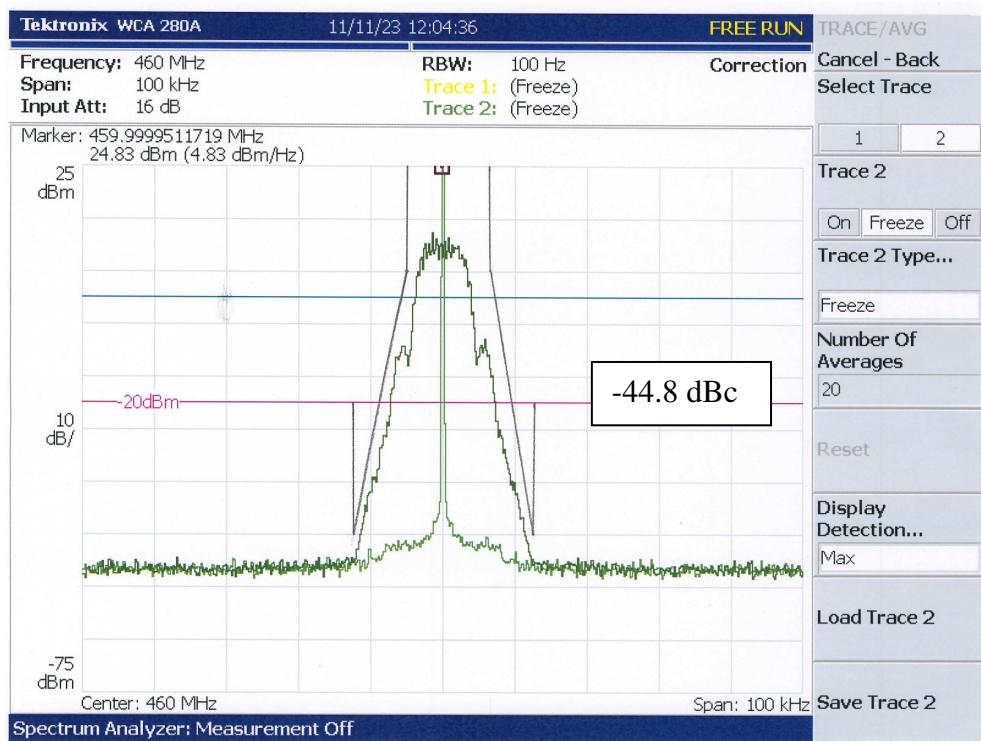


Fig. 1
Hexagram Model 2011-009S
Emissions Mask

TEST EQUIPMENT USED

Spectrum Analyzer

Tektronix Model WCA 280A
SN: J300168 Cal Due: 4/26/2012

Antenna

Direct Measurement

Test Performed

November 18, 2011

Unit Tested: 2011-005. Rev. C SN: 80003491

FREQUENCY STABILITY VS. TEMPERATURE

The temperature stability of the frequency generating components of the transmitter was observed. The transmitter was placed in a temperature chamber with a programming coil that allows a transmission to be requested from outside the chamber. A receiving antenna outside the chamber picked up the transmitted signal, which was fed to the spectrum analyzer.

With the transmitter programmed to transmit at 460 MHz, the chamber temperature was set to 20° C. After reaching the set temperature, the transmitter was allowed to temperature stabilize. The transmitted signal was captured by the spectrum analyzer and the frequency was determined. The temperature in the chamber was then increased in 10° C intervals to +70° C, returned to +20° C and then decreased in 10° intervals down to -40° C, before returning to 20° C for the final measurement. At each temperature, at least 40 minutes were allowed for stabilization of the transmitter, a transmission was made and the frequency determined. The frequency at each temperature was recorded, compared to the 460 MHz reference frequency, and is recorded in Table 2. It can be seen from the table that all readings are within the deviation limit of ± 2.5 ppm or 1150 Hz at 460 MHz.

