

Bookmarks are enabled in this document

Test of CISCO 74-3625,
802.11b/g Wireless Module

To FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No; TUVR74-A1 REV B

TEST REPORT
FROM
MiCOMLabs

Test of CISCO 74-3625, 802.11b/g Wireless Module

To FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: TUVR74-A1 Rev B

This report supersedes: TUVR74-A1 Rev A

Manufacturer: Cisco Systems
170 W. Tasman Ave
San Jose
California 95134, USA

Product Function: 802.11b/g Wireless Access Point

Copy No: pdf **Issue Date:** 25th April '05

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

3922 Valley Avenue, Suite B
Pleasanton, California 94566, USA
Phone: 925.462.0304
Fax: 925.462.0306
www.micomlabs.com

2106

MiCOM Labs is a UKAS (United Kingdom Accreditation Service)

Accredited Test Laboratory

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 2 of 84

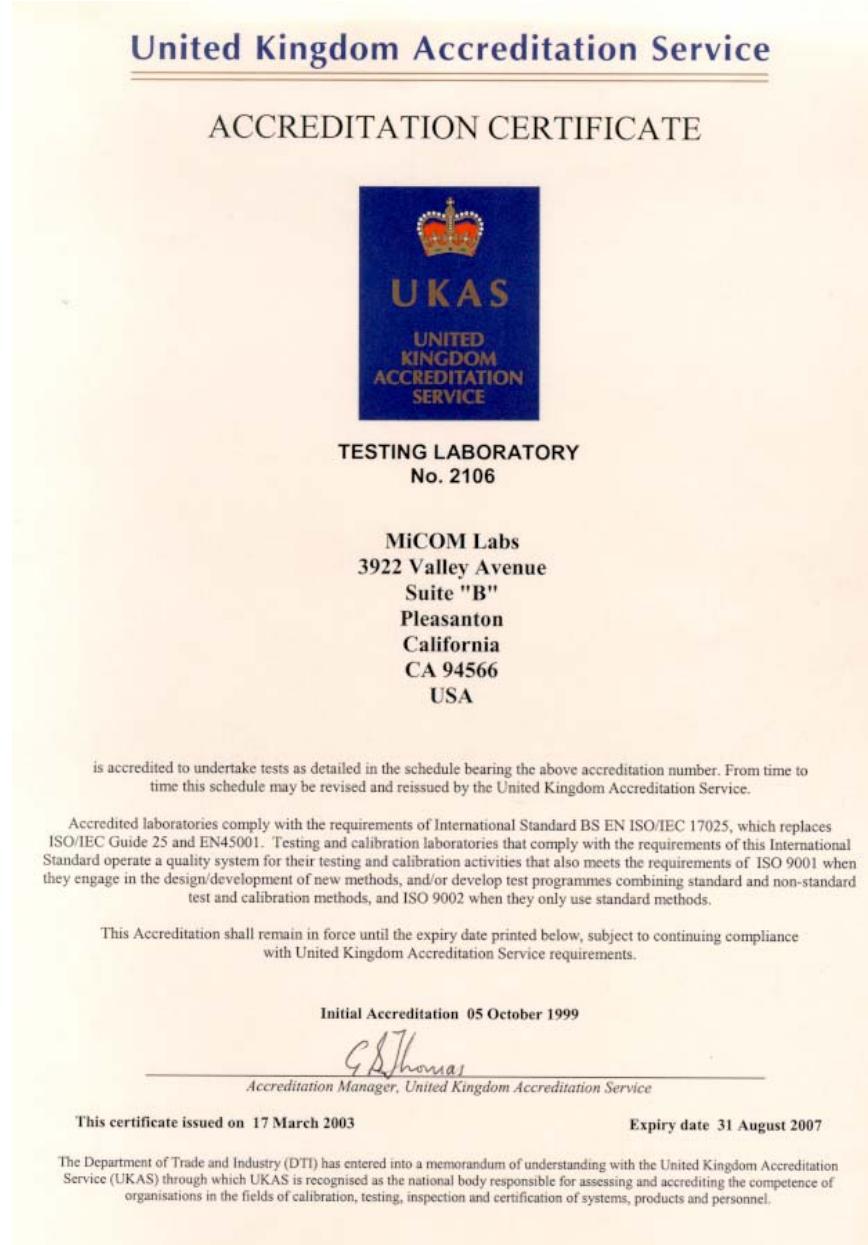
This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATE	7
2. REFERENCES AND MEASUREMENT UNCERTAINTY	8
2.1. Normative References	8
2.2. Test and Uncertainty Procedures	8
3. PRODUCT DETAILS AND TEST CONFIGURATIONS	9
3.1. Technical Details	9
3.2. Scope of Test Program	10
3.3. Equipment Model(s) and Serial Number(s)	11
3.4. Antenna Details	11
3.5. Cabling and I/O Ports	11
3.6. Test Configurations	11
3.7. Equipment Modifications	12
3.8. Deviations from the Test Standard	12
3.9. Subcontracted Testing	12
4. TEST SUMMARY	13
5. TEST RESULTS	15
5.1. Device Characteristics	15
5.1.1. <i>6dB and 99% Bandwidth</i>	15
5.1.2. <i>Peak Output Power</i>	22
5.1.3. <i>Peak Power Spectral Density</i>	28
5.1.4. <i>Maximum Permissible Exposure</i>	33
5.1.5. <i>Conducted Spurious Emissions</i>	34
5.1.6. <i>Radiated Emissions</i>	45
5.1.7. <i>AC Wireline Conducted Emissions (150KHz – 30MHz)</i>	75
6. TEST SET-UP PHOTOGRAPHS	79
6.1. Radiated Emissions (30MHz-1GHz)	79
6.2. Spurious Emissions >1GHz	80
6.3. Conducted Emissions (150KHz - 30MHz)	81
6.4. General Measurement Test Set-Up	82
6.5. CISCO 74-3625 802.11b/g Module Labels	83
7. TEST EQUIPMENT DETAILS	84

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.



Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 4 of 84

ACCREDITATION & LISTINGS

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the United Kingdom Accreditation Service (UKAS) www.ukas.org test laboratory number 2106. MiCOM Labs test schedule is available at the following URL;

http://www.ukas.org/testing/lab_detail.asp?lab_id=875&location_id=&vMenuOption=3

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 5 of 84

LISTINGS

MiCOM Labs test facilities are listed by the following organizations;

North America

United States of America

Federal Communications Commission (FCC) Listing #: **102167**

Canada

Industry Canada (IC) Listing #: **4143**

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 6 of 84

DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft	8 th April 05	
Rev A	8 th April 05	
Rev B	25 th April '05	Update to Section 3.4 Antenna Details

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 7 of 84

1. TEST RESULT CERTIFICATE

Manufacturer:	Cisco Systems 170 W. Tasman Ave San Jose California 95134, USA	Tested By:	MiCOM Labs, Inc. 3922 Valley Avenue 'B' Pleasanton California, 94566, USA
EUT:	802.11b/g Wireless Module	Tel:	+1 925 462 0304
Model #:	CISCO 74-3625 Rev 4	Fax:	+1 925 462 0306
S/N:	FOC09010026		
Test Date(s):	22nd - 31st Mar '05	Website:	www.micomlabs.com

STANDARD(S)	TEST RESULTS
FCC 47 CFR Part15.247 & IC RSS-210	EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve
Quality Manager MiCOM Labs, Inc.

Gordon Hurst
President & CEO MiCOM Labs, Inc.

2106

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2004	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 5 Nov. 2001	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9KHz to 40GHz
(iv)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(v)	M 3003	Edit 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vi)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(vii)	ETSI TR 100 028 V1.4.1	2002-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(viii)	UKAS LAB 1	Edition 4 May 2004	Reference to Accreditation for Laboratories.
(ix)	DTI URN 98/997	1998	Conditions for the use of National Accreditation Marks by UKAS and UKAS Accredited Organizations.

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, Normative Reference (iii).

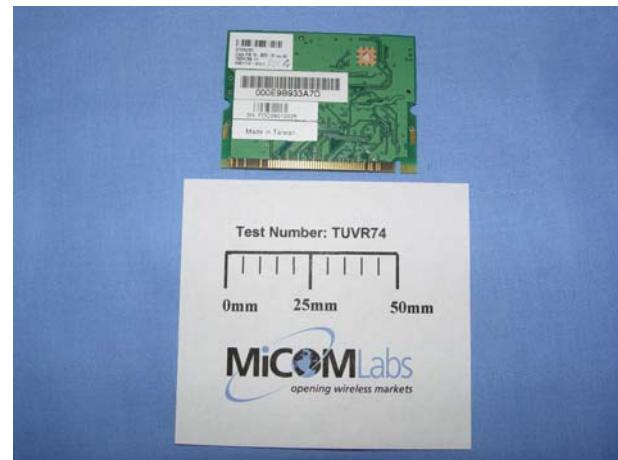
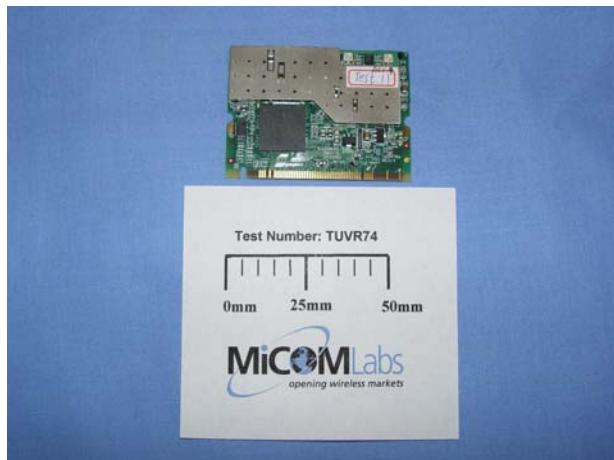
Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95% in accordance with UKAS document M 3003, Normative Reference (v).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details



Details	Description
Purpose:	Test of the CISCO 74-3625 wireless module to FCC and Industry Canada regulations
Applicant:	TUV Rheinland of N. America 1279 Quarry Lane Suite A California, 94566, USA
Manufacturer:	Cisco Systems 170 W. Tasman Ave San Jose California 95134, USA
Laboratory performing the tests:	MiCOM Labs, Inc. 3922 Valley Avenue, Suite "B" Pleasanton, California 94566 USA
Test report reference number:	TUVR74-A1 Rev B
Date EUT received:	22 nd March '05
Standard(s) applied:	FCC 47 CFR Part15.247 & IC RSS-210
Dates of test (from - to):	22nd - 31st Mar '05
Type of Equipment:	802.11b,g Wireless Access Point
Manufacturers Trade Name:	CISCO 74-3625
Model:	CISCO 74-3625 Rev 4
Location for use:	Indoor use only
Declared Frequency Range(s):	2,412 – 2,462MHz
Type of Modulation:	Per 802.11b – DBPSK, DQPSK, CCK Per 802.11g – OFDM
Declared Nominal Peak Output Power:	802.11b: +24 dBm 802.11g: +22 dBm See Section 5.1.2 Peak Output Power for exception
Transmit/Receive Operation:	Simplex
Rated Input Voltage and Current:	3.3Vdc nominal, 800mA
Operating Temperature Range:	0 °C to +35°C
ITU Emission Designator:	802.11b – 15M5W7D 802.11g – 16M7W7D
Microprocessor(s) Model:	Atheros AR5213
Clock/Oscillator(s):	40MHz
Frequency Stability:	±20ppm
Equipment Dimensions:	2" X 2.5"
Weight:	0.2lbs
Primary function of equipment:	To initiate and receive data transmissions, telemetry and telecommand.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

3.2. Scope of Test Program

The scope of the test program was to test the CISCO 74-3625, 802.11b/g Wireless Module against the current FCC and Industry Canada specifications FCC Part 15.247 and IC RSS-210, Normative References (i) & (ii).

CISCO 74-3625 2.4GHz 802.11b/g Wireless Access Point Module

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 11 of 84

3.3. Equipment Model(s) and Serial Number(s)

Name	Manufacturer	Model No.	Serial No.
CISCO 74-3625	Foxconn	74-3625 Rev 4	FOC09010026
Laptop	Compaq Presario	2800	5Y25KSQZZ0WZ
AC/DC Adapter (65W)	Compaq	2X10390004	CT557C40CLLN Y05Q

3.4. Antenna Details

Antenna Type	Gain (dBi)	Manufacturer	Model No.	Serial No.
Swivel Mount Dipole	2.2	Radial	AIR-ANT4941	Not Available
Swivel Mount Dipole	2.2	Foxconn	23.7786.51	Not Available
Diversity Omni Ceiling	2.35	Cushcraft	AIR-ANT5959	Not Available
Ceiling Mount Omni	5.2	Cushcraft	AIR-ANT1728	Not Available

Only one of the dipole antennae was tested throughout this compliance program;

2.2dBi Radial AIR-ANT4941

3.5. Cabling and I/O Ports

Number and type of I/O ports

1.

3.6. Test Configurations

Matrix of test configurations

Operational Mode (802.11)	Operating Channel / Frequencies (MHz)	Maximum Data Rates (Mbps)	Data Rate(s) Selected for Test Purposes (Mbps)
b	1 / 2,412 6 / 2,437 11 / 2,462	11	11
g		54	54

Only worst case plots are provided for each test parameter are identified within this report. Plots not included are held on file by the test laboratory and available upon request with client permission.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. System power reduction required as a result of transmitter harmonic emission and band edge issues, see Section 5.1.2 Peak Output Power.

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing

Radiated emissions 30MHz-1GHz (Section 5.1.6.3) and AC Wireline Emissions (Section 5.1.7) were subcontracted to the following test facility;

Sanmina-SCI
Homologation Services
EMI Test Laboratory
2305 Mission College Blvd.
Santa Clara, California 95054
USA

Sanmina-SCI, NVLAP (National Voluntary Laboratory Accreditation Program) Lab Code 100411-0 is ISO/IEC 17025 accredited for emission testing.

Sanmina SCI: FCC Registration Number - **90844**

Sanmina SCI: Industry Canada Registration Number – **IC5541**

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the **FCC CFR47 Part 15.247** and **Industry Canada RSS-210**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) 5.9.1	6dB and 99% Bandwidth	>=500KHz	Conducted	Complies	5.1.1
15.247(b) 15.31(e) 6.2.2 (o) (b)	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85% -115%	Conducted	Complies	5.1.2
15.247(d) 6.2.2 (o) (b)	Peak Power Spectral Density	Shall not be greater than +8dBm in any 3kHz band	Conducted	Complies	5.1.3
15.247(b)(5) 14	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.4
15.247(c) 15.205(a) / 15.209(a) 6.2.2 (o) (e1)	Conducted Spurious Emissions (30-26GHz)	Band Edge Emission shall be at least 20dB below the highest in-band spectral density	Conducted	Complies	5.1.5
5.205(a) / 15.209(a) 6.3	Radiated Emissions	Restricted Bands	Radiated	Complies	5.1.6
	Transmitter Radiated Spurious Emissions	Emissions >1GHz (1-26GHz)		Complies	5.1.6.1
	Radiated Band Edge	Band edge results		Complies	5.1.6.2
	Radiated Emissions	Emissions <1GHz (30M-1GHz)		Complies	5.1.6.3

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 14 of 84

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.207 6.6	AC Wireline Conducted Emissions 150kHz– 30MHz	Conducted Emissions	Conducted	Complies	5.1.7

Note 1: Test results reported in this document relate only to the items tested

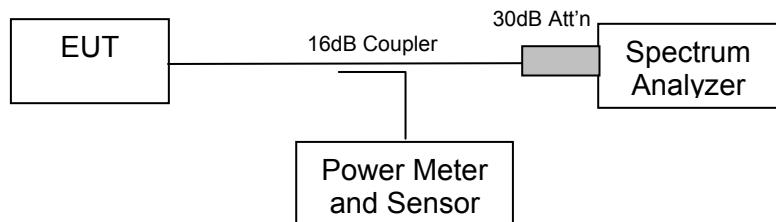
Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

5. TEST RESULTS

5.1. Device Characteristics


5.1.1. 6dB and 99% Bandwidth

FCC, Part 15 Subpart C §15.247(a)(2)
 Industry Canada RSS-210 §5.9.1

Test Procedure

The bandwidth at 6dB and 99% is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. Using a 6dB resolution bandwidth filter setting the spectrum analyzer was set to the following for both 6dB BW and 99% BW measurements;

Test Measurement Set up

Measurement set up for 6dB and 99% Bandwidth test

Measurement Results for 6dB and 99% Operational Bandwidth(s)

