

An ESCO Technologies Company

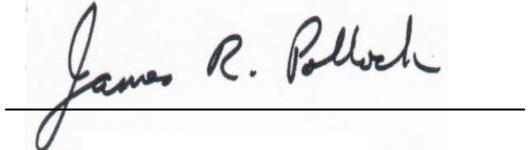
30400 Solon Road

Solon OH 44139

(440) 528-7200

ENGINEERING TEST REPORT

RADIO-FREQUENCY EMISSIONS TEST REPORT


FOR

HIGH READ-RATE
METER TRANSMITTING UNIT

Model 2009-010B
FCC ID: LLB09010B

August 27, 2009

Report Prepared by

James R. Pollock
Agency Certification Control Technician

TEST REPORT

INTRODUCTION

The Hexagram Model 2009-010B transceiver is a “Meter Transmitting Unit” (MTU) designed to provide remote meter reading capability for utility meters that provide a pulsed output. The transceiver is self-powered and connects to a meter pulse output with an electrical cable. An on-board battery provides power. The transmitter provides a very short, intermittent radio frequency transmission to send a remote reading of the meter. A microprocessor provides timing, control and data processing functions. The built in antenna is inaccessible to the user and no provision is made for an external antenna. The receiver can be used for upgrading firmware, requests for meter reads or other options available in the system. Due to software considerations two different units were used for testing. The serial number of each unit tested is shown in the appropriate section. There are no differences in the RF section of the units tested. This report presents the data obtained in support of an application for certification.

MEASUREMENTS PERFORMED

Power Output and Spurious Emissions with test set up photographs	Page 3
Occupied Bandwidth	Page 9
Frequency Stability vs. Temperature	Page 11
Frequency Stability vs. Supply Voltage	Page 12
Transient Stability	Page 14

The microprocessor and receiver portions of the transceiver were also examined for radiated emissions per Part 15, and have been verified to comply with the appropriate sections of that part. The data used for verification of the microprocessor and receiver is presented in a separate report.

POWER OUTPUT AND SPURIOUS EMISSIONS

Within the tuning range of 450 – 470 MHz, the transmitter portion of the Model 2009-010B was examined at three fundamental frequencies and their harmonics. All measurements below 1 GHz were made at a 3-meter distance on the Smith Electronics open area test site located at 8200 Snowville Road, Brecksville, OH. Data pertinent to this site is on file with the FCC (Reg. #90938) and Industry Canada (File #4541A-1). The harmonic measurements above 1 GHz were made at a distance of 1 meter over a suitable ground plane. The measurements were made using the substitution method described in TIA/EIA-603-A.

Tuned dipoles were used for measurements below 1000 MHz and a wave-guide antenna was used above 1000 MHz. A spectrum analyzer was used as a receiver.

The transmitter was placed on a remotely rotatable, non-conducting test stand. This general set up is shown in Pictorial 1. Because of the intermittent nature of the normally operating transmitter a larger, external battery pack was connected directly to the transmitter and the transmitter was forced to continually transmit for these measurements. A ferrite bead was placed on the battery leads to minimize emissions that might come from the leads.

With the test receiver tuned to the unmodulated signal, the transmitter under test was rotated to the position of maximum signal. The receiving antenna was then varied between 1 and 4 meters in height to again maximize the signal. Measurements were made with the antennas positioned both vertically and horizontally and the maximum signals recorded.

Peak detection was used for the signals below 1000 MHz and average detection above 1000 MHz.

After the maximum received meter readings were obtained for each frequency and polarity, the transmitter under test was removed from the area and replaced by a signal generator and transmitting antenna. With the transmit antenna placed as close as possible to the position of the test unit, the signal generator was activated at a test frequency. With the signal detected, the receiving antenna was positioned for maximum reception. The signal generator output was then adjusted until the received signal was equal to the previously received signal from the unit under test. These measurements were repeated for each frequency and antenna orientation and the maximum values obtained are noted in Tables 1a – 1c.

In order to convert the signal generator output value to equivalent radiated power from a dipole, the following equation is used:

$$P_d = P_g - \text{cable loss(dB)} + \text{antenna gain(dB}_d\text{)}$$

where:

P_d is the dipole equivalent power in dBm, P_g is the generator output into the substitution antenna, also in dBm, and “antenna gain” is the gain of the substitution antenna with respect to a theoretical dipole.

According to 90.210(d)(3) all emissions greater than 12.5 kHz from the center of the authorized band shall be attenuated below the unmodulated carrier by $50 + 10\log(P)$.

The determined power outputs, the required harmonic attenuation as well as the attenuation for each harmonic are found in Tables 1a – 1c.