TABLE 2
FREQUENCY STABILITY VS. TEMPERATURE
460 MHz

Temperature ° C	Measured Frequency MHz	Dev. Hz	Dev. ppm
+20	459.999941	-59	-0.128
+30	459.999941	-59	-0.128
+40	459.999941	-59	-0.128
+50	459.999941	-59	-0.128
+60	459.999883	-117	-0.254
+70	459.999922	-78	-0.170
+20	459.999961	-39	-0.085
+10	460.000020	20	0.043
0	460.000000	0	0.000
-10	459.999883	-117	-0.254
-20	459.999746	-254	-0.552
-30	459.999863	-137	-0.298
-40	460.000059	59	0.128
+20	459.999961	-39	-0.085

Reference Frequency= 460.000000 MHz

FREQUENCY STABILITY VS. SUPPLY VOLTAGE

To vary the DC test voltage, a variable DC power supply was inserted in place of one of the series lithium cells. The frequency was measured at the TIA-603-C default standard test voltage of lithium ion cells ($3.75 \times 2 = 7.5V$). Measurements were also made at voltages down to and below the 85% level of 6.375 Volts.

With the voltage set to a measurement point, the transmitted signal was captured by a spectrum analyzer and the frequency value determined. The frequencies are compared to the tuned frequency. The data for these measurements are found in Table 3. Again, it can be seen that all values obtained are within the deviation limit of ± 2.5 ppm or 1150 Hz at the 460 MHz reference frequency.

TABLE 3
FREQUENCY STABILITY VS. SUPPLY VOLTAGE

460 MHz

INPUT Volts	Measured Frequency MHz	Dev. Hz	Dev. ppm
7.5 VDC	460.000000	0	0
7.2 VDC	460.000000	0	0
7.0 VDC	460.000000	0	0
6.5 VDC	460.000000	0	0
6.0 VDC	460.000000	0	0
5.5 VDC	460.000000	0	0