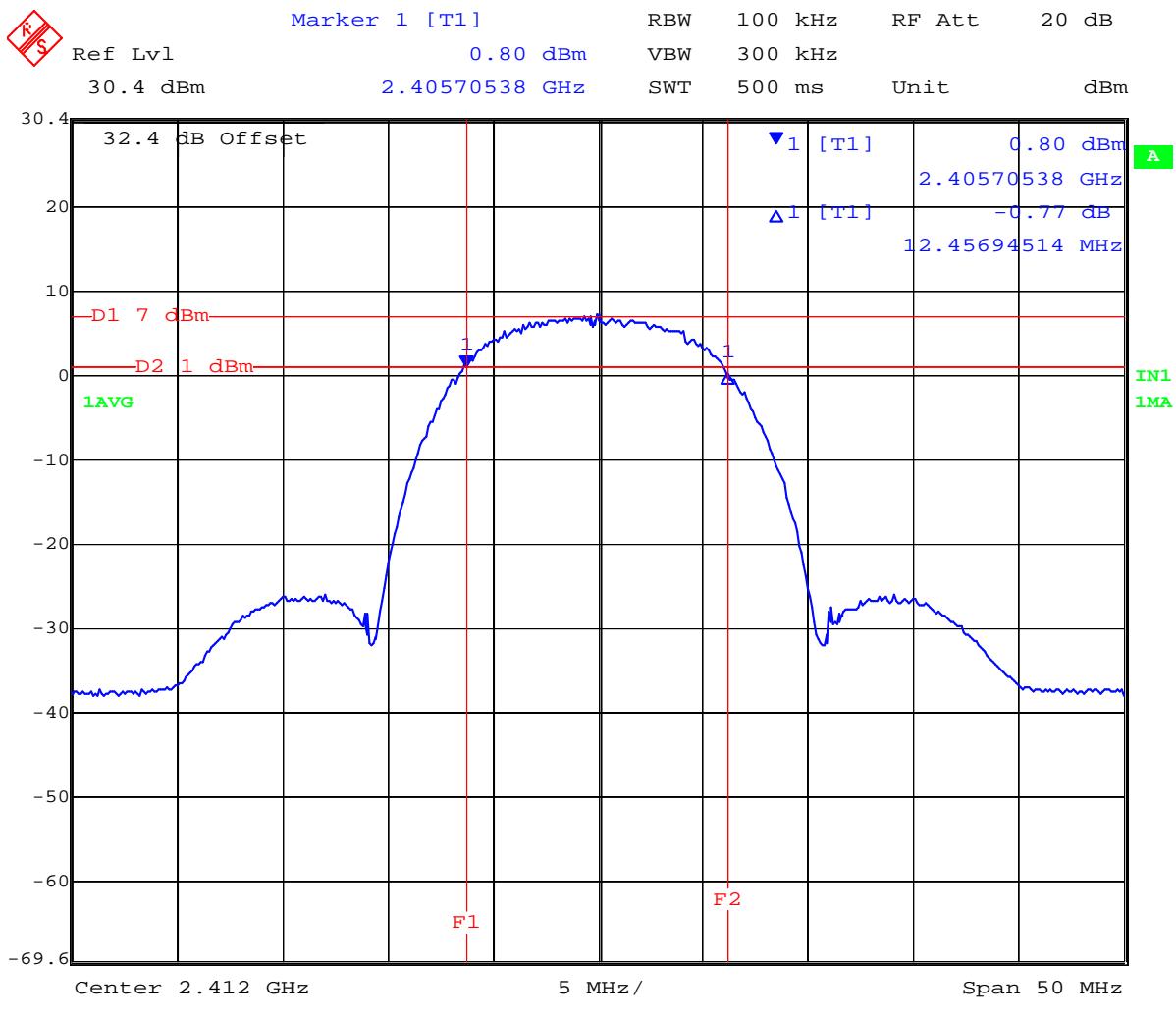
Ambient conditions.

Temperature: 19 to 26 °C Relative humidity: 31 to 57% Pressure: 999 to 1009 mbar

Radio Parameters:

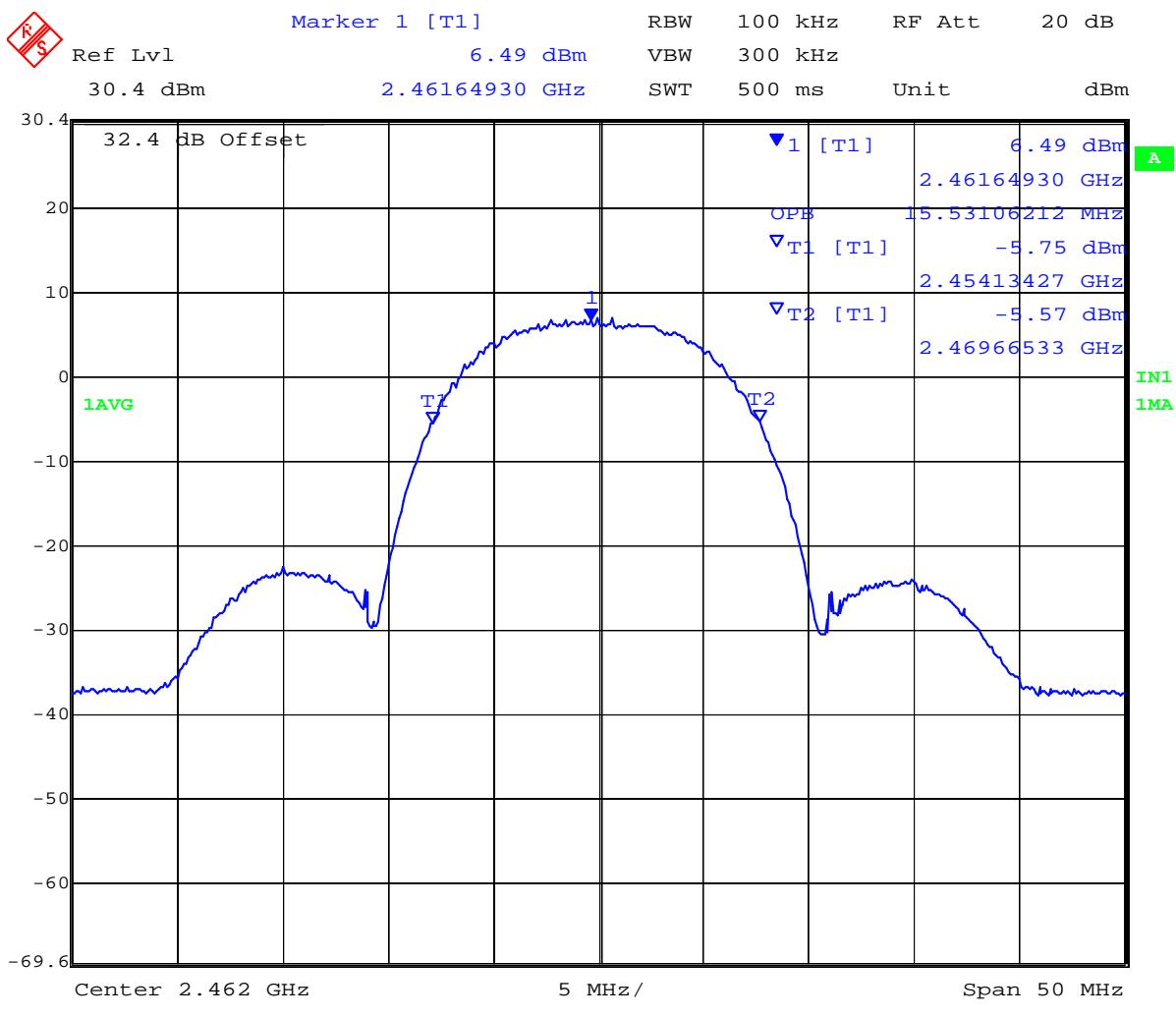
802.11b System S/W Setting(s):

Peak Power Setting(s) – Ch 1 +23.89 dBm, Ch 6 +23.34 dBm, +23.97 dBm


Data Rate 802.11b 11MBit/s

Duty Cycle – 100%

TABLE OF RESULTS – 802.11b 11Mbps


Center Frequency (MHz)	6dB Bandwidth (MHz)	99% BW (MHz)
2,412	12.4569	15.4309
2,437	12.2244	15.5311
2,462	12.1242	15.5311

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

6dB Bandwidth - 802.11b Channel 1

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

99% Bandwidth - 802.11b Channel 11

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 18 of 84

Radio Parameters:

802.11g System S/W Setting(s):

Peak Power Setting(s) – Ch 1 +21.25 dBm, Ch 6 +22.50 dBm, +19.36 dBm

Data Rate 802.11g, 54MBit/s

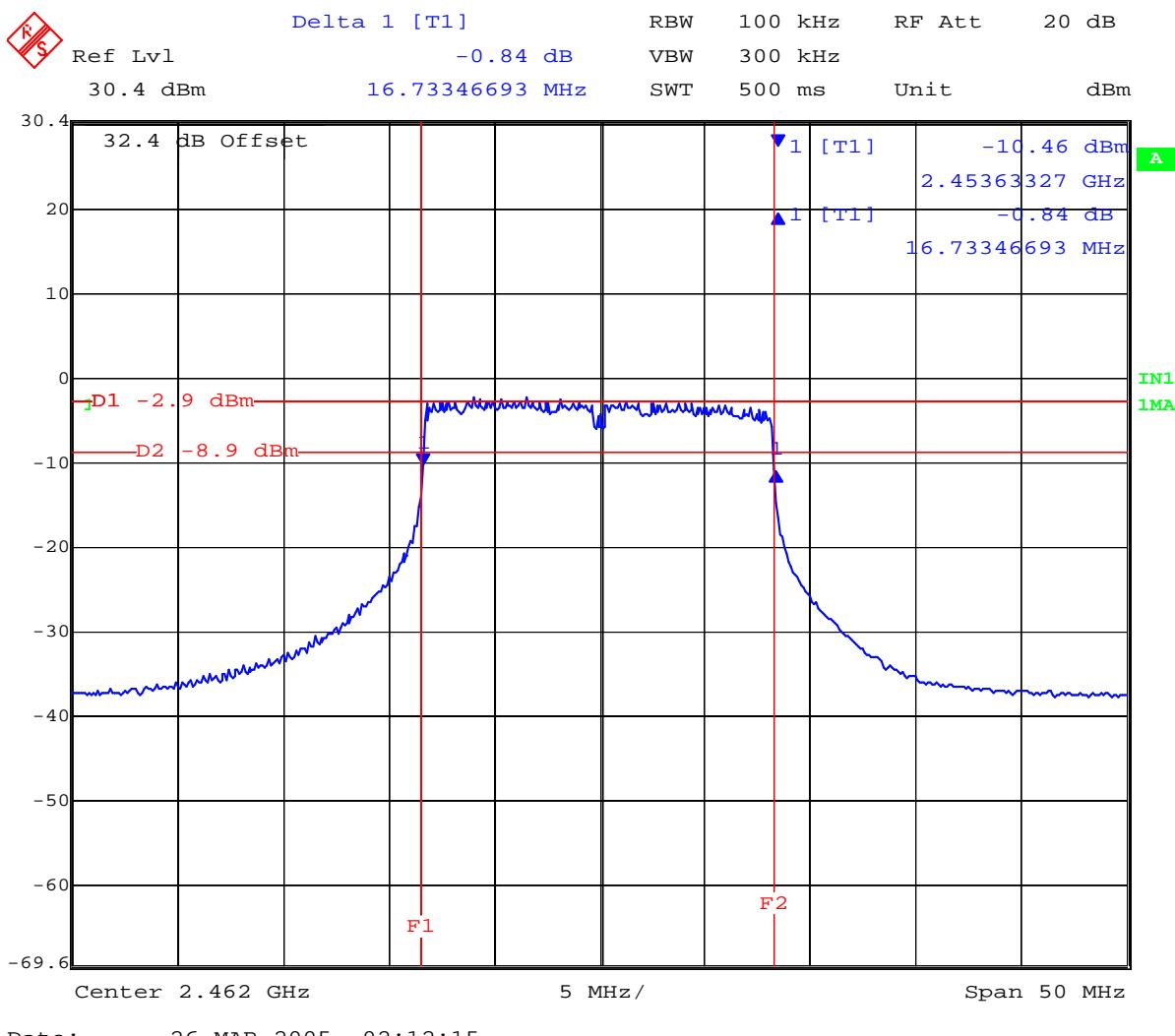
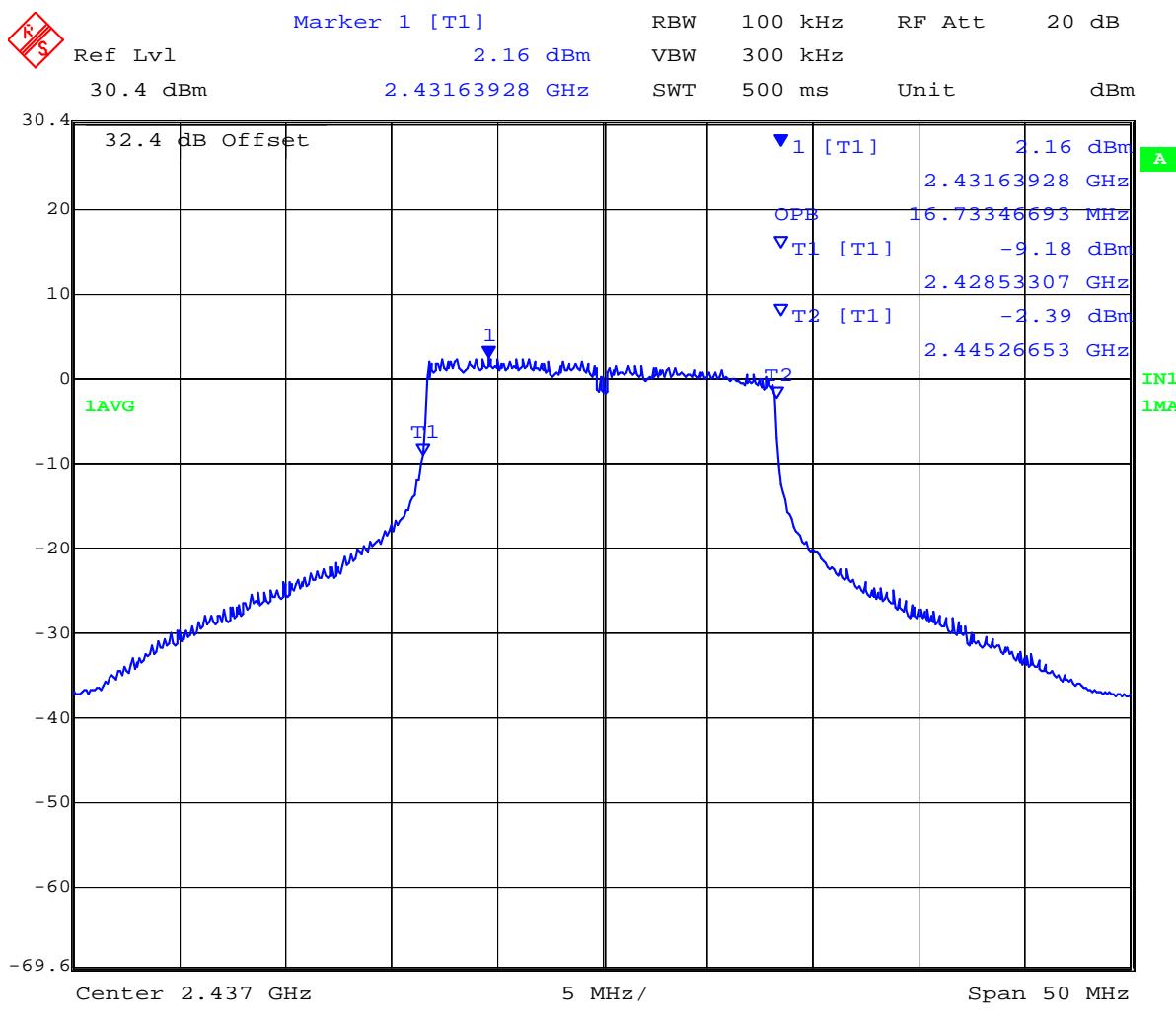

Duty Cycle – 100%

TABLE OF RESULTS – 802.11g 54Mbps

Center Frequency (MHz)	6dB Bandwidth (MHz)	99% BW (MHz)
2,412	16.7335	16.5331
2,437	16.6333	16.7335
2,462	16.7335	16.5331



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

6dB Bandwidth - 802.11g Channel 11

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Date: 26.MAR.2005 02:31:19

99% Bandwidth - 802.11g Channel 6

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 21 of 84

Specification

Limits

§15.247 (a)(2) For direct sequence systems the minimum 6dB bandwidth shall be at least 500KHz

Laboratory Measurement Uncertainty for Spectrum Measurement

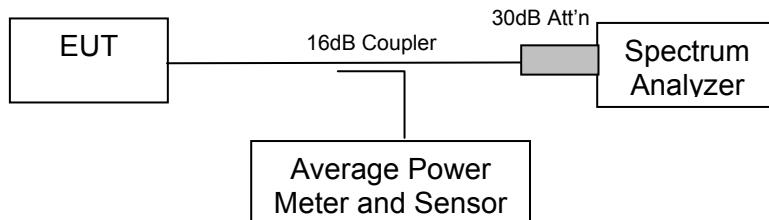
Measurement uncertainty	±2.81dB
-------------------------	---------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0156, 0193, 0252, 0313, 0314

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

5.1.2. Peak Output Power


FCC, Part 15 Subpart C §15.247(b)
Industry Canada RSS-210 §6.2.2(o)(b)

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak power. The resolution filter bandwidth was set to 3dB, peak detector selected and the analyzer built-in power function was used to measure peak power over the maximum 99% bandwidth observed.

Measurements were made while EUT was operating in a continuous transmission mode i.e. 100% duty cycle at the appropriate center frequency.

Test Measurement Set up

Measurement set up for Transmitter Peak Output Power

Antenna Gain - Maximum Allowable Power Level

If transmitting antennas of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the stated values by the amount in dB that the directional gain of the antenna exceeds 6dBi.