PICTORIAL 1
HEXAGRAM MODEL 2009-010B MTU
OUTPUT POWER AND SPURIOUS EMISSIONS
TYPICAL TEST SETUP

TABLE 1a
HEXAGRAM MODEL 2009-010B TRANSMITTER
SUBSTITUTION METHOD
450 MHz

Horizontal 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBD)	Dipole Eq. Power (dBm)	Difference (dB)
450	16.8	2.0	-0.4	14.4	
900	-41.5	2.9	-0.7	-45.1	-59.5

Output = 14.4 dBm
= 0.028 W
Req. Att.= 34.4 dBm

Horizontal 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBD)	Dipole Eq. Power (Dbm)	Difference (dB)
1350	-43.4	0.9	5.5	-38.8	-53.2
1800	-41.9	1.0	5.9	-37.0	-51.4
2250	-47.6	1.2	6.8	-42.0	-56.4
2700	-42.4	1.3	7.7	-36.0	-50.4
3150	-41.3	1.5	7.8	-35.0	-49.4
3600	-37.3	1.6	7.8	-31.1	-45.5
4050	-27.3	1.7	7.7	-21.3	-35.7
4500	-28.0	1.8	8.3	-21.5	-35.9

Vertical 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBD)	Dipole Eq. Power (dBm)	Difference (dB)
450	30.5	2.0	-0.4	28.1	
900	-43.2	2.9	-0.7	-46.8	-74.9

Output = 28.1 dBm
= 0.646 W
Req. Att.= 48.1 dBm

Vertical 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBD)	Dipole Eq. Power (Dbm)	Difference (dB)
1350	-51.4	0.9	5.5	-46.8	-74.9
1800	-37.5	1.0	5.9	-32.6	-60.7
2250	-50.7	1.2	6.8	-45.1	-73.2
2700	-41.1	1.3	7.7	-34.7	-62.8
3150	-40.1	1.5	7.8	-33.8	-61.9
3600	-37.5	1.6	7.8	-31.3	-59.4
4050	-26.7	1.7	7.7	-20.7	-48.8
4500	-30.8	1.8	8.3	-24.3	-52.4

TABLE 1b
HEXAGRAM MODEL 2009-010B TRANSMITTER
SUBSTITUTION METHOD
460 MHz

Horizontal 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBD)	Dipole Eq. Power (dBm)	Difference (dB)
460	16.0	2.1	-0.4	13.5	
920	-34.8	3.0	-0.6	-38.4	-51.9

Output = 13.5 dBm
= 0.022 W
Req. Att.= 33.5 dBm

Horizontal 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBD)	Dipole Eq. Power (dBm)	Difference (dB)
1380	-38.0	0.9	5.6	-33.3	-46.8
1840	-40.4	1.0	5.9	-35.5	-49.0
2300	-45.2	1.2	7.0	-39.4	-52.9
2760	-44.2	1.3	7.7	-37.8	-51.3
3220	-40.9	1.5	7.8	-34.6	-48.1
3680	-36.2	1.6	7.7	-30.1	-43.6
4140	-32.3	1.7	7.8	-26.2	-39.7
4600	-31.4	1.9	8.4	-24.9	-38.4

Output = 27.6 dBm
= 0.575 W
Req. Att.= 47.6 dBm

Vertical 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBD)	Dipole Eq. Power (dBm)	Difference (dB)
460	30.1	2.1	-0.4	27.6	
920	-36.6	3.0	-0.6	-40.2	-67.8

Vertical 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBD)	Dipole Eq. Power (dBm)	Difference (dB)
1380	-43.8	0.9	5.6	-39.1	-66.7
1840	-37.3	1.0	5.9	-32.4	-60.0
2300	-51.1	1.2	7.0	-45.3	-72.9
2760	-40.0	1.3	7.7	-33.6	-61.2
3220	-38.6	1.5	7.8	-32.3	-59.9
3680	-35.5	1.6	7.7	-29.4	-57.0
4140	-26.9	1.7	7.8	-20.8	-48.4
4600	-36.6	1.9	8.4	-30.1	-57.7

TABLE 1c
HEXAGRAM MODEL 2009-003 TRANSMITTER
SUBSTITUTION METHOD
470 MHz

Horizontal 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBd)	Dipole Eq. Power (dBm)	Difference (dB)
470	15.0	2.1	-0.4	12.5	
940	-37.9	3.0	-0.6	-41.5	-54.0

Output = 12.5 dBm
= 0.018 W
Req. Att.= 32.5 dBm

Horizontal 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBd)	Dipole Eq. Power (Dbm)	Difference (dB)
1410	-35.4	0.9	5.7	-30.6	-43.1
1880	-43.3	1.1	5.9	-38.5	-51.0
2350	-46.0	1.2	7.2	-40.0	-52.5
2820	-42.7	1.4	7.7	-36.4	-48.9
3290	-38.4	1.5	7.8	-32.1	-44.6
3760	-32.6	1.6	7.7	-26.5	-39.0
4230	-34.1	1.8	7.9	-28.0	-40.5
4700	-35.2	1.9	8.4	-28.7	-41.2