Reference frequency = 460 MHz

TEST EQUIPMENT USED

Spectrum Analyzer

Voltage

Tektronix Model WCA 280A
SN: J300168 Cal Due: 4/26/2012

Antenna

A/S Model AV-15 450 – 470 MHz
Cal: N/A

DC Power Supply

MPJA DC Regulated Power Supplies
SN: 012021

Digital Multi-Meter

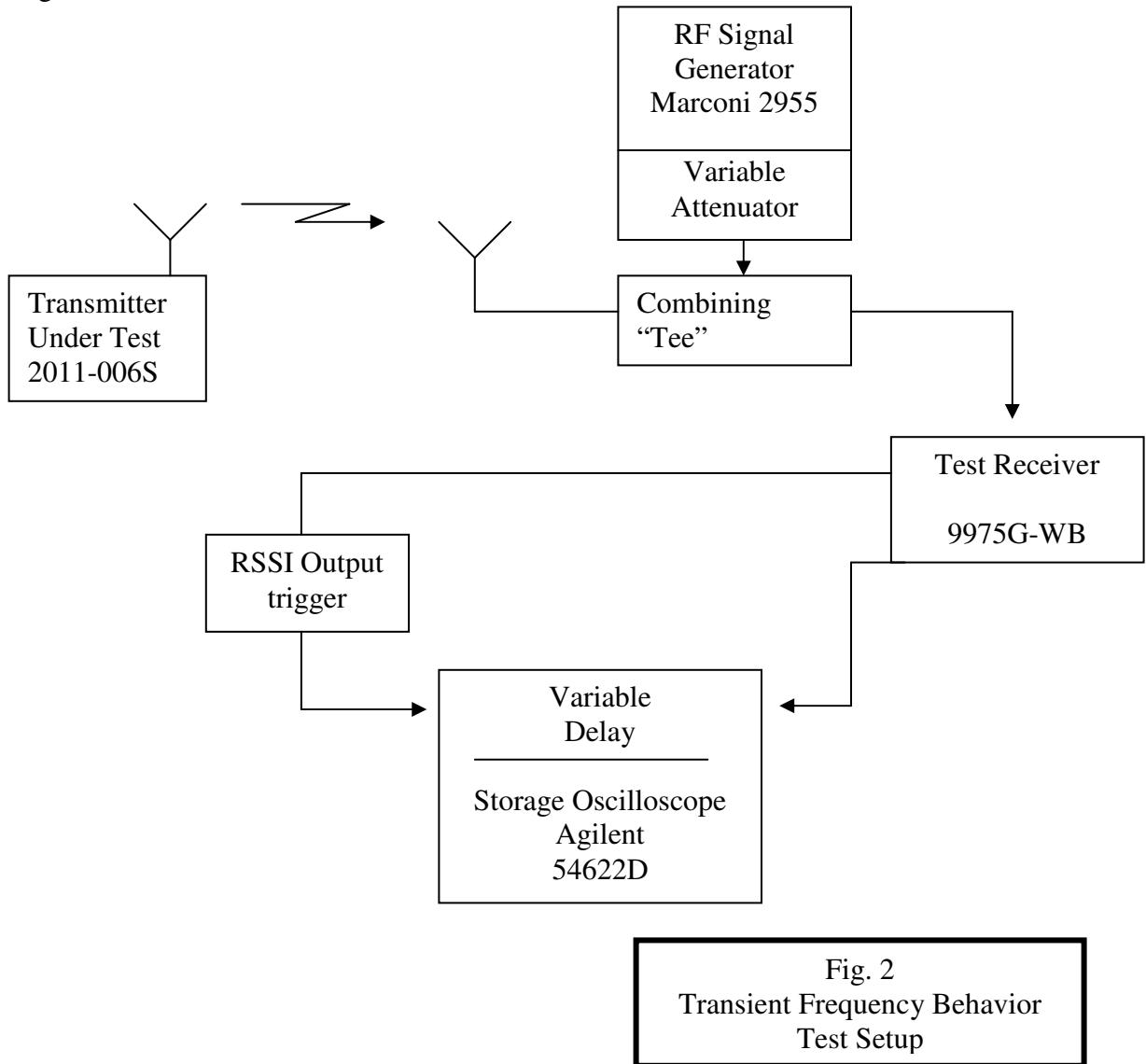
Fluke Model 87 III
SN: 85290183
Cal. Due: 4/20/2012

Temperature Chamber

Test Equity Model 1000H
SN: 61135
Cal. due: 2/17/2012

Tests Performed

Temperature December 1-2, 2011
Voltage November 23, 2011


Temperature & Voltage

Unit Tested : 2011-006S Rev. C
Temperature & Voltage: SN: 80003491

TRANSIENT STABILITY

The transient stability measurements indicate the variation in tuned frequency during the brief interval of time during the start of the transmission and at the end of the transmission.

The Model 2011-006S transmitter was tested for transient frequency behavior using the test method of TIA/EIA-603-C. A block diagram of the test setup is seen in Fig. 2. A Hexagram model 9975G-WB receiver was used. The storage oscilloscope was triggered by the output of the RSSI output of the receiver. Appropriate delay was provided by the digital delay circuitry of the oscilloscope. The 1 kHz test signal was provided by the Marconi signal generator. The generator's output control was used to insure that the test signal was at least 50 dB below the received signal level from the 2011-006S.

Test Requirements

The test requirements per 90.214 are:

1. Frequency deviation during t_1 (10 ms duration after t_{on}) may be greater than ± 12.5 kHz because the output power is less than 6 Watts.
2. Frequency deviation during t_2 (25 ms duration after t_1) must be less than ± 6.25 kHz.
3. Frequency deviation after t_2 must be less than ± 2.5 ppm, or ± 1150 Hz at 460 MHz.
4. Frequency deviation during t_3 (10 ms duration after transmitter is turned off) may exceed ± 12.5 kHz because output power is less than 6 Watts.

Test Data

Figures 3 through 7 show the Model 2011-006S transient frequency characteristics. The limit masks are indicated on each of the figures.