For antennas greater than 6 dBi;

Maximum allowable peak power = $+30 \text{ dBm} - (\text{Antenna Gain} - 6\text{dBi})$

Antenna Type	Antenna No.	Gain (dBi)	Antenna Gain >6dBi (dB)	Max. Allowable Peak Power (dBm)
Swivel Mount Dipole	4941	2.2	0	+30.0
Ceiling Mount Omni	1728	5.2	0	+30.0
Diversity Omni Ceiling	5959	2.0	0	+30.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 23 of 84

Measurement Results for Peak Output Power

Ambient conditions.

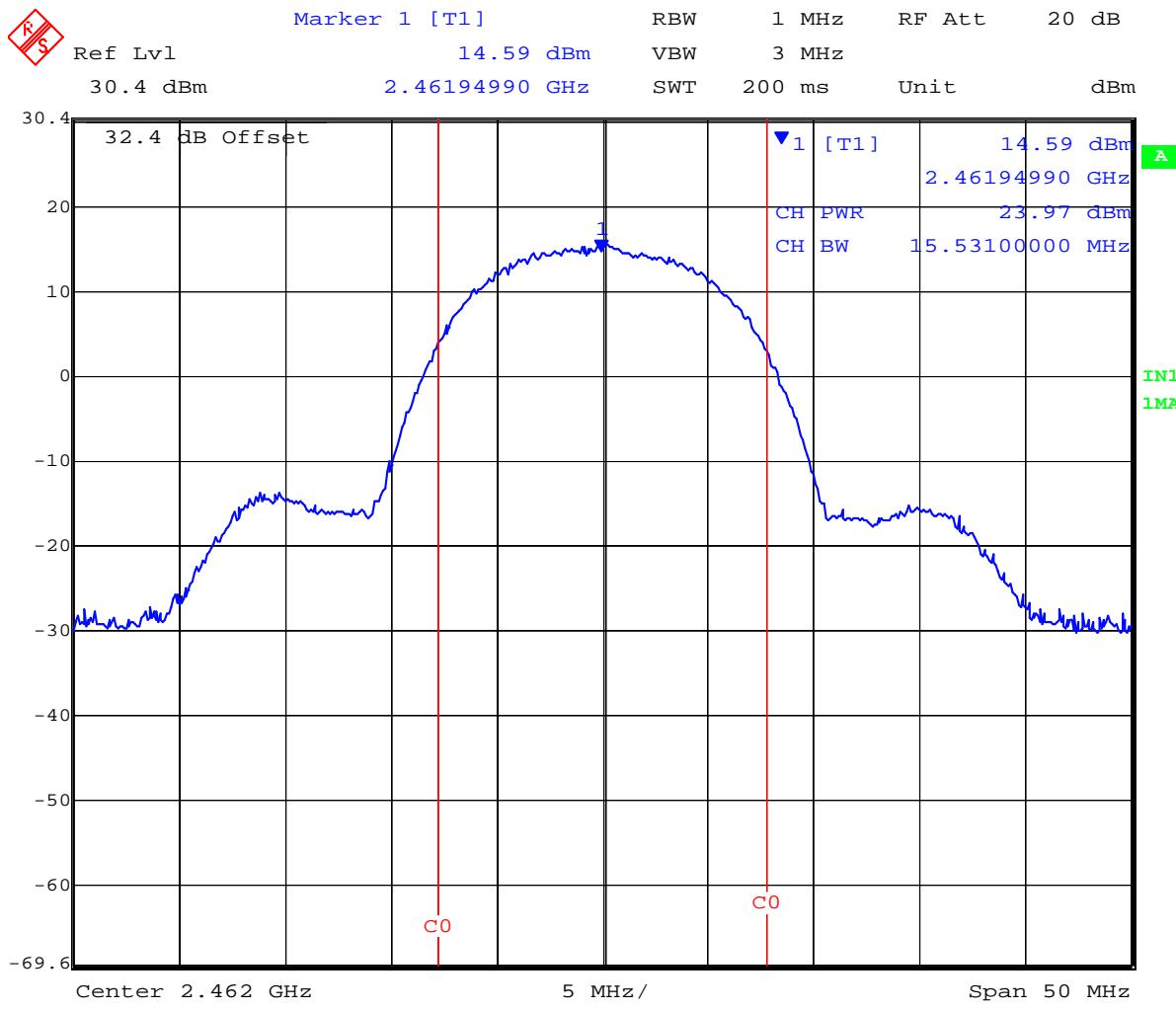
Temperature: 19 to 26 °C Relative humidity: 31 to 57% Pressure: 999 to 1009 mbar

802.11b S/W Setting(s):

Duty Cycle – 100%

Data Rate – 11MBit/s

TABLE OF RESULTS – 802.11b 11MBit/s


Center Frequency (MHz)	Measurement Bandwidth (MHz)	Measured Peak Power (dBm)
2,412	15.5311	23.89
2,437	15.5311	23.34
2,462	15.5311	23.97

PEAK POWER EIRP

Maximum Peak Power EIRP = maximum conducted power + antenna gain (dBi)

Antenna No.	Gain (dBi)	Max. Peak Power EIRP (dBm)
AIR-ANT4941	2.2	+26.17
AIR-ANT5959	2.0	+25.97
AIR-ANT1728	5.2	+29.17

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Peak Output Power - 802.11b Channel 11

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 25 of 84

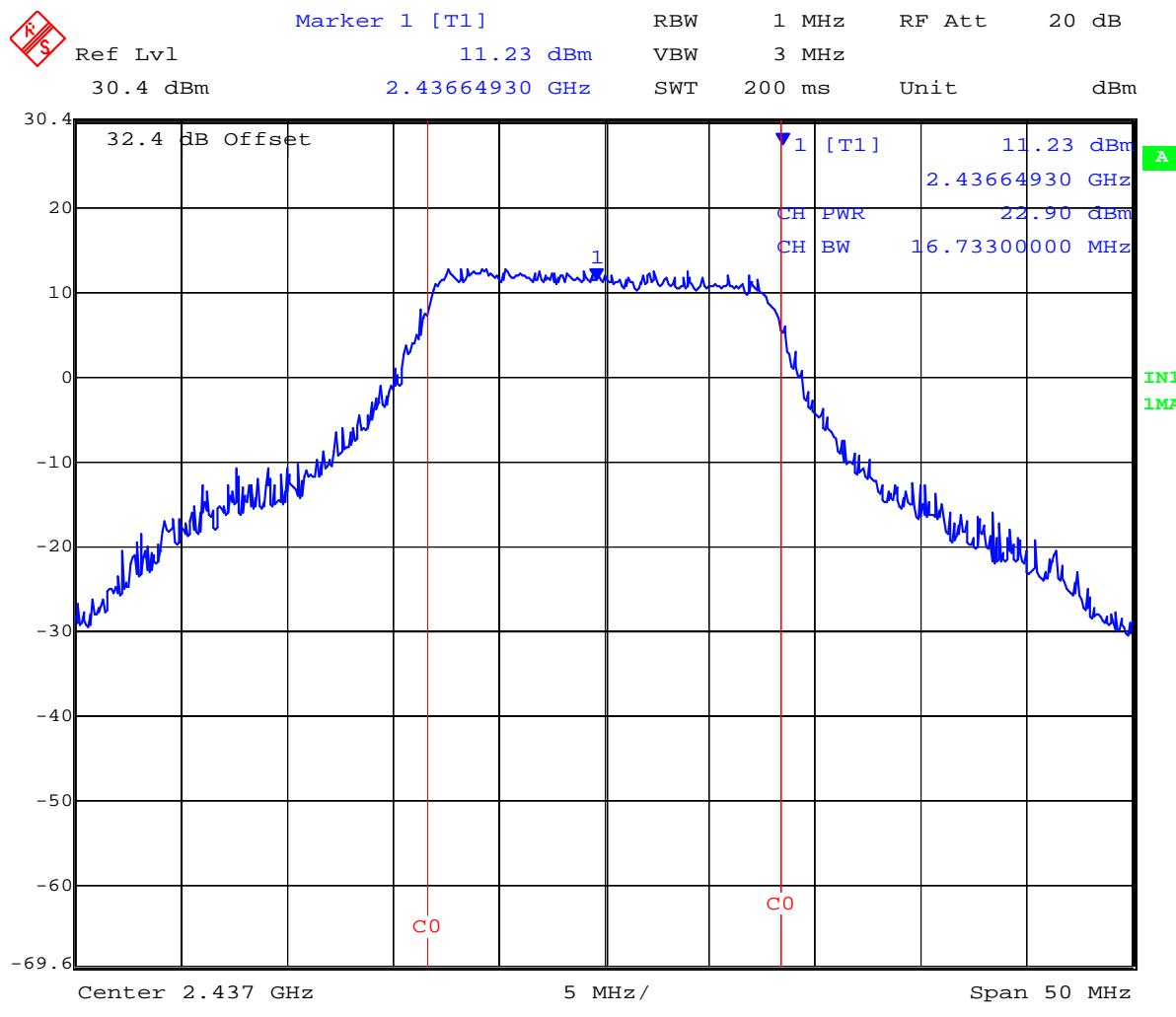
802.11g S/W Setting(s):

Duty Cycle – 100%

Data Rate – 54MBit/s

TABLE OF RESULTS – 802.11g 54Mbps

Center Frequency (MHz)	Measurement Bandwidth (MHz)	Peak Power (dBm)
2,412	16.7334	21.25
2,437	16.7334	22.50
2,462	16.7334	19.36


PEAK POWER EIRP

Maximum Peak Power EIRP = maximum conducted power + antenna gain (dBi)

Antenna No.	Gain (dBi)	Max. Peak Power EIRP (dBm)
AIR-ANT4941	2.2	+24.70
AIR-ANT5959	2.0	+24.50
AIR-ANT1728	5.2	+27.70

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Date: 26.MAR.2005 02:55:08

Peak Output Power - 802.11g Channel 6

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Supply Voltage Variation

The supply voltage was varied between 97.75VAC and 132.25VAC. The system operated as intended at either extreme with no change in the above measurement bandwidths.

Specification Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz and 5725-5850MHz bands: 1watt

§15.247 (b) (4) Except as shown in paragraphs (b)(3)(i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b) (1) or (b)(2) of this section, as appropriate by the amount in dB that the directional gain of the antenna exceeds 6dBi.

§6.2.2(o)(b) For the band 2400-2483.5 MHz, the transmitter output power shall not exceed 1.0 watt

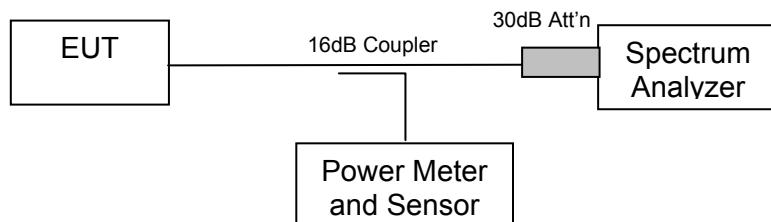
Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33dB
-------------------------	---------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0156, 0193, 0252, 0313, 0314

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.


5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.247(d)
 Industry Canada RSS-210 §6.2.2(o)(b)

Test Procedure

The transmitter output was connected to a spectrum analyzer and the maximum level in a 3KHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time = span / 3 KHz (or 500 seconds the maximum sweep time of the analyzer). Video averaging was turned off during the sweep. The Peak Power Spectral Density is the highest level found across the emission in a 3 KHz resolution bandwidth.

Test Measurement Set up

Measurement set up for Peak Power Spectral Density

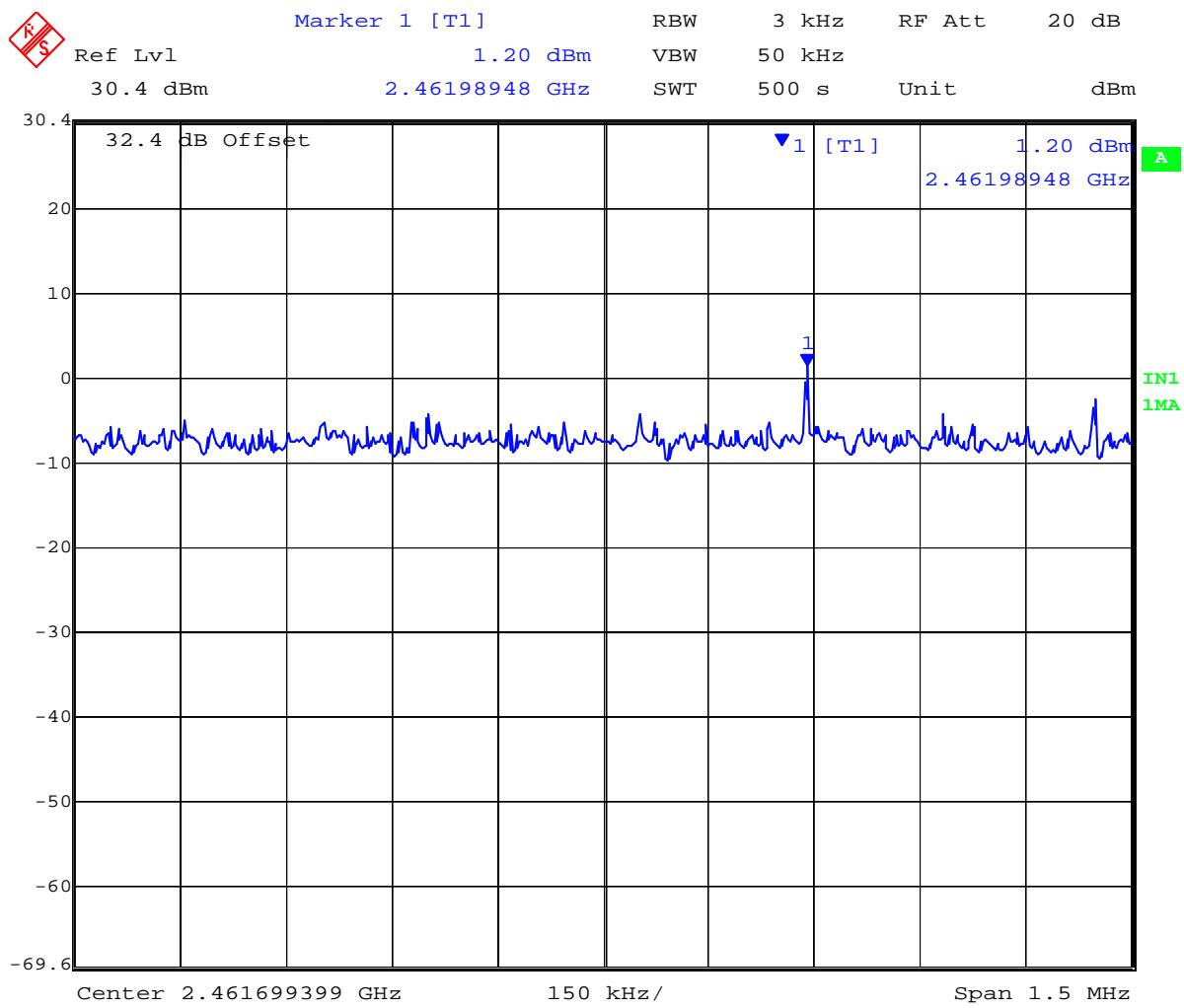
Measurement Results for Peak Power Spectral Density

Ambient conditions.