Output = 25.5 dBm
= 0.355W
Req. Att.= 45.5 dBm

Vertical 3 meter measurement using tuned dipole antenna

Freq. (MHz)	Gen. Output (dB)	Coax Loss (dB)	Ant. Gain (dBd)	Dipole Eq. Power (dBm)	Difference (dB)
470	28.0	2.1	-0.4	25.5	
940	-37.3	3.0	-0.6	-40.9	-66.4

Vertical 1 meter measurement using horn antenna

Freq. (MHz)	Gen. Output (dBm)	Coax Loss (dB)	Ant. Gain (dBd)	Dipole Eq. Power (Dbm)	Difference (dB)
1410	-43.0	0.9	4.4	-39.5	-65.0
1880	-43.2	1.1	4.7	-39.6	-65.1
2350	-51.0	1.2	6.7	-45.5	-71.0
2820	-47.4	1.4	7.9	-40.9	-66.4
3290	-42.1	1.5	8.1	-35.5	-61.0
3760	-33.1	1.6	7.9	-26.8	-52.3
4230	-37.1	1.8	8.5	-30.4	-55.9
4700	-43.0	1.9	9.6	-35.3	-60.8

TEST EQUIPMENT USED**Spectrum Analyzer**

Hewlett-Packard Model 8563A Spectrum Analyzer
SN: 3020AO0522 Cal Due: 9/2009

Antennas

(2x) ETS-Lindgren Model DB-4 Tuned Dipole
Frequency Range 400 – 1000 MHz

(2x) ETS-Lindgren Model 3115 Double Ridged
Guide Horn
Frequency Range 0.75 – 18 GHz

Signal Generator

Hewlett-Packard Model 8340B,
S/N 3010A01889 Cal Due: 6/2010

Miscellaneous

12.2 m RG-213/U coaxial cable

22.5 m LMR-400 coaxial cable

3.0 m RG-213/U coaxial cable

3.0 m RG-213/U coaxial cable

Tests Performed

August 20-21, 2009

Unit Tested: 2009-010B Rev A SN—0016

OCCUPIED BANDWIDTH

The emissions close to the center of the specified channel are limited by the emissions masks described in 90.210. For the frequency range of the 2009-010B transmitter, Mask D is specified. From the center frequency of the band ± 5.625 kHz, 0 dB of attenuation is required. From 5.625 kHz to 12.5 kHz from the center frequency, attenuation must be at least $7.27(f_d - 2.88$ kHz) dB, where f_d is the displacement frequency from the center of the band in kHz.

At more than 12.5 kHz from the band center, the attenuation must be 70 dB or $50 + 10 \log(P)$, whichever is less. Since the maximum P was determined to be 0.646 W, $50 + 10 \log(0.646)$ equals 48.1 dB.

Both modulated and unmodulated transmissions were stored on the spectrum analyzer display. The plot of Fig. 1 shows both signals with Mask D superimposed on the plot. The plot indicates that the modulated emission does comply with the requirement for occupied bandwidth as found in 90.210.

For purposes of this test, the modulated signal was PN9 modulated at the specified 7200 bits per second data rate.