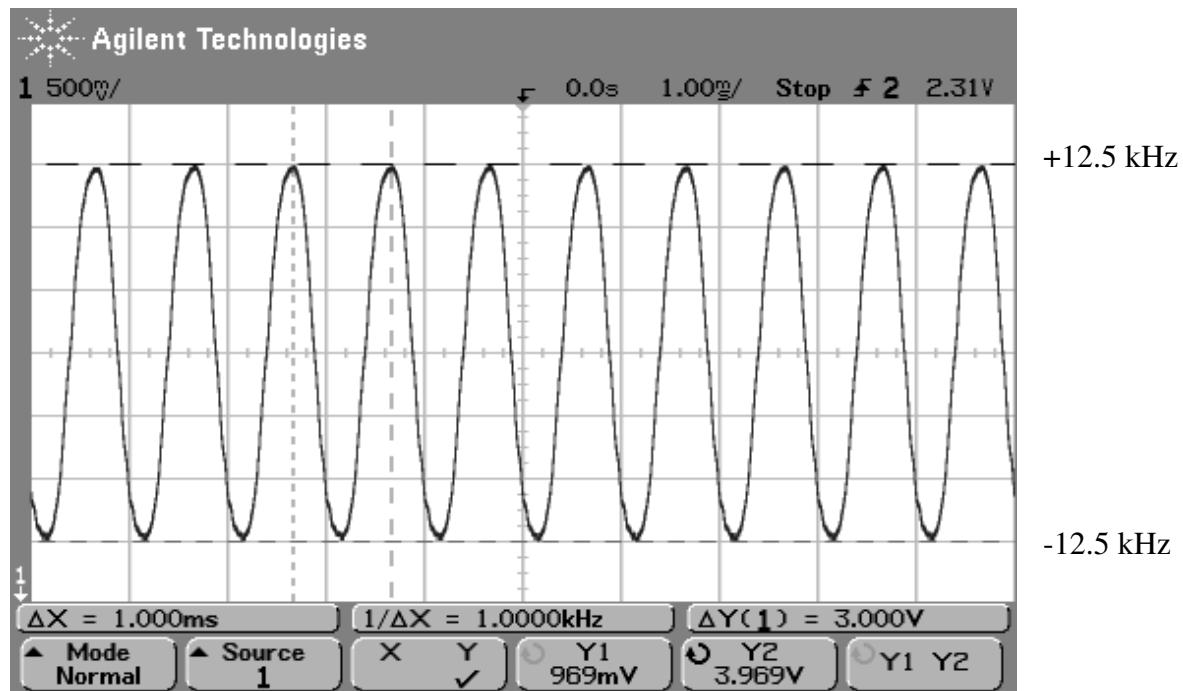


Fig. 3 ± 12.5 kHz modulated test signal .