Temperature: 19 to 26 °C Relative humidity: 31 to 57% Pressure: 999 to 1009 mbar

802.11b S/W Setting(s):

Duty Cycle – 100%


Peak Power Setting(s) – Ch 1 +23.89 dBm, Ch 6 +23.34 dBm, +23.97 dBm

Data Rate – 11MBit/s

TABLE OF RESULTS – 802.11b 11MBit/s

Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)
2,412	2411.98948	+1.12
2,437	2436.98747	+0.61
2,462	2461.98948	+1.20

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Date: 26.MAR.2005 04:17:26

Peak Power Spectral Density - 802.11b Channel 11

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 30 of 84

802.11g S/W Setting(s):

Duty Cycle – 100%

Peak Power Settings - Ch 1 +21.25 dBm, Ch 6 +22.50 dBm, +19.36 dBm

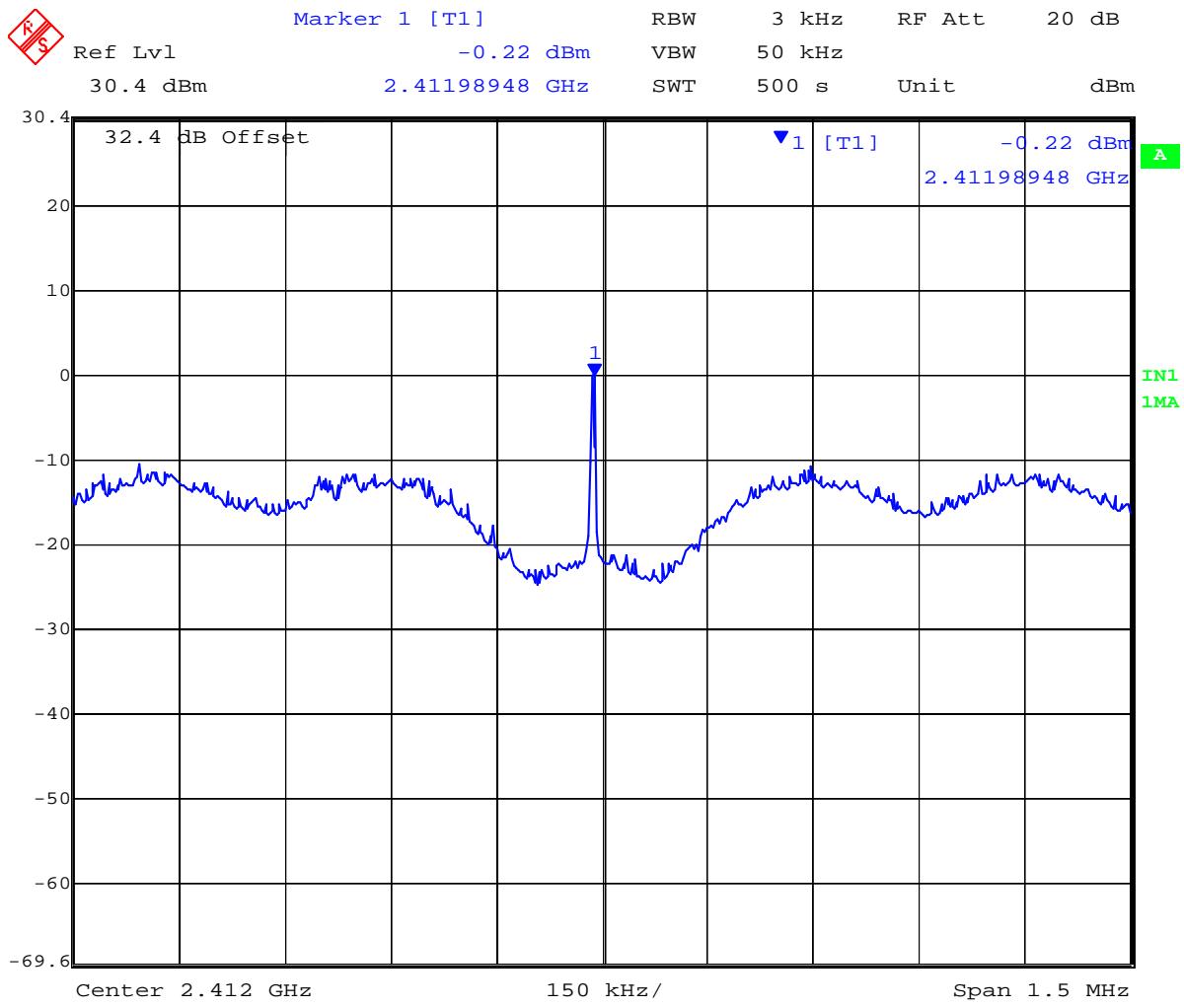

Data Rate – 54MBit/s

TABLE OF RESULTS – 802.11g 54MBit/s

Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)
2,412	2411.98948	-0.22
2,437	2430.70691	-8.00
2,462	2463.25701	-13.02

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Peak Power Spectral Density - 802.11g Channel 1

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Specification

Peak Power Spectral Density Limits

§15.247 (d) For direct sequence systems the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8dBm in any 3KHz band during any time interval of continuous transmission

RSS-210 §6.2.2(o)(b) The transmitter power spectral density (into the antenna) shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration.

Laboratory Measurement Uncertainty Spectral Density

Measurement uncertainty	±1.33dB
-------------------------	---------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0156, 0193, 0252, 0313, 0314

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 33 of 84

5.1.4. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(b)(5)
Industry Canada RSS-210 §14

Calculations for Maximum Permissible Exposure Levels

$$\text{Power Density} = P_d \text{ (mW/cm}^2\text{)} = \text{EIRP}/(4\pi d^2)$$

$$\text{EIRP} = P * G$$

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10^{\text{G (dBi)/10}}$

P (worst case) = +23.97 dBm, **249.5 mW**, Antenna Gain = 5.2 dBi, **3.31 numeric**

The EUT belongs to the General Population/Uncontrolled Exposure, power density limit is 1.0mW/cm²

Antenna Gain (Numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated RF Exposure at d=20cm (mW/cm ²)	Limit (mW/cm ²)
3.31	+23.97	249.5	0.164	1

Specification

Maximum Permissible Exposure Limits

§15.247 (b)(5) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines. See §1.1307 (b)(1) of this chapter.

Limit S = 1mW / cm² from 1.310 Table 1

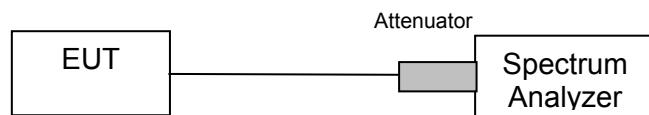
Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

RSS-210 §14 Before equipment certification is granted, the procedures of RSS-102 must be followed concerning exposure of humans to RF fields.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33dB
-------------------------	---------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.


5.1.5. Conducted Spurious Emissions

FCC, Part 15 Subpart C §15.247(c)
Industry Canada RSS-210 §5.9.1, §6.2.2 (o)(e1)

Test Procedure

The band-edge if measured at 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in a continuous transmission mode at the highest power level specified at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

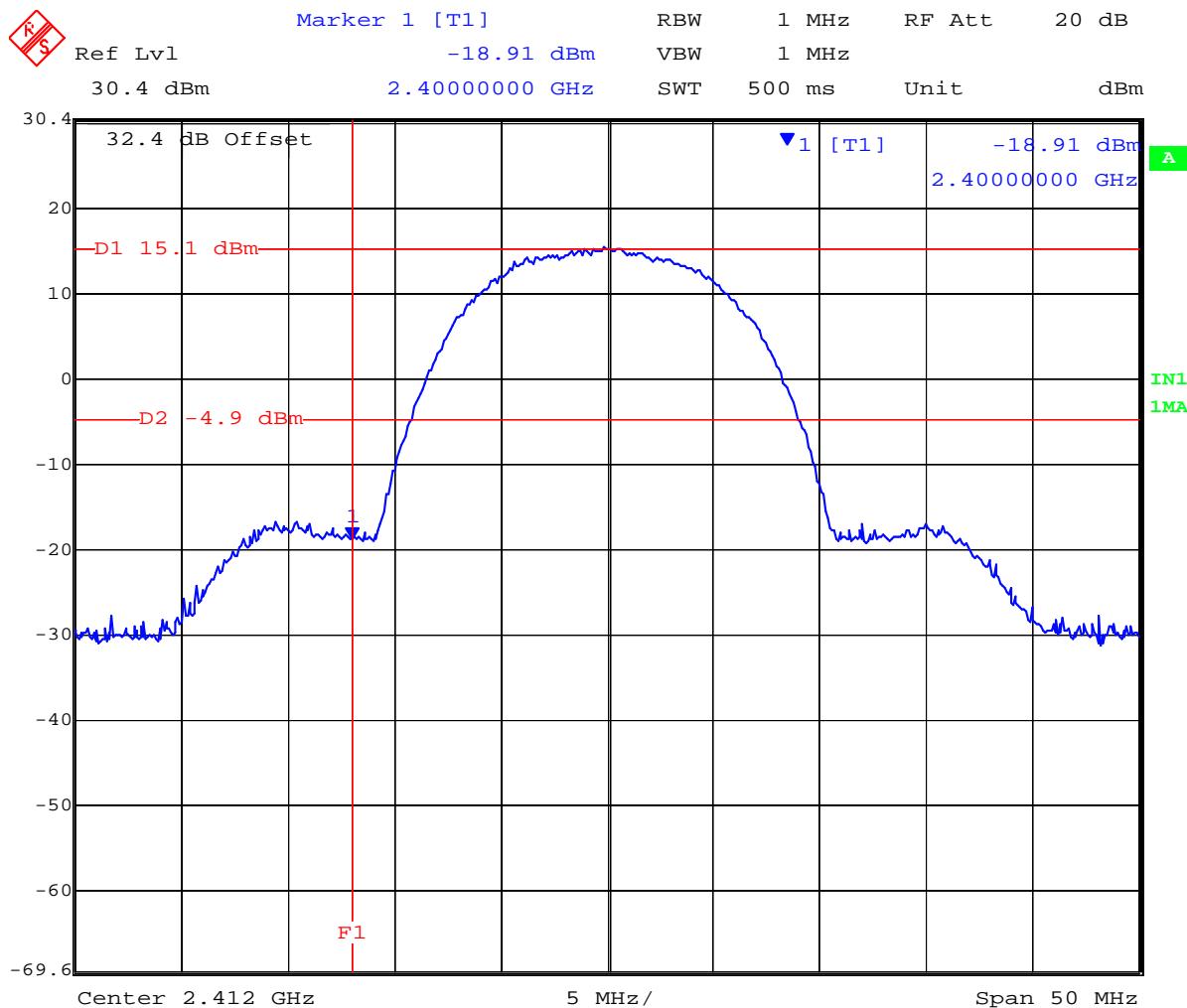
Ambient conditions.

Temperature: 19 to 26 °C Relative humidity: 31 to 57% Pressure: 999 to 1009 mbar

Band-Edge Results

802.11b S/W Setting(s):

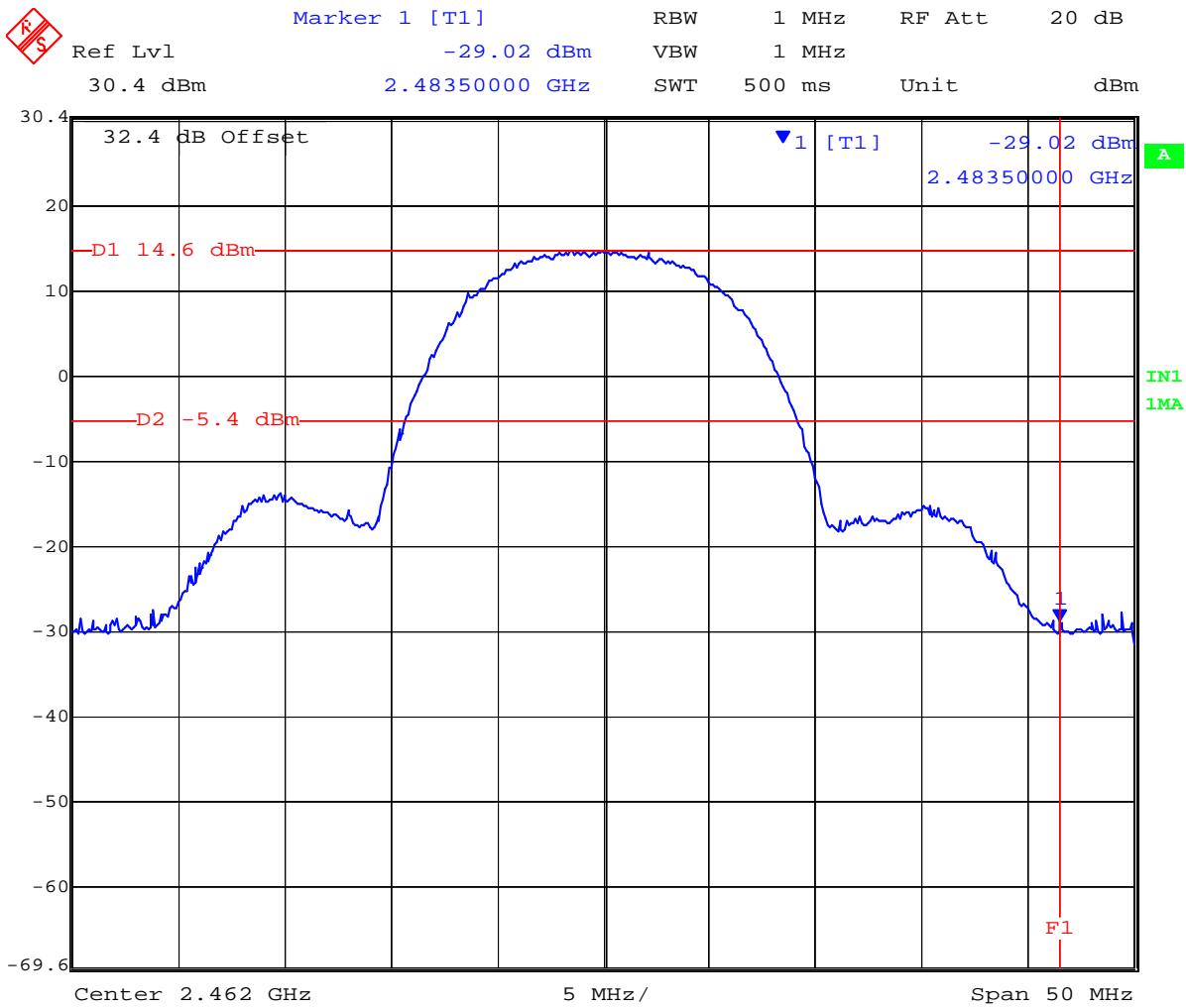
Duty Cycle – 100%


Peak Power Setting(s) – Ch 1 +23.89 dBm, Ch 6 +23.34 dBm, +23.97 dBm

Data Rate – 11MBit/s

TABLE OF RESULTS – 802.11b 11Mbps

Center Frequency (MHz)	Band edge Frequency (MHz)	Limit @ 20dB below peak	Amplitude @ Band edge (dBm)	Margin (dB)
2,412	2,400	-4.9	-16.91	-12.01
2,462	2,483.5	-5.4	-29.02	-23.62


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Date: 28.MAR.2005 02:30:25

Conducted Band Edge - 802.11b Channel 1

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Conducted Band Edge - 802.11b Channel 11

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 37 of 84

802.11g S/W Setting(s):