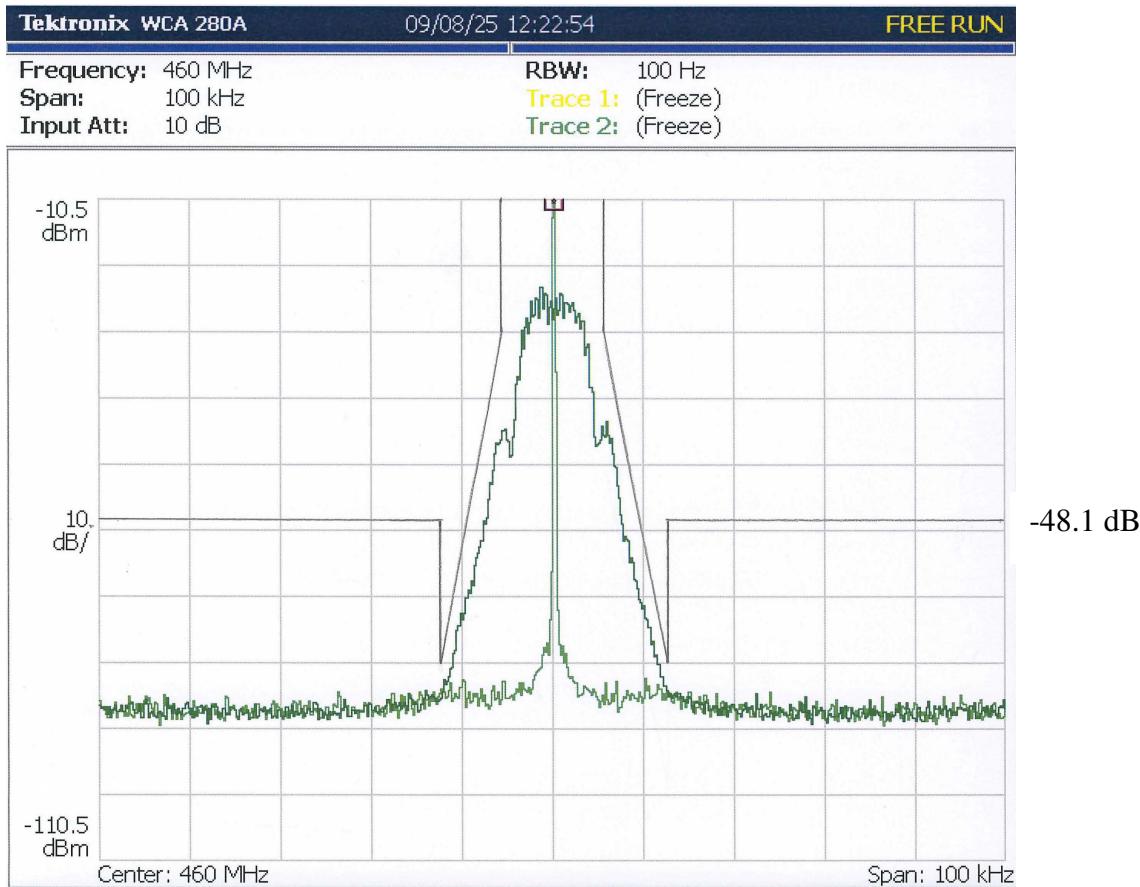


Fig. 1
 Hexagram Model 2009-010B
 Emissions Mask

TEST EQUIPMENT USED

<u>Spectrum Analyzer</u>	Tektronix Model WCA 280A SN: J300168 Cal Due: 7/2010
<u>Antenna</u>	Generic whip antenna
<u>Test Performed</u>	August 24, 2009

Unit Tested: 2009-010B Rev A SN—0016

FREQUENCY STABILITY VS. TEMPERATURE

The temperature stability of the frequency generating components of the transmitter was observed. The transmitter was placed in a temperature chamber with a programming coil that allows a transmission to be requested from outside the chamber. A receiving antenna outside the chamber picked up the transmitted signal, which was fed to the spectrum analyzer.

With the transmitter programmed to transmit at 460 MHz, the chamber temperature was set to 20° C. After reaching the set temperature, the transmitter was allowed to stabilize. The transmitted signal was captured by the spectrum analyzer and the frequency was determined. The temperature in the chamber was then increased to 30° C. At each temperature, at least 20 minutes were allowed for stabilization of the transmitter, a transmission was made and the frequency determined. The temperature was increased in 10° C intervals to 80° C and then to 85° C. The temperature was then returned to 20° C. stabilized and the decreased to -30° C in 10° intervals. The temperature was stabilized at each 10° interval before a reading was made. The frequency at each temperature was recorded, compared to the 460 MHz tuned frequency, and is recorded in Table 2. It can be seen from the table that all readings are within the deviation limit of ± 2.5 ppm or 1150 Hz at 460 MHz.

TABLE 2
FREQUENCY STABILITY
VS. TEMPERATURE
460 MHz

Temperature ° C	Measured Frequency MHz	Dev. Hz	Dev. ppm
+20	460.000234	234	+0.51
+30	460.000234	234	+0.51
+40	460.000234	234	+0.51
+50	460.000234	234	+0.51
+60	460.000313	313	+0.68
+70	460.000313	313	+0.68
+80	460.000313	313	+0.68
+85	460.000313	313	+0.68
+20	460.000313	313	+0.68
+10	460.000313	313	+0.68
0	460.000313	313	+0.68
-10	460.000391	391	+0.85
-20	460.000313	313	+0.68
-30	460.000313	313	+0.68
+20	460.000234	234	+0.51

Reference frequency = 460.000000 MHz

FREQUENCY STABILITY VS. SUPPLY VOLTAGE

To vary the DC test voltage, a variable DC source was connected to the transmitter, bypassing the battery. The frequency was measured at the TIA default standard of 7.50 V (2x3.75 V) of the Lithium Ion battery pack, and at, or below, the 85% level of 6.37 V.

With the voltage set to a measurement point, the transmitted signal was captured by a spectrum analyzer and the frequency value determined. The frequencies are compared to the tuned frequency. The data for these measurements are found in Table 3. Again, it can be seen that all values obtained are within the deviation limit of ± 2.5 ppm or 1150 Hz at the 460 MHz test frequency.