$$\pm 12.5 \text{ kHz} = 3.00 \text{ V}$$

$$\pm 6.25 \text{ kHz} = 1.50 \text{ V}$$

$$\pm 1.15 \text{ kHz} = 276 \text{ mV}$$

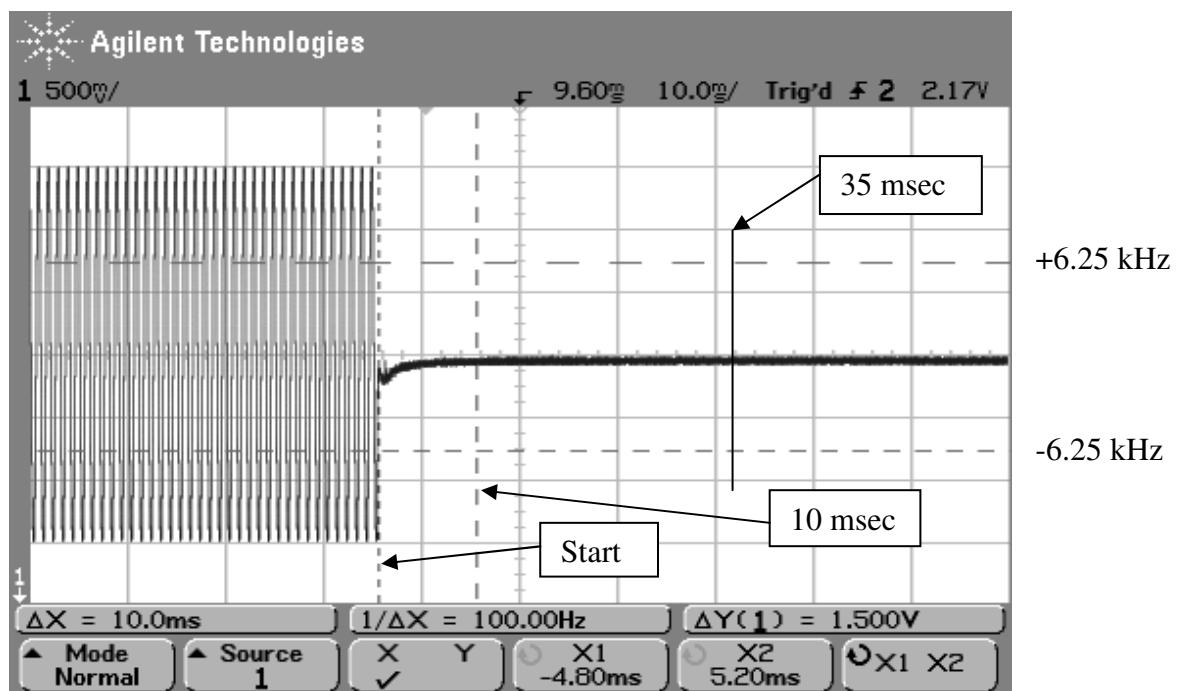


Fig. 4 Start of Transmission

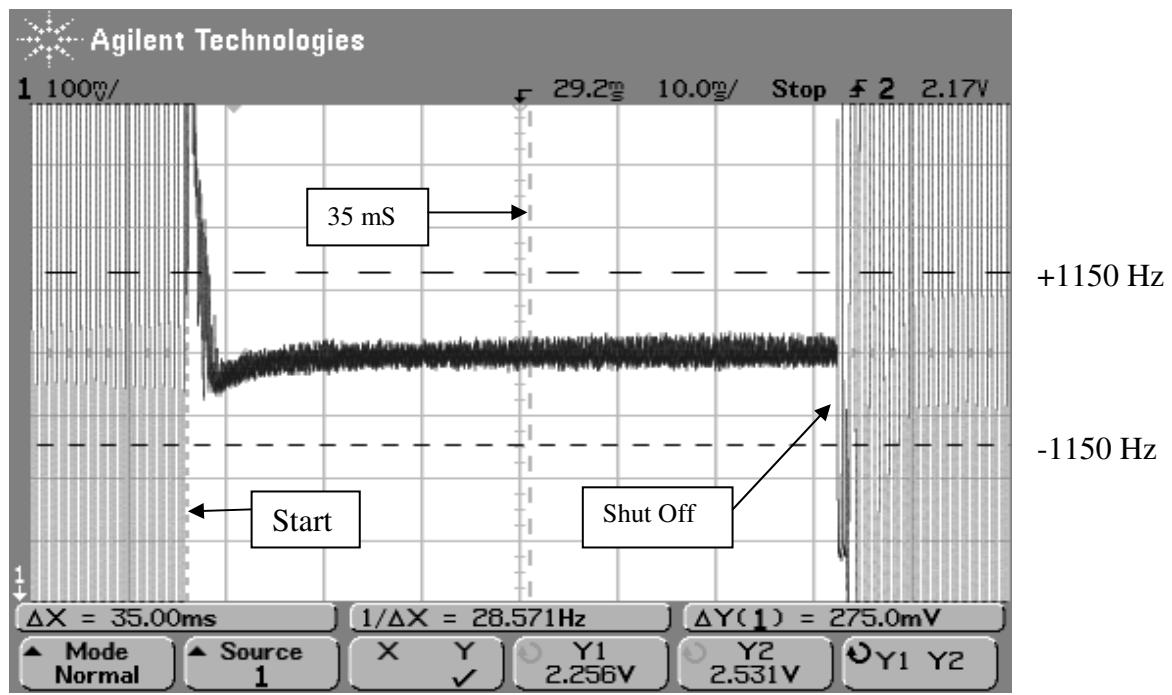
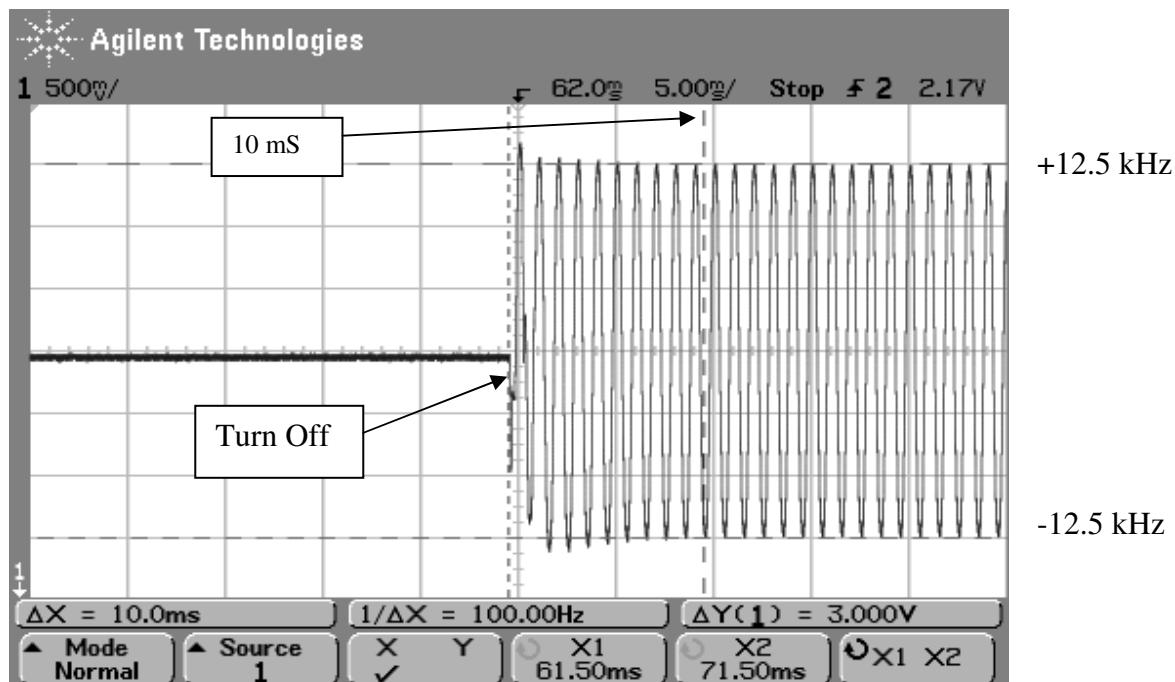



Fig. 5 Full Transmission

Fig. 6 Turn Off Transient

The modulated signal appears well within the allowed 10 ms and does not exceed ± 12.5 kHz beyond 10 ms.

TEST EQUIPMENT USED

Signal Generator

Marconi Model 2955 RF Test Set
S/N 132061
Cal Due: 2/25/2012

Test Receiver

Hexagram 9975G-WB w/
RSSI trigger output

Oscilloscope

Agilent Model 54622D
SN: MY40003551 Cal Due: 2/28/12

Rx Antenna

Antenna Specialists Model AV-15
450 – 470 MHz

Test Performed

November 21, 2011

Unit Tested: 2011S-006 Rev. C SN: 80003491

TEST INFORMATION

SUMMARY

The Hexagram Model 2011-006S transmitter has been shown to be capable of complying with those requirements of the Federal Communications Commission for a Part 90 transmitter that are covered by this report.

EQUIPMENT UNDER TEST

MTU Transmitter, Model 2011-006S Rev. C

MANUFACTURER

Hexagram, Inc.
30400 Solon Rd.
Solon, OH 44139

TEST DATES

November 8, 2011 – December 2, 2011

OPEN AREA TEST SITE

Smith Electronics, Inc.
8200 Snowville Road
Cleveland, OH 44141
(330) 289-9306

FCC (Reg. #90938)