Duty Cycle – 100%

Peak Power Settings - Ch 1 +21.25 dBm, Ch 6 +22.50 dBm, +19.36 dBm

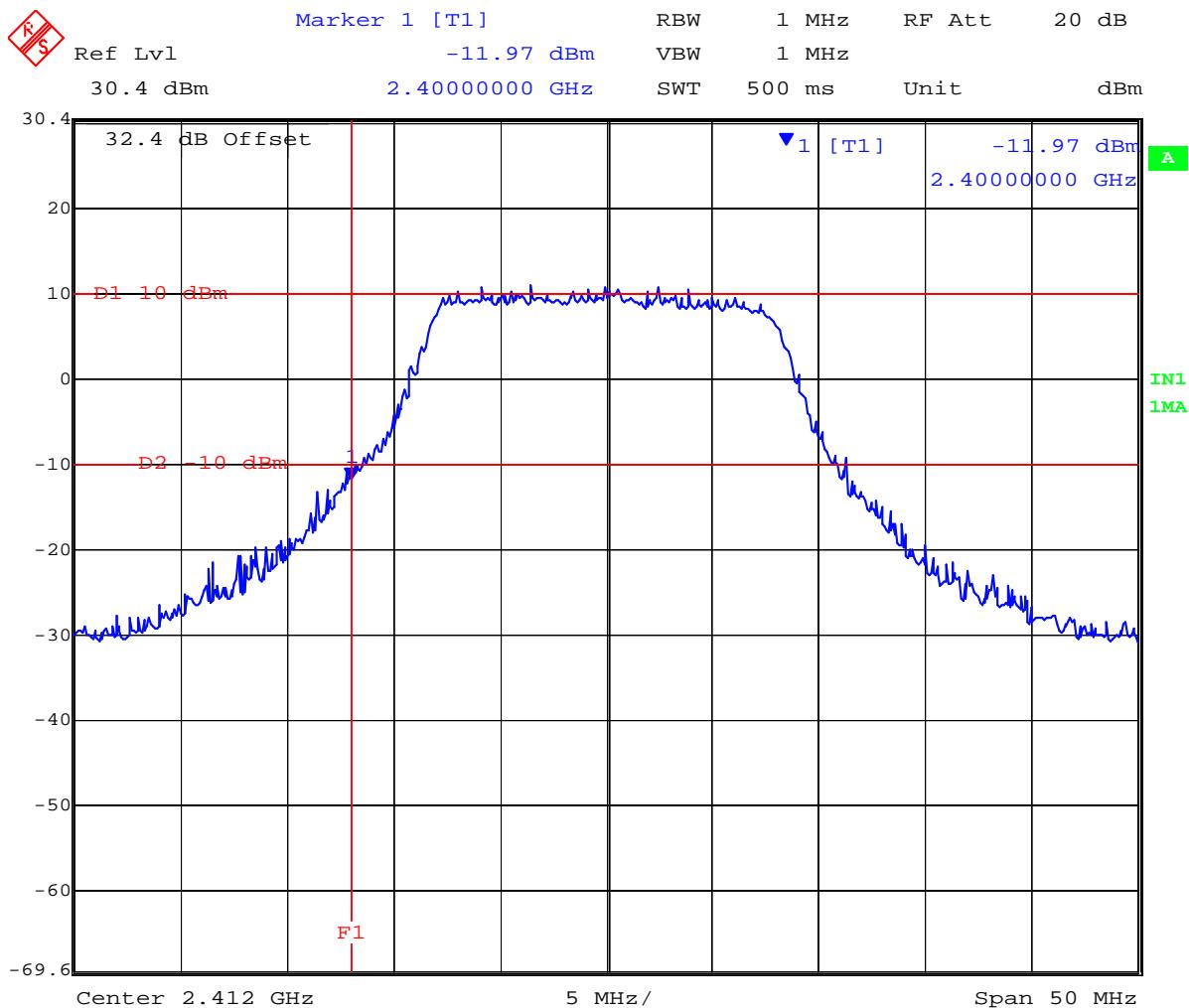
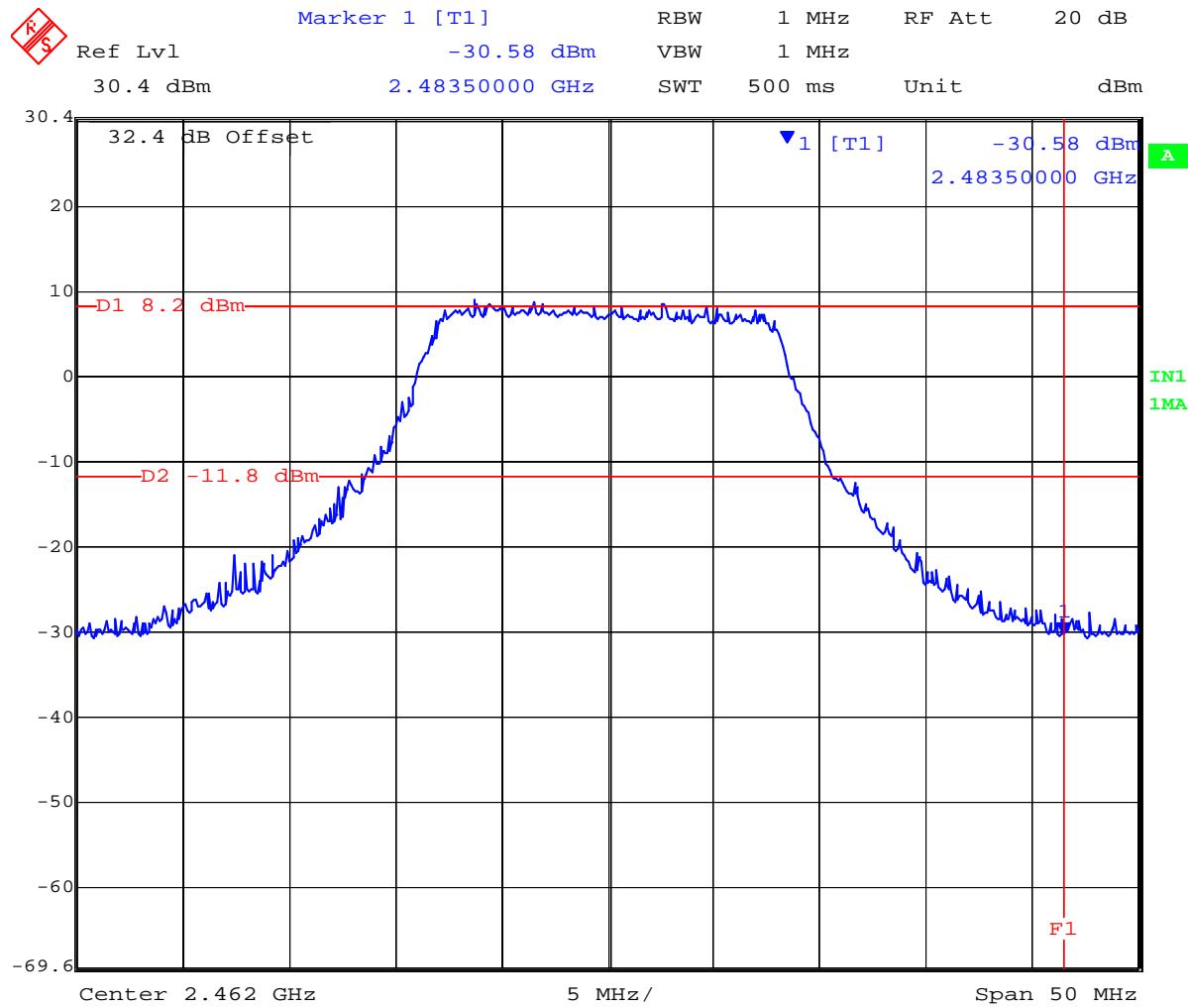

Data Rate – 54MBit/s

TABLE OF RESULTS – 802.11g 54Mbps

Center Frequency (MHz)	Band edge Frequency (MHz)	Limit @ 20dB below peak	Amplitude @ Band edge (dBm)	Margin (dB)
2,412	2,400	-10.0	-11.97	-1.97
2,462	2,483.5	-11.8	-30.58	-18.78


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Date: 28.MAR.2005 02:36:46

Conducted Band Edge - 802.11g Channel 1

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Date: 28.MAR.2005 02:35:11

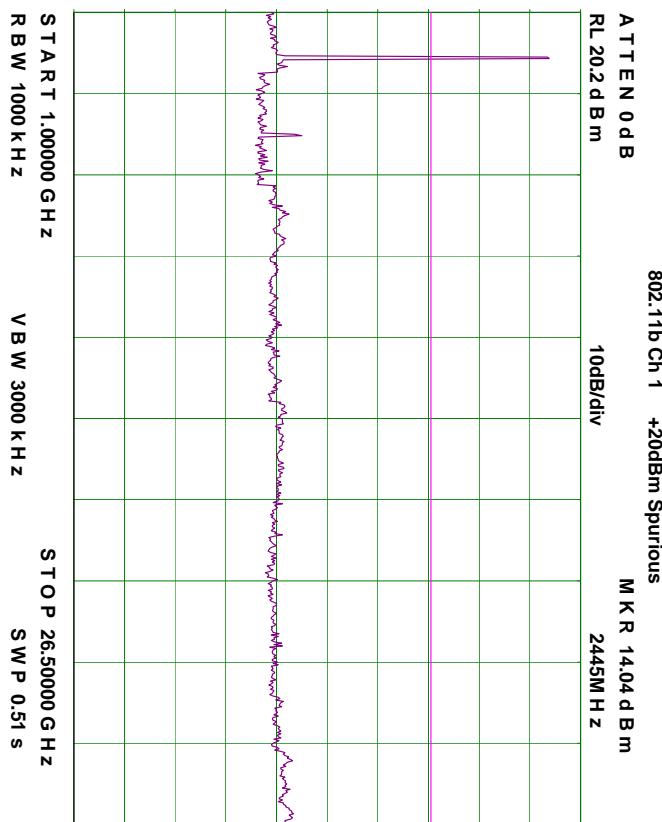
Conducted Band Edge - 802.11g Channel 11

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Spurious Emissions (1-26GHz)

Conducted spurious emissions (1-26GHz) are provided in the following matrix. Measurements were performed with the transmitter tuned on each. Limits which were drawn on each plot are derived from the peak power observed on the same plot.

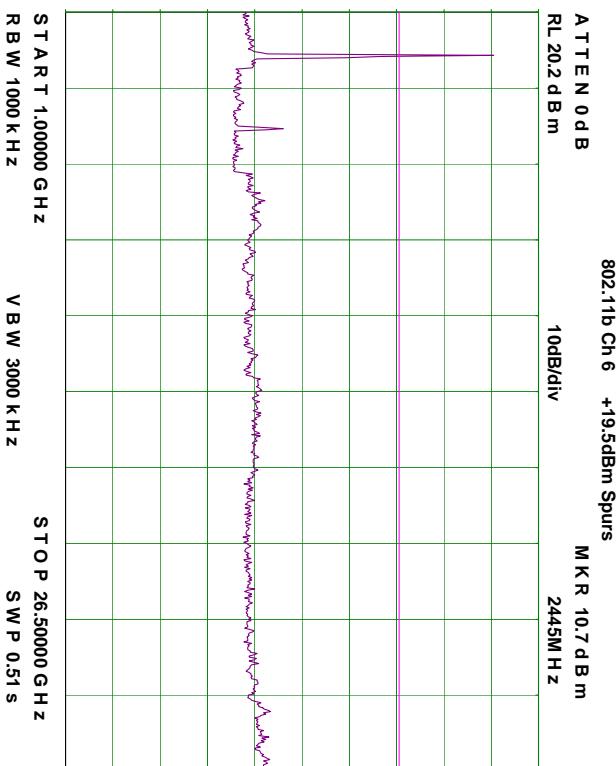
802.11b S/W Setting(s):

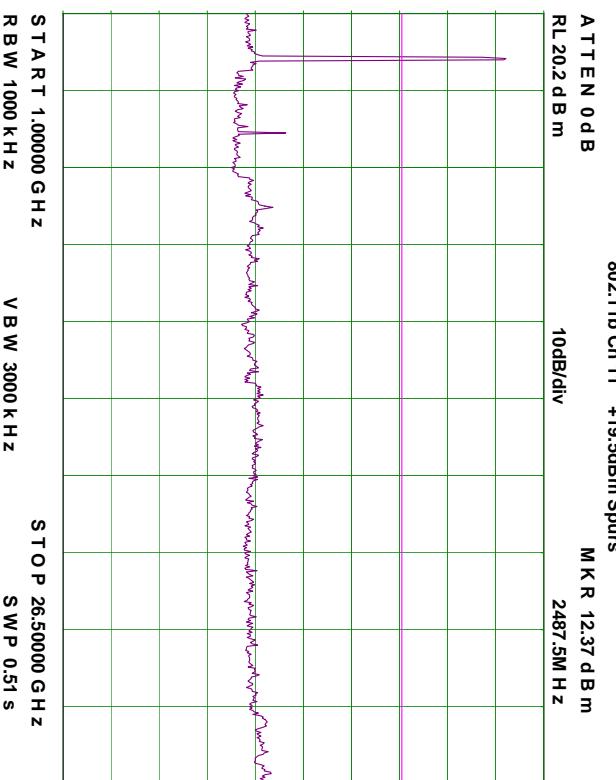

Duty Cycle – 100%

Power Setting(s) – Ch 1 +23.89 dBm, Ch 6 +23.34 dBm, +23.97 dBm

Data Rate – 11MBit/s

TABLE OF RESULTS – 802.11b 11Mbps


Channel	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
1	1	26,500	-34.8	-5.96	-28.84
6	1	26,500	-33.8	-9.30	-24.50
11	1	26,500	-32.8	-7.63	-25.17


802.11b Spurious Emissions
Channel 1, Power = +20dBm

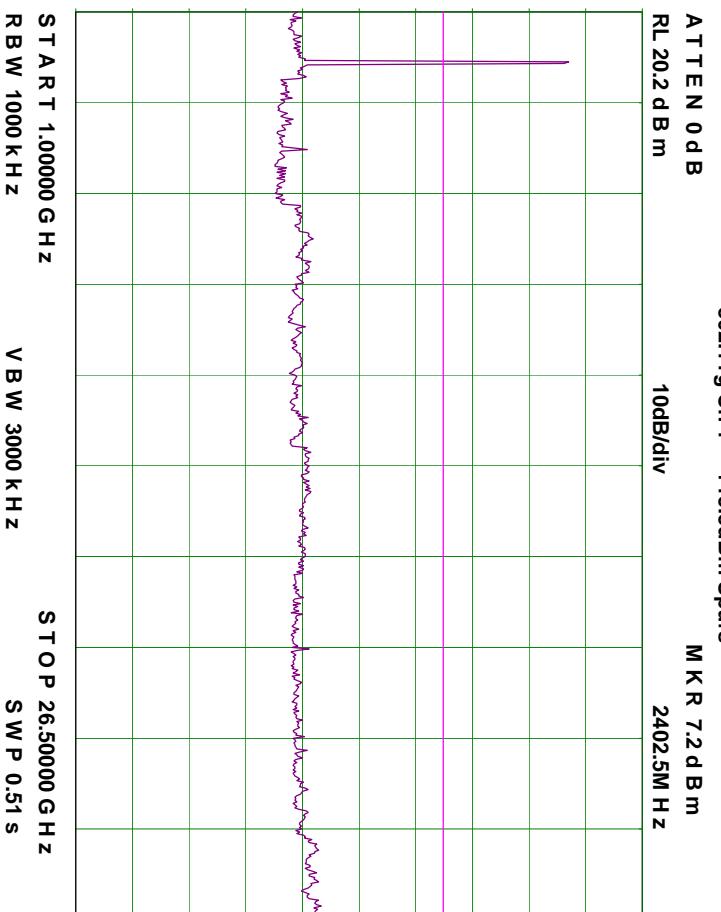
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

802.11b Spurious Emissions
Channel 6, Power = +19.5dBm

802.11b Spurious Emissions
Channel 11, Power = +19.5dBm

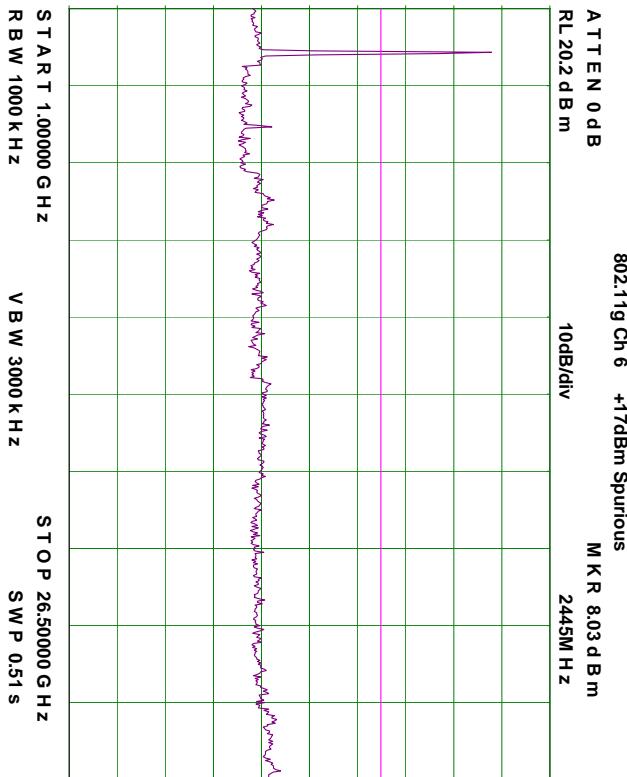
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

802.11g S/W Setting(s):

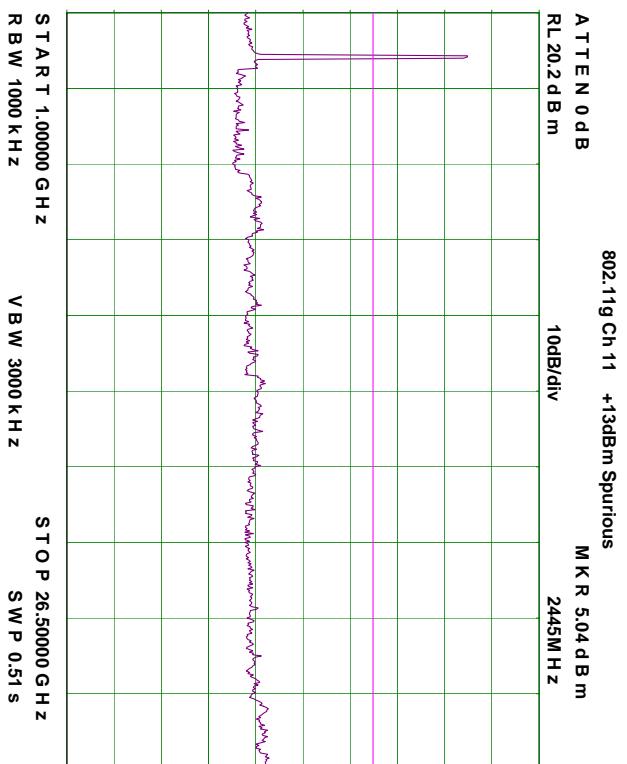

Duty Cycle – 100%

Peak Power Settings - Ch 1 +21.25 dBm, Ch 6 +22.50 dBm, +19.36 dBm

Data Rate – 54MBit/s


TABLE OF RESULTS – 802.11g 54MBit/s

Channel	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
1	1	26,500	-37.8	-12.80	-25.00
6	1	26,500	-35.8	-11.97	-23.83
11	1	26,500	-35.8	-14.96	-20.84



802.11g Spurious Emissions
Channel 1, Power = +15.5dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

802.11g Spurious Emissions
Channel 6, Power = +17dBm

802.11g Spurious Emissions
Channel 11, Power = +13dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 44 of 84

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
2,400MHz	2,483.5MHz	≥ 20dB

§15.247(c) In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

§6.2.2 (o)(e1) In any 100 kHz bandwidth outside the operating frequency bands, between 30 MHz and 5 times the carrier frequency, the unwanted emission spectral density shall be either at least 20 dB below the in-band spectral density, or shall not exceed the levels specified in Table 3, whichever is less stringent.

Measurement Uncertainty Conducted Spurious Emissions

Measurement uncertainty	±2.37dB
-------------------------	---------

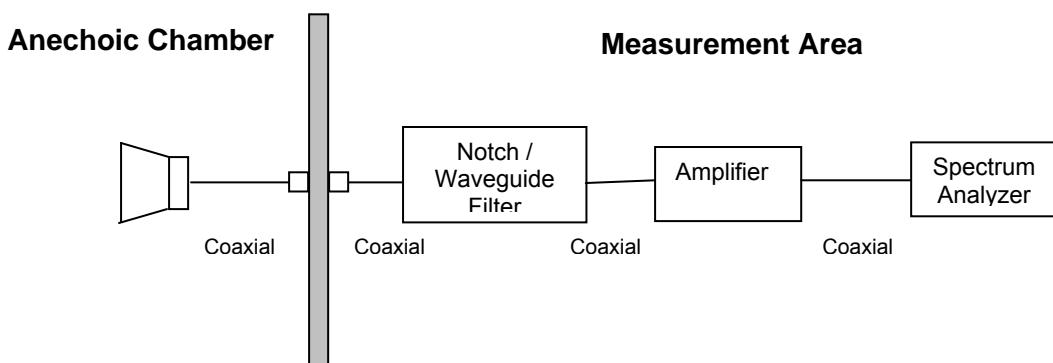
Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0156, 0193, 0088, 0252, 0313, 0314

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

5.1.6. Radiated Emissions

5.1.6.1. Transmitter Radiated Spurious Emissions (above 1GHz)


FCC, Part 15 Subpart C §15.247(c)
Industry Canada RSS-210 §6.3

Test Procedure

Preliminary radiated emissions above 1GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1GHz were performed using a minimum resolution bandwidth of 1MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

For example:

Given receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3\text{dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log (level (\mu V/m))}$$

$$40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$$

Measurement Results Transmitter Radiated Spurious Emissions 1GHz - 26GHz

Ambient conditions.

Temperature: 19 to 26 °C

Relative humidity: 31 to 57%

Pressure: 999 to 1009 mbar

802.11b S/W Setting(s):

Duty Cycle – 100%

Power Setting(s) – Ch 1 +23.89 dBm, Ch 6 +23.34 dBm, +23.97 dBm

Data Rate – 11MBit/s

802.11g S/W Setting(s):

Duty Cycle – 100%

Peak Power Settings - Ch 1 +21.25 dBm, Ch 6 +22.50 dBm, +19.36 dBm

Data Rate – 54MBit/s

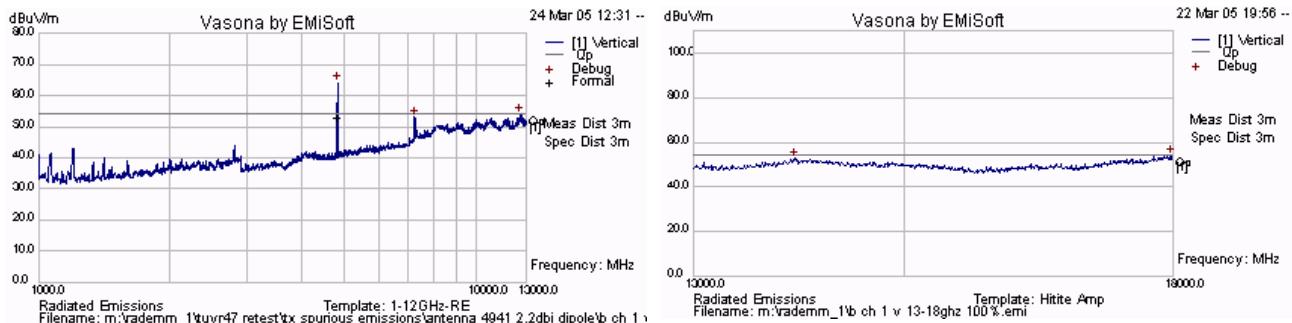
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 47 of 84

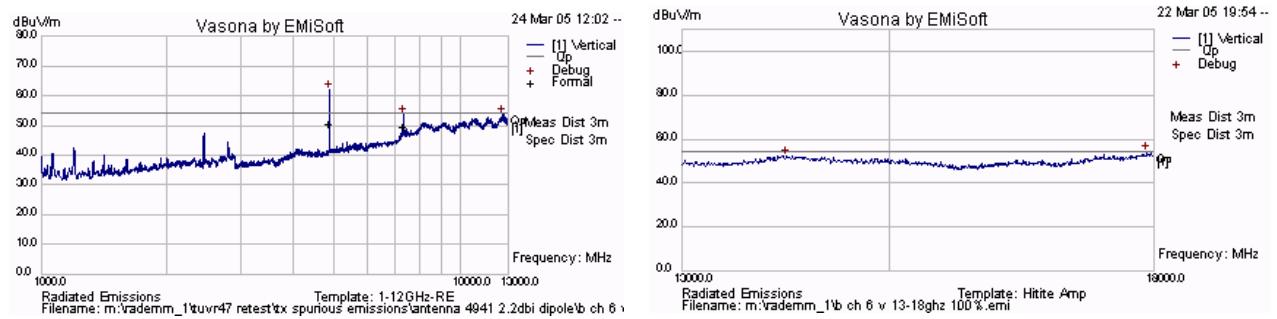
ANTENNA: AIR-ANT4941 Swivel Mount Dipole (2.2 dBi)

TABLE OF RESULTS – 802.11b 11MBit/s

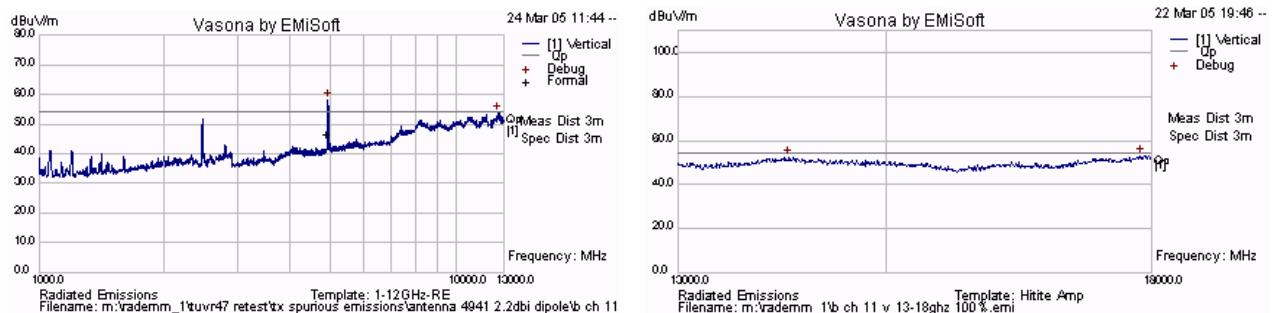
CH.	Freq. (MHz)	Pol. (H/V)	Peak Reading (dB μ V/m)	Ave Reading (dB μ V/m)	Corr'n Factor (dB)	Corr'd Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1	4823.57	H	54.39	37.26	5.55	42.81	54.00	-11.19
1	4823.86	V	64.05	45.16	5.55	50.71	54.00	-3.29
6	4873.84	V	61.84	42.50	5.65	48.15	54.00	-5.85
6	7311.45	H	54.63	39.08	8.78	47.86	54.00	-6.14
11	4924.08	V	58.29	38.54	5.78	44.32	54.00	-9.68


TABLE OF RESULTS – 802.11g 54MBit/s

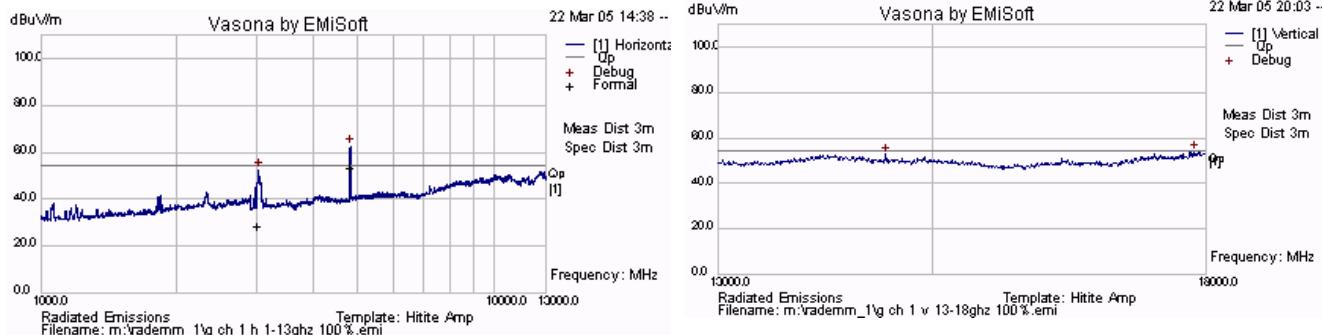
CH.	Freq. (MHz)	Pol. (H/V)	Peak Reading (dB μ V/m)	Ave Reading (dB μ V/m)	Corr'n Factor (dB)	Corr'd Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1	4821.84	V	57.72	41.69	5.55	47.24	54.00	-6.76
6	4871.92	V	56.32	41.93	5.65	47.58	54.00	-6.42


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Transmitter Radiated Spurious Emissions AIR-ANT4941 SWIVEL MOUNT DIPOLE (2.2 dBi)

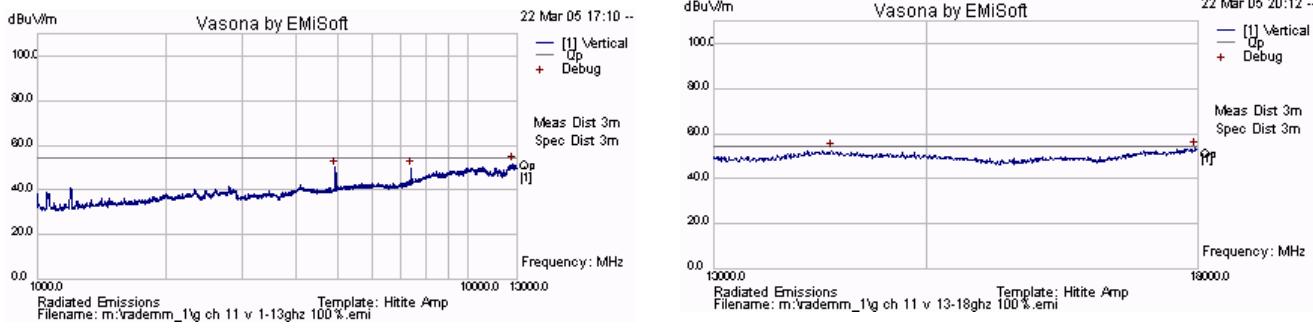

Ch 1 802.11b

Ch 6 802.11b


Ch 11 802.11b

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Transmitter Radiated Spurious Emissions AIR-ANT4941 SWIVEL MOUNT DIPOLE (2.2 dBi)


Ch 1 802.11g

Ch 6 802.11g

Ch 11 802.11g

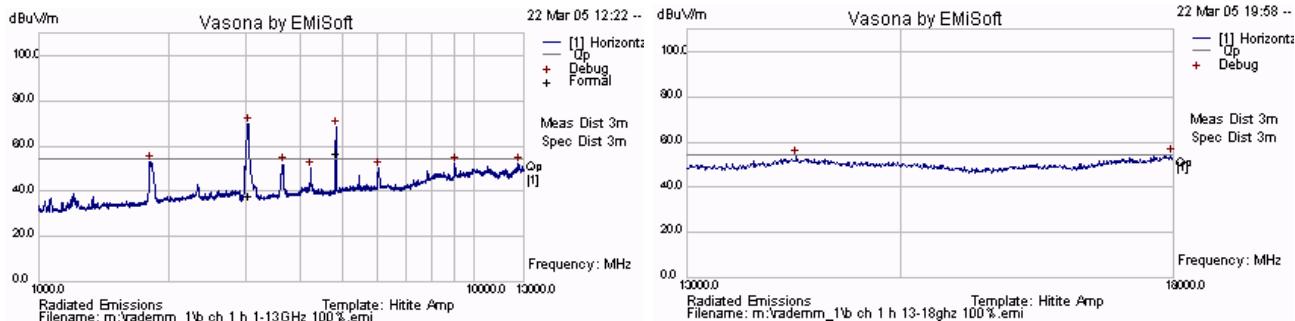
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 50 of 84

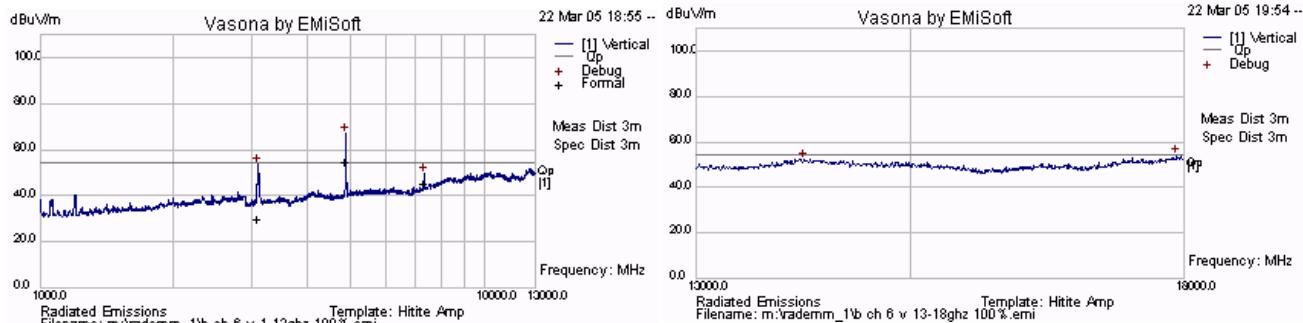
ANTENNA: AIR-ANT5959 Diversity Omni Ceiling Antenna (2.35 dBi)

TABLE OF RESULTS – 802.11b 11MBit/s

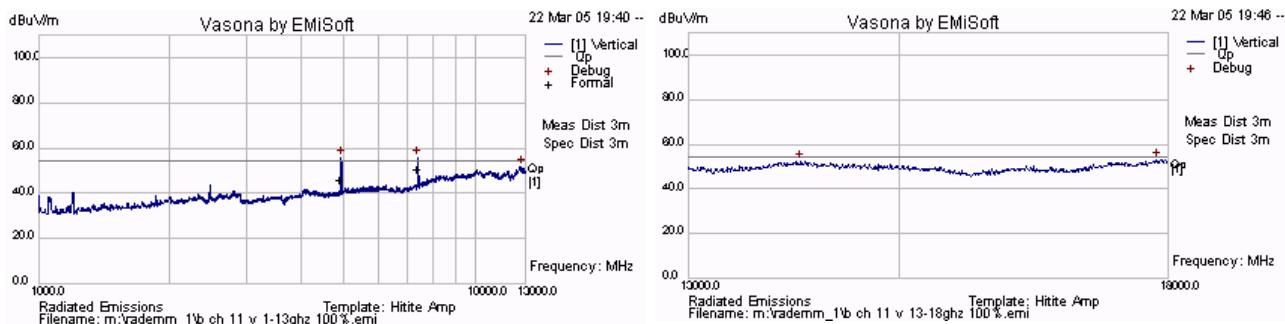
CH.	Freq. (MHz)	Pol. (H/V)	Peak Reading (dB μ V/m)	Ave Reading (dB μ V/m)	Corr'n Factor (dB)	Corr'd Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1	3026.64	H	69.68	59.29	-24.78	34.5	54.00	-19.5
1	4824.01	H	68.15	74.49	-21.19	53.3	54.00	-0.7
1	4823.96	V	66.98	72.86	-21.19	51.67	54.00	-2.33
6	4873.89	V	66.88	72.48	-21.27	51.2	54.00	-2.8
6	4874.02	H	60.88	66.87	-21.27	45.59	54.00	-8.41
11	4923.97	H	54.07	61.12	-21.41	39.72	54.00	-14.28
11	7385.79	H	57.22	66.54	-18.17	48.38	54.00	-5.62
11	4924.29	V	55.76	63.89	-21.41	42.49	54.00	-11.51
11	7385.95	V	55.88	65.39	-18.17	47.23	54.00	-6.77


TABLE OF RESULTS – 802.11g 54MBit/s

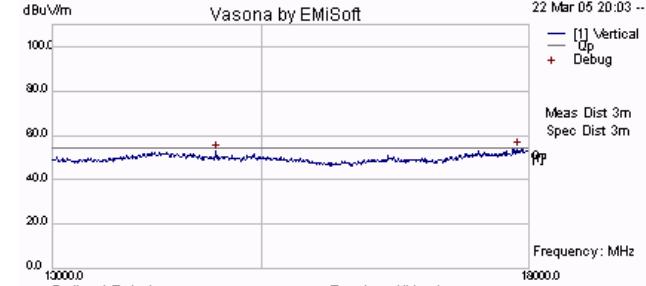
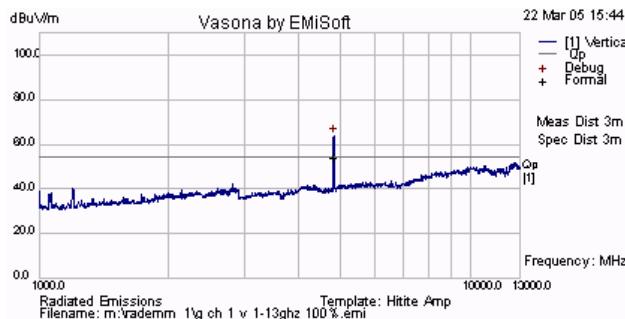
CH.	Freq. (MHz)	Pol. (H/V)	Peak Reading (dB μ V/m)	Ave Reading (dB μ V/m)	Corr'n Factor (dB)	Corr'd Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1	4823.64	H	62.65	71.43	-21.19	50.24	54.00	-3.76
1	4825.37	V	63.98	71.86	-21.19	50.67	54.00	-3.33
6	4878.30	V	63.04	72.18	-21.28	50.89	54.00	-3.11
6	2901.79	H	57.59	50.21	-24.75	25.47	54.00	28.53
6	2972.13	H	56.83	50.29	-24.65	25.64	54.00	-28.36
6	4870.01	H	59.21	66.95	-21.27	45.68	54.00	-8.32