TABLE 3
FREQUENCY STABILITY
VS. SUPPLY VOLTAGE
460 MHz

INPUT Volts	Measured Frequency MHz	Dev. Hz	Dev. ppm
7.5 VDC	460.000166	+166	+0.36
7.0 VDC	460.000166	+166	+0.36
6.5 VDC	460.000176	+176	+0.38
6.3 VDC	460.000176	+176	+0.38
6.0 VDC	460.000176	+176	+0.38
5.75 VDC	460.000176	+176	+0.38
5.0 VDC	460.000186	+186	+0.40

Reference frequency = 460.000000 MHz

TEST EQUIPMENT USED**Spectrum Analyzer**

Tektronix Model WCA 280
S/N J300168 Cal Due: 7/2010

Antenna

Generic whip antenna

DC Power Supply

Mastech Model HY1503D
SN: 0036790

Digital Multi-Meter

Fluke Model 179
Cal. Due: 5/1/2010

Temperature Chamber

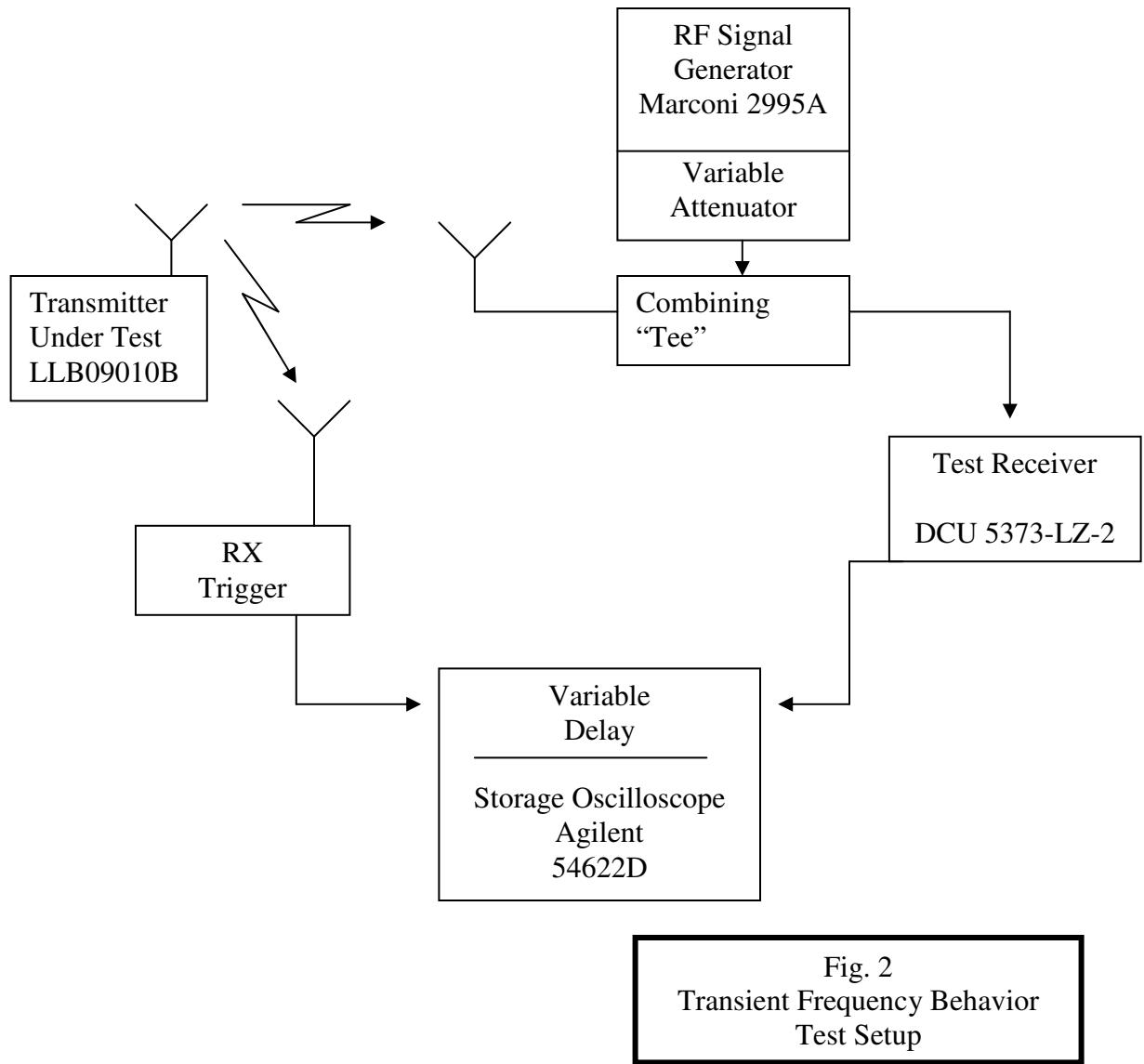
Test Equity Model 1007H
Cal. due: 2/12/2010

Tests Performed

Temperature August 24, 2009
Voltage August 25, 2009

Temperature

Unit Tested: 2009-010B Rev A SN—0016


Voltage

Unit Tested: 2009-010B Rev A SN—0001

TRANSIENT STABILITY

The transient stability measurements indicate the variation in tuned frequency during the brief interval of time during the start of the transmission and at the end of the transmission.

The Model 2009-010B transmitter was tested for transient frequency behavior using the test method of TIA/EIA-603. A block diagram of the test setup is seen in Fig. 2. A model DCU-1 receiver with an audio bandwidth of 16 kHz (low Pass) was used. The storage oscilloscope was triggered by the radiated signal from the transmitter. Appropriate delay was provided by the digital delay circuitry of the oscilloscope. The 1 kHz test signal was provided by the Marconi signal generator. The generator's output control was used to insure that the test signal was at least 50 dB below the received signal level from the 2009-010B.

Test Requirements

The test requirements per 90.214 are:

1. Frequency deviation during t_1 (10 ms duration after t_{on}) may be greater than ± 12.5 kHz because the output power is less than 6 Watts.
2. Frequency deviation during t_2 (25 ms duration after t_1) must be less than ± 6.25 kHz.
3. Frequency deviation after t_2 must be less than ± 2.5 ppm, or ± 1150 Hz at 460 MHz.
4. Frequency deviation during t_3 (10 ms duration after transmitter is turned off) may exceed ± 12.5 kHz because output power is less than 6 Watts.

Test Data

Figures 3 through 7 show the Model 2009-010B's transient frequency characteristics. The limit masks are indicated on each of the figures.

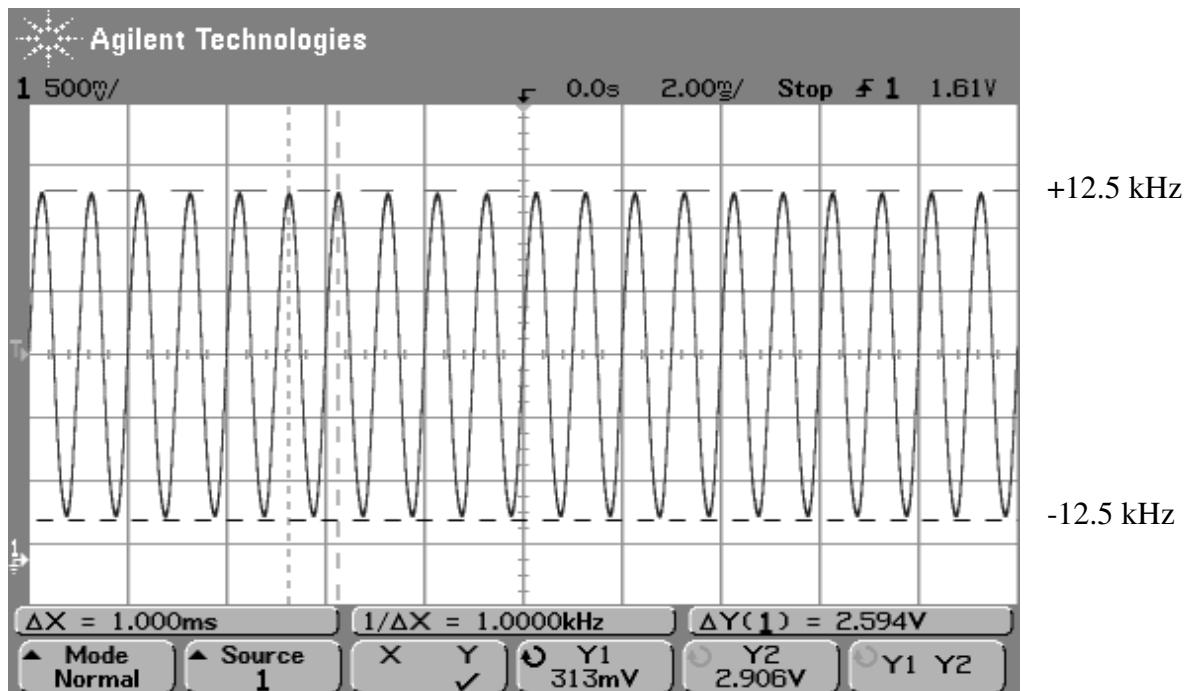


Fig. 3 ± 12.5 kHz modulated test signal .