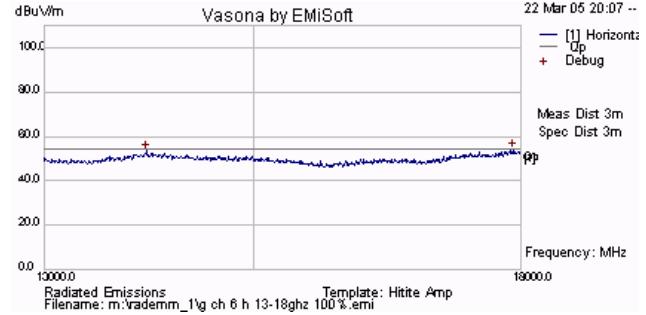
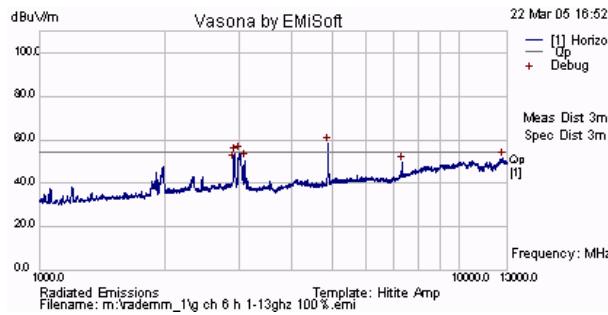

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Transmitter Radiated Spurious Emissions AIR-ANT5959 DIVERSITY OMNI CEILING ANTENNA (2.35 DBI)

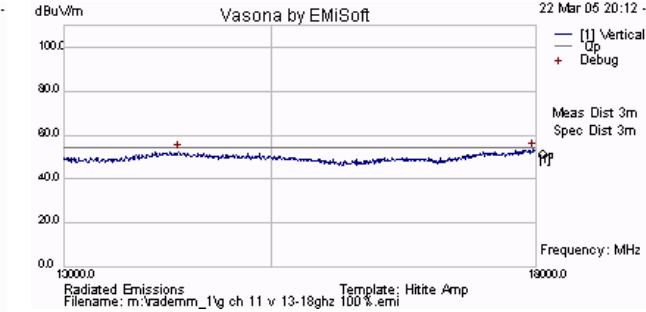

Ch 1 802.11b

Ch 6 802.11b



Ch 11 802.11b



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Transmitter Radiated Spurious Emissions AIR-ANT5959 DIVERSITY OMNI CEILING ANTENNA (2.35 DBI)



Ch 1 802.11g

Ch 6 802.11g

Ch 11 802.11g

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

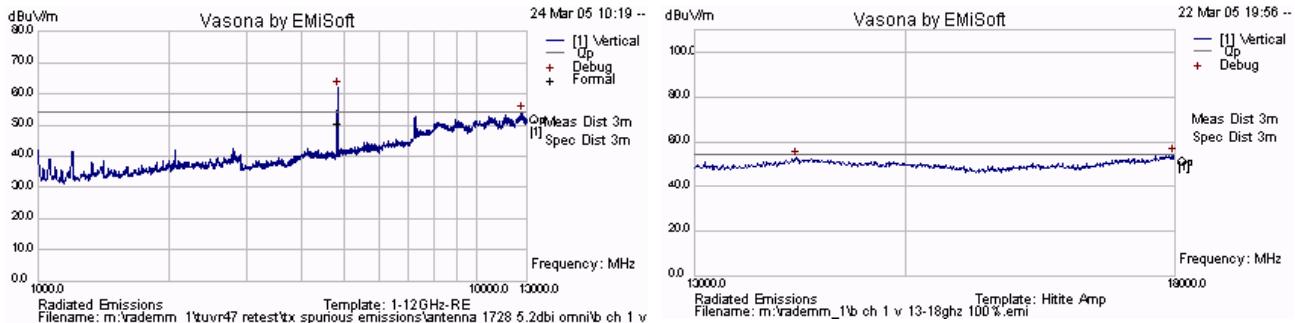
Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 53 of 84

ANTENNA: AIR-ANT1728 Omni Ceiling Antenna (5.2 dBi)

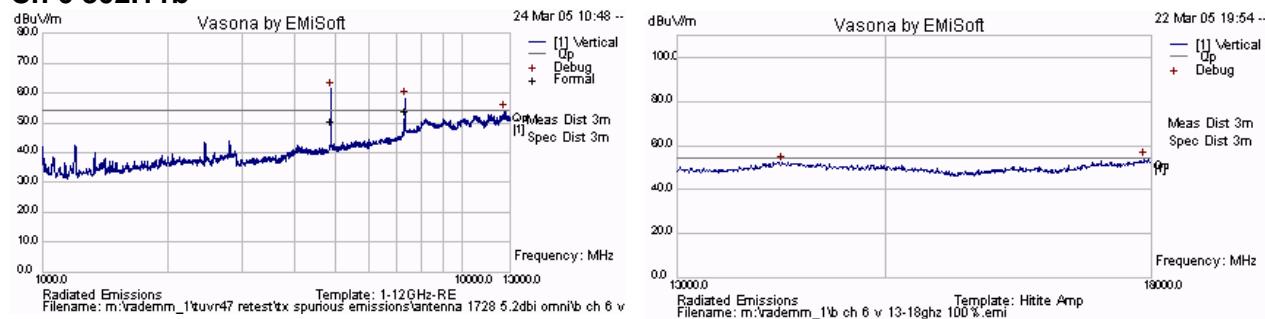
TABLE OF RESULTS – 802.11b 11MBit/s

CH.	Freq. (MHz)	Pol. (H/V)	Peak Reading (dB μ V/m)	Ave Reading (dB μ V/m)	Corr'n Factor (dB)	Corr'd Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1	4823.99	H	62.05	42.59	5.55	48.14	54.00	-5.86
6	7310.17	H	55.63	41.11	8.78	49.89	54.00	-4.11
6	4874.08	V	61.51	42.50	5.66	48.16	54.00	-5.84
6	7309.94	V	58.29	42.54	8.78	51.32	54.00	-2.68
11	4929.65	V	67.63	42.97	5.79	48.76	54.00	-5.24
11	7389.53	V	64.10	42.19	8.92	51.11	54.00	-2.89
11	4924.05	H	56.45	37.40	5.78	43.18	54.00	-10.82
11	7385.49	H	56.43	40.89	8.91	49.8	54.00	-4.20

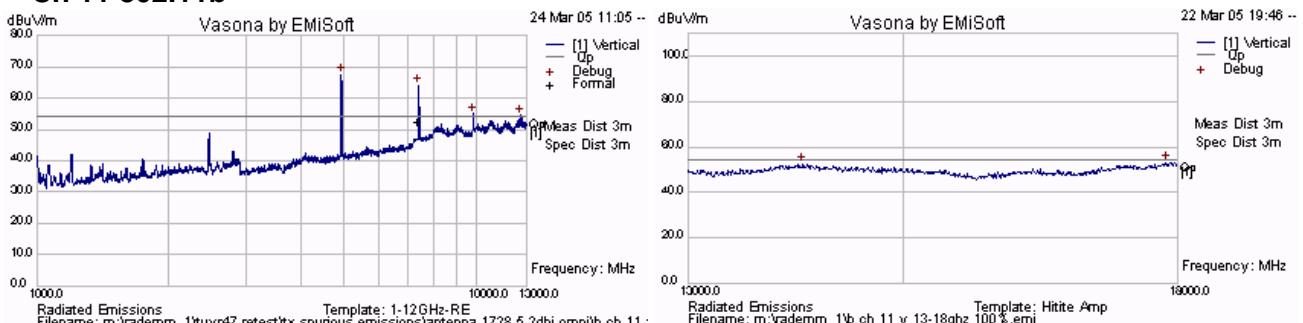
TABLE OF RESULTS – 802.11g 54MBit/s


CH.	Freq. (MHz)	Pol. (H/V)	Peak Reading (dB μ V/m)	Ave Reading (dB μ V/m)	Corr'n Factor (dB)	Corr'd Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1	4824.75	V	51.40				54.00	-2.60
6	4876.17	V	51.42				54.00	-2.58
11	4918.27	V	48.95				54.00	-5.05

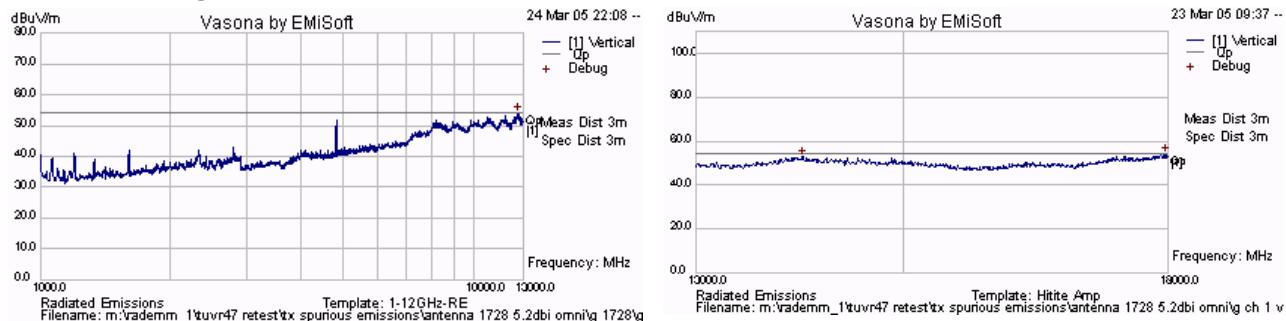
Peak reading was found to be below the average limit therefore no further investigation required

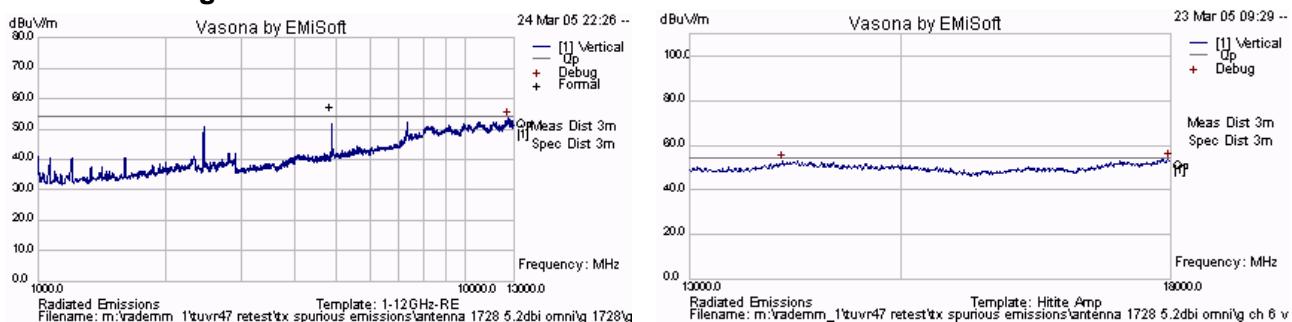

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

TRANSMITTER RADIATED SPURIOUS EMISSIONS AIR-ANT1728 Omni Ceiling Antenna (5.2 dBi)

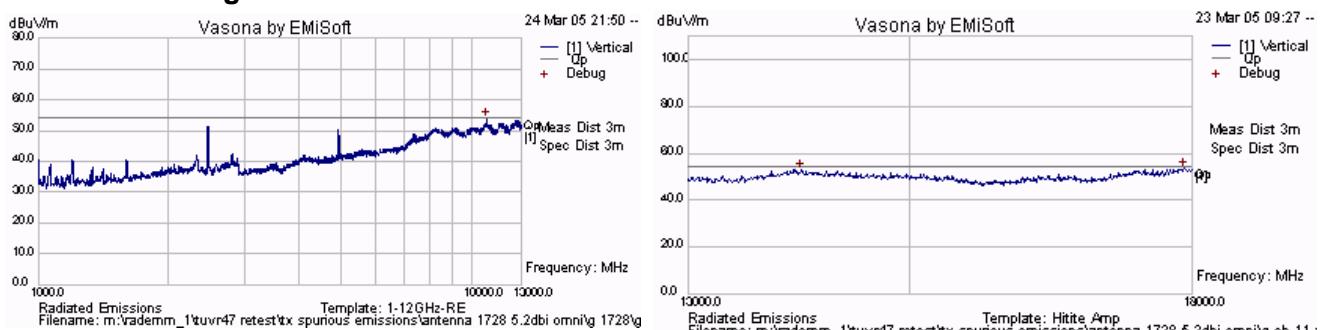

Ch 1 802.11b

Ch 6 802.11b


Ch 11 802.11b


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

TRANSMITTER RADIATED SPURIOUS EMISSIONS AIR-ANT1728 Omni Ceiling Antenna (5.2 dBi)


Ch 1 802.11g

Ch 6 802.11g

Ch 11 802.11g

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Radiated Band Edge Results – Restricted Bands

In making band-edge measurements, there can be a problem obtaining meaningful data since a measurement instrument that is tuned to a band-edge frequency may also capture some in-band signals when using the resolution bandwidth (RBW) required by measurement procedure ANSI C63.4 2003, see Reference iii, Section 2.1 Normative References. In an effort to compensate for this problem, the following technique sanctioned by the FCC for determining band-edge compliance has been developed.

Equipment was operated on the frequency channel closest to the restricted band in each case.

STEP 1) Perform an in-band field strength measurement (peak and average) of the fundamental emission using the RBW and detector function required by C63.4 and the rules for the frequency being measured.

STEP 2) Encompass both the peak of the fundamental emission and the band-edge emission under investigation. Set the analyzer RBW to 1% of the total span, never using a RBW less than 30 kHz. Use a video bandwidth equal to or greater than the RBW. Record the peak levels of the fundamental emission and the relevant band-edge emission. Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not a field strength measurement, it is only a relative measurement to determine how much the emission drops at the band-edge relative to the highest fundamental emission level.

STEP 3) Subtract the delta measured in step (2) from the field strengths measured in step (1). The resultant field strengths (CISPR QP, average, or peak, as appropriate) are then used to determine band-edge compliance as required by either 15.249(c) or 15.205.

STEP 4) Use the above "delta" measurement technique for measuring emissions that are up to two "standard" bandwidths away from the band-edge, where a "standard" bandwidth is the bandwidth specified by C63.4 for the frequency being measured. For example, for band-edge measurements in the restricted band that begins at 2483.5 MHz, C63.4 specifies a measurement bandwidth of at least 1 MHz. Therefore you may use the "delta" technique for measuring emissions up to 2 MHz removed from the band-edge. Radiated emissions that are removed by more than two bandwidths must be measured in the conventional manner.

Corrected Reading

Corrected Peak Band Edge_{PBE} = Peak Reading + Antenna Gain - Delta

Corrected Average Band Edge_{ABE} = Average Reading + Antenna Gain - Delta

Antenna Gain @ 2.4GHz = 28.2dB/m

Note: Amplifier gain and cable loss over the band of interest (2,390 to 2.483.5 MHz), -29.7dB

System Gain = Amplifier Gain + Antenna Gain = -29.7 + 28.2 = **-1.5dB**

The System Gain was included as a spectrum analyzer offset for band edge measurements

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 57 of 84

ANTENNA: AIR-ANT4941 Swivel Mount Dipole (2.2 dBi)

TABLE OF RESULTS – 802.11b 11MBit/s

Direct Test Methodology for Band Edge 2,390 MHz

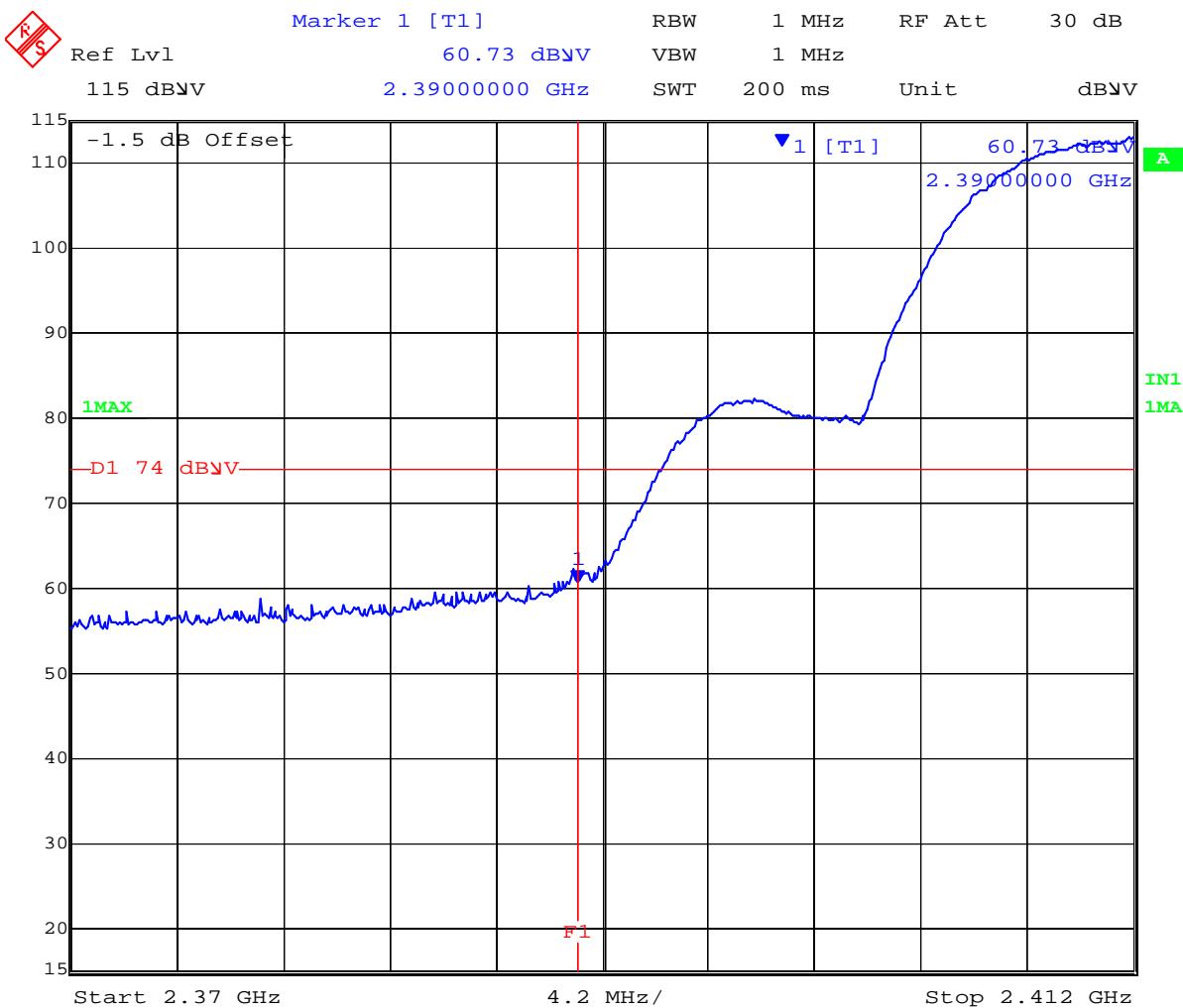
Tx Freq. (MHz)	Restricted Band Edge Frequency (MHz)	Measured (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,412 _{PEAK}	2,390	60.73	74.00	-13.27
2,412 _{AVE}	2,390	48.98	54.00	-5.02

Indirect Test Methodology for Band Edge 2,483.5 MHz

Tx Freq. (MHz)	Restricted Band Frequency (MHz)	Measured (dBuV/m)	Delta (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,462 _{PEAK}	2,483.5	112.84	51.22	61.62	74.00	-12.38
2,462 _{AVE}	2,483.5	101.28	51.22	50.06	54.00	-3.94

TABLE OF RESULTS – 802.11g 54 MBit/s

Direct Test Methodology for Band Edge 2,390 MHz

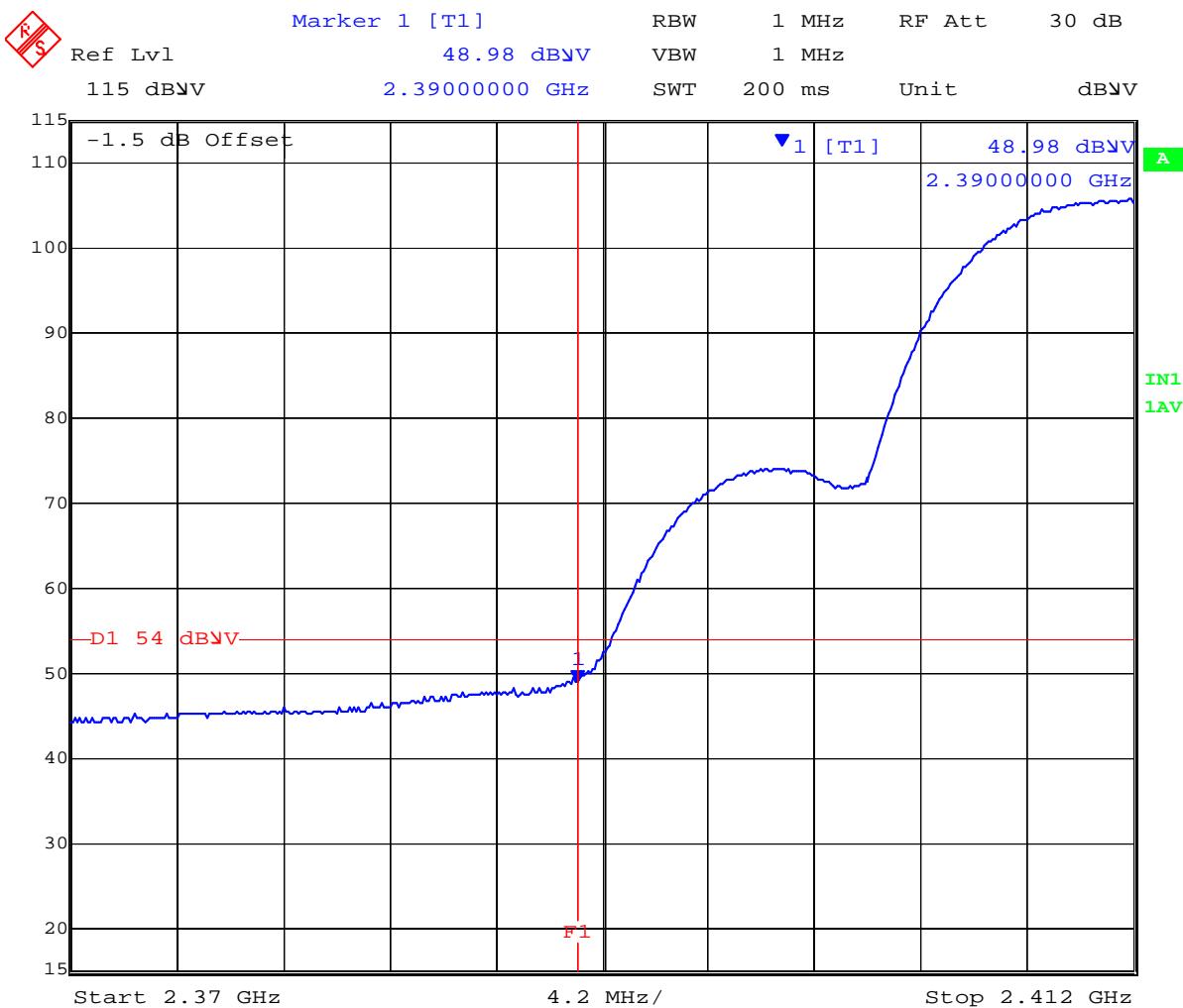

Tx Freq. (MHz)	Restricted Band Edge Frequency (MHz)	Measured (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,412 _{PEAK}	2,390	67.96	74.00	-6.04
2,412 _{AVE}	2,390	53.00	54.00	-1.00

Indirect Test Methodology for Band Edge 2,483.5 MHz

Tx Freq. (MHz)	Restricted Band Frequency (MHz)	Measured (dBuV/m)	Delta (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,462 _{PEAK}	2,483.5	105.43	41.49	63.94	74.00	-10.06
2,462 _{AVE}	2,483.5	95.04	41.49	53.55	54.00	-0.45

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

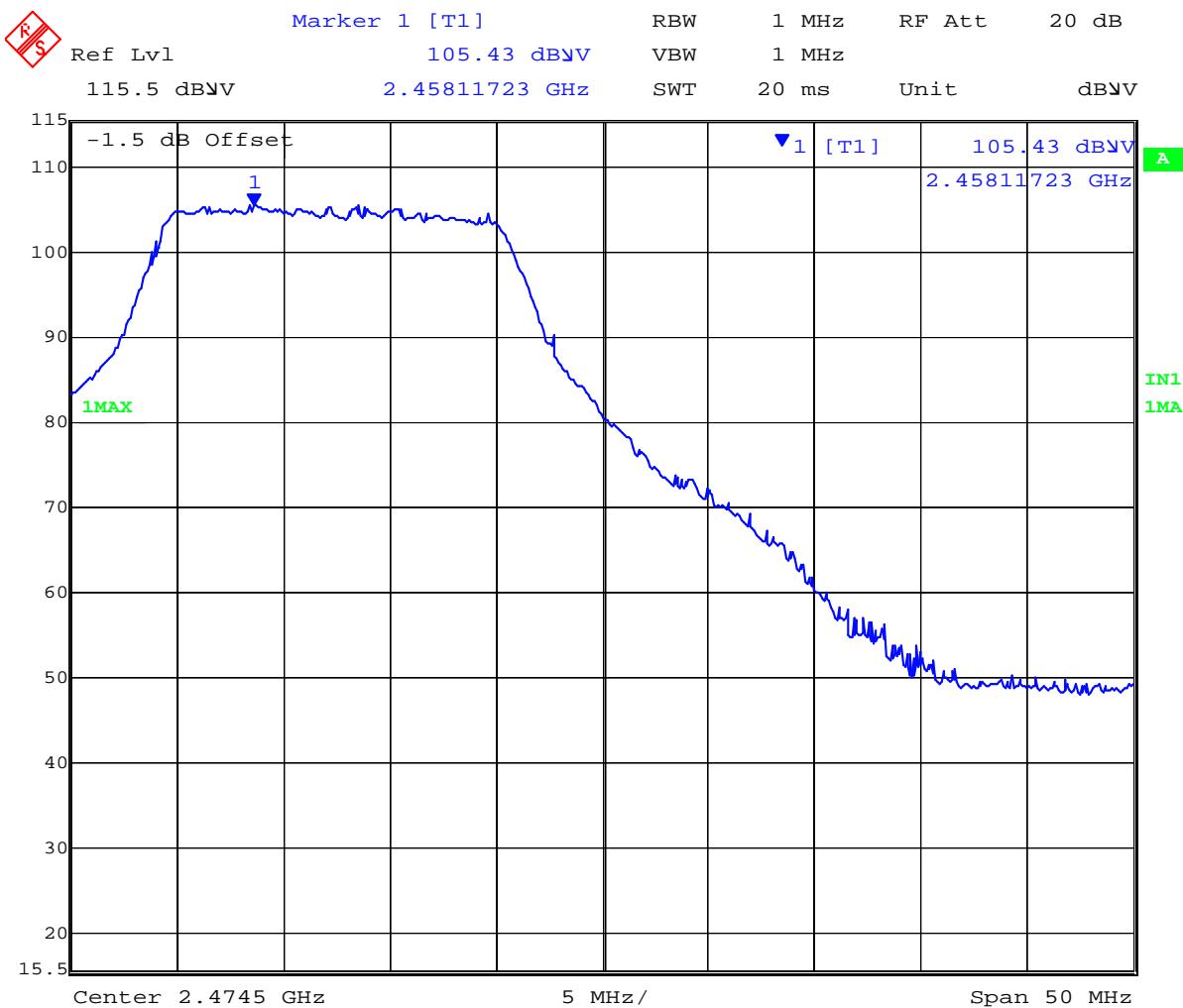
ANTENNA: AIR-ANT4941 Swivel Mount Dipole (2.2 dBi)



Date: 24.MAR.2005 05:35:29

Radiated Band Edge (Direct) – 802.11b Ch 1 PEAK

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.


ANTENNA: AIR-ANT4941 Swivel Mount Dipole (2.2 dBi)

Radiated Band Edge (Direct) – 802.11b Ch 1 AVERAGE

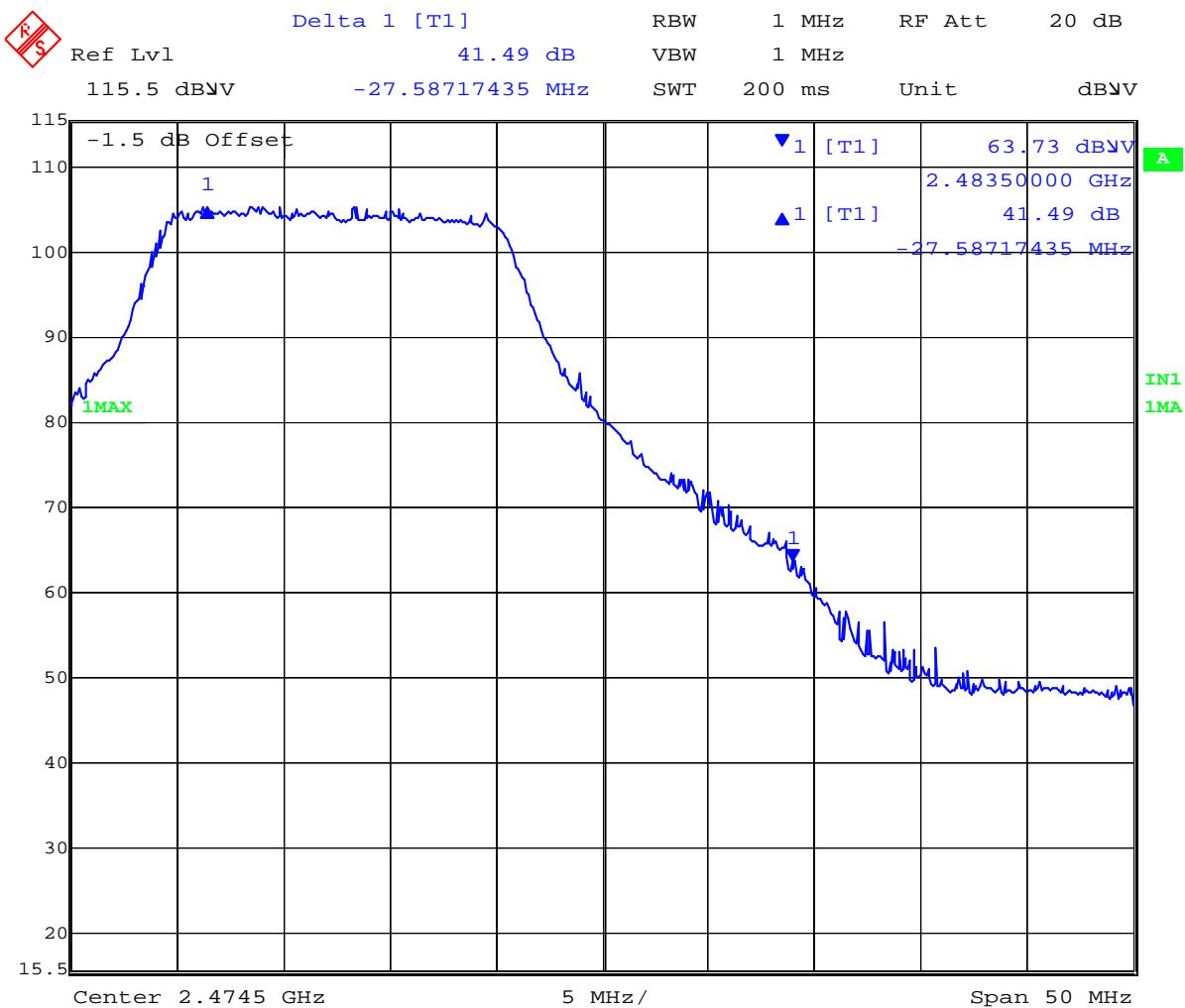
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

ANTENNA: AIR-ANT4941 Swivel Mount Dipole (2.2 dBi)

Date: 25.MAR.2005 00:16:12

Radiated Band Edge (Indirect) – 802.11g Ch 11 PEAK

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.


ANTENNA: AIR-ANT4941 Swivel Mount Dipole (2.2 dBi)

Radiated Band Edge (Indirect) – 802.11g Ch 11 AVERAGE

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

ANTENNA: AIR-ANT4941 Swivel Mount Dipole (2.2 dBi)

Date: 25.MAR.2005 00:17:13

Radiated Band Edge (Indirect) – 802.11g Ch 11 DELTA

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 63 of 84

ANTENNA: AIR-ANT5959 Diversity Omni Ceiling Antenna (2.35 dBi)

TABLE OF RESULTS – 802.11b 11 MBit/s

Direct Test Methodology for Band Edge 2,390 MHz

Tx Freq. (MHz)	Restricted Band Edge Frequency (MHz)	Measured (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,412 _{PEAK}	2,390	53.69	74.00	-20.31
2,412 _{AVE}	2,390	43.41	54.00	-10.59

Indirect Test Methodology for Band Edge 2,483.5 MHz

Tx Freq. (MHz)	Restricted Band Frequency (MHz)	Measured (dBuV/m)	Delta (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,462 _{PEAK}	2,483.5	102.68	61.16	41.52	74.00	-32.48
2,462 _{AVE}	2,483.5	95.61	61.16	34.45	54.00	-19.55

TABLE OF RESULTS – 802.11g 54 MBit/s

Direct Test Methodology for Band Edge 2,390 MHz

Tx Freq. (MHz)	Restricted Band Edge Frequency (MHz)	Measured (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,412 _{PEAK}	2,390	63.50	74.00	-10.05
2,412 _{AVE}	2,390	49.41	54.00	-4.59

Indirect Test Methodology for Band Edge 2,483.5 MHz

Tx Freq. (MHz)	Restricted Band Frequency (MHz)	Measured (dBuV/m)	Delta (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,462 _{PEAK}	2,483.5	101.81	40.45	61.40	74.00	-12.6
2,462 _{AVE}	2,483.5	91.26	40.45	50.81	54.00	-3.19

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 64 of 84

ANTENNA: AIR-ANT1728 Omni Ceiling Antenna (5.2 dBi)

TABLE OF RESULTS – 802.11b 11 MBit/s

Direct Test Methodology for Band Edge 2,390 MHz