$$\pm 12.5 \text{ kHz} = 2.594 \text{ V}$$

$$\pm 6.25 \text{ kHz} = 1.297 \text{ V}$$

$$\pm 1.15 \text{ kHz} = 239 \text{ mV}$$

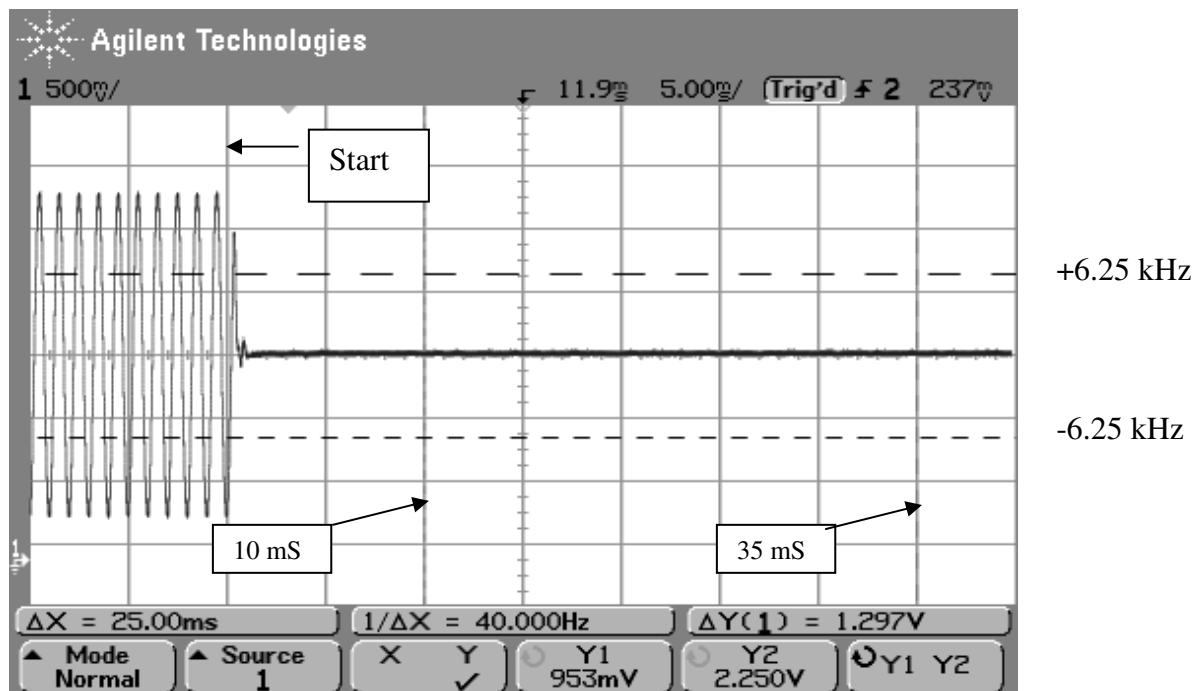


Fig. 4 Start of Transmission

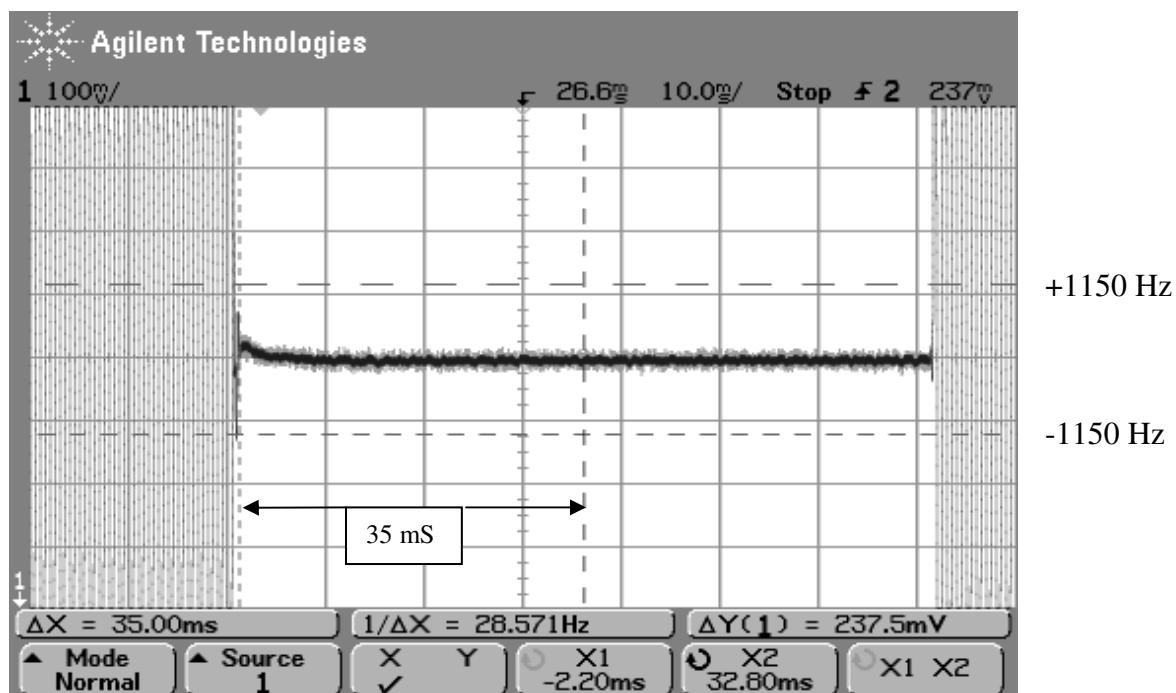


Fig. 5 Full Transmission

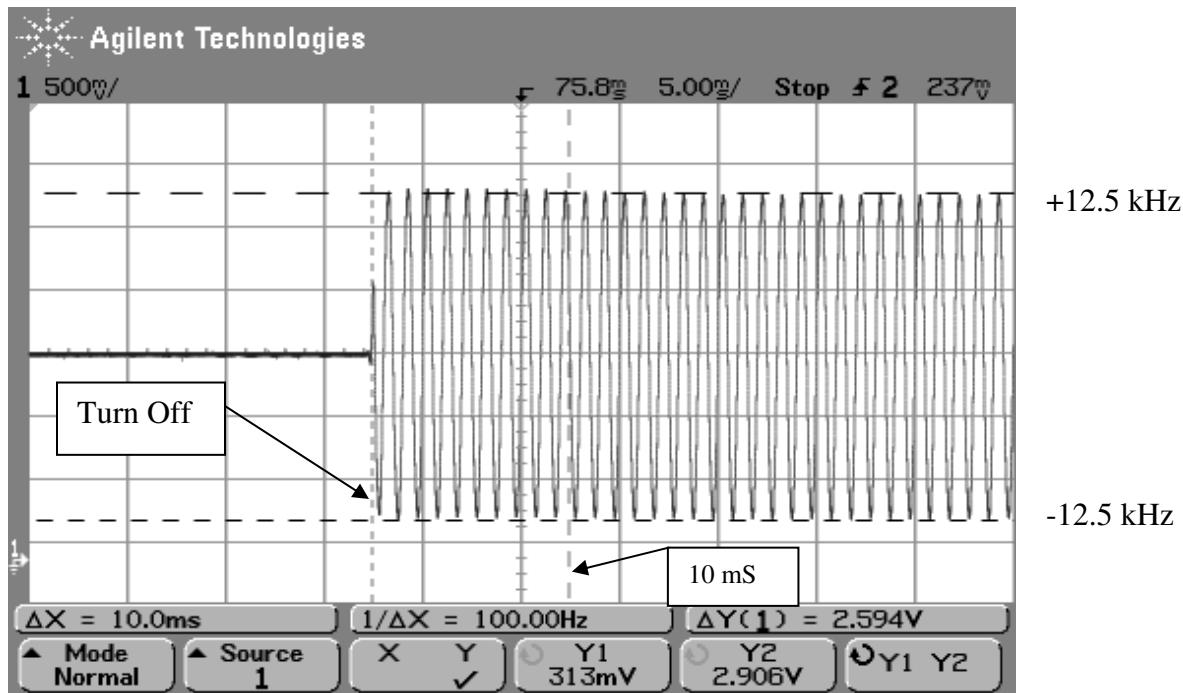


Fig. 6 Turn Off Transient

The modulated signal appears well within the allowed 10 ms and does not exceed ± 12.5 kHz beyond 10 ms.

TEST EQUIPMENT USED

Signal Generator Marconi Model 2955A/SN: 132004/153
Cal. Due: 9/2009

Test Receiver Hexagram Broadband Receiver

Oscilloscope Agilent Model 54622D
SN: MY40003551 Cal Due: 11/20009

RF Trigger Hexagram Detector Circuit

Test Performed August 25, 2009

Unit Tested: 2009-010B Rev A SN—0016

TEST INFORMATION**SUMMARY**

The Hexagram Model 2009-010B transmitter has been shown to be capable of complying with those requirements of the Federal Communications Commission for a Part 90 transmitter that are covered by this report.

EQUIPMENT UNDER TEST

“MTU” Transmitter, Model 2009-010B

MANUFACTURER

Hexagram, Inc.
30400 Solon Rd.
Solon, OH 44139

TEST DATES

April 23 – May 5, 2009

OPEN AREA TEST SITE

Smith Electronics, Inc.
8200 Snowville Road
Cleveland, OH 44141
(330) 289-9306

FCC (Reg. #90938)
Industry Canada (File #4541A-1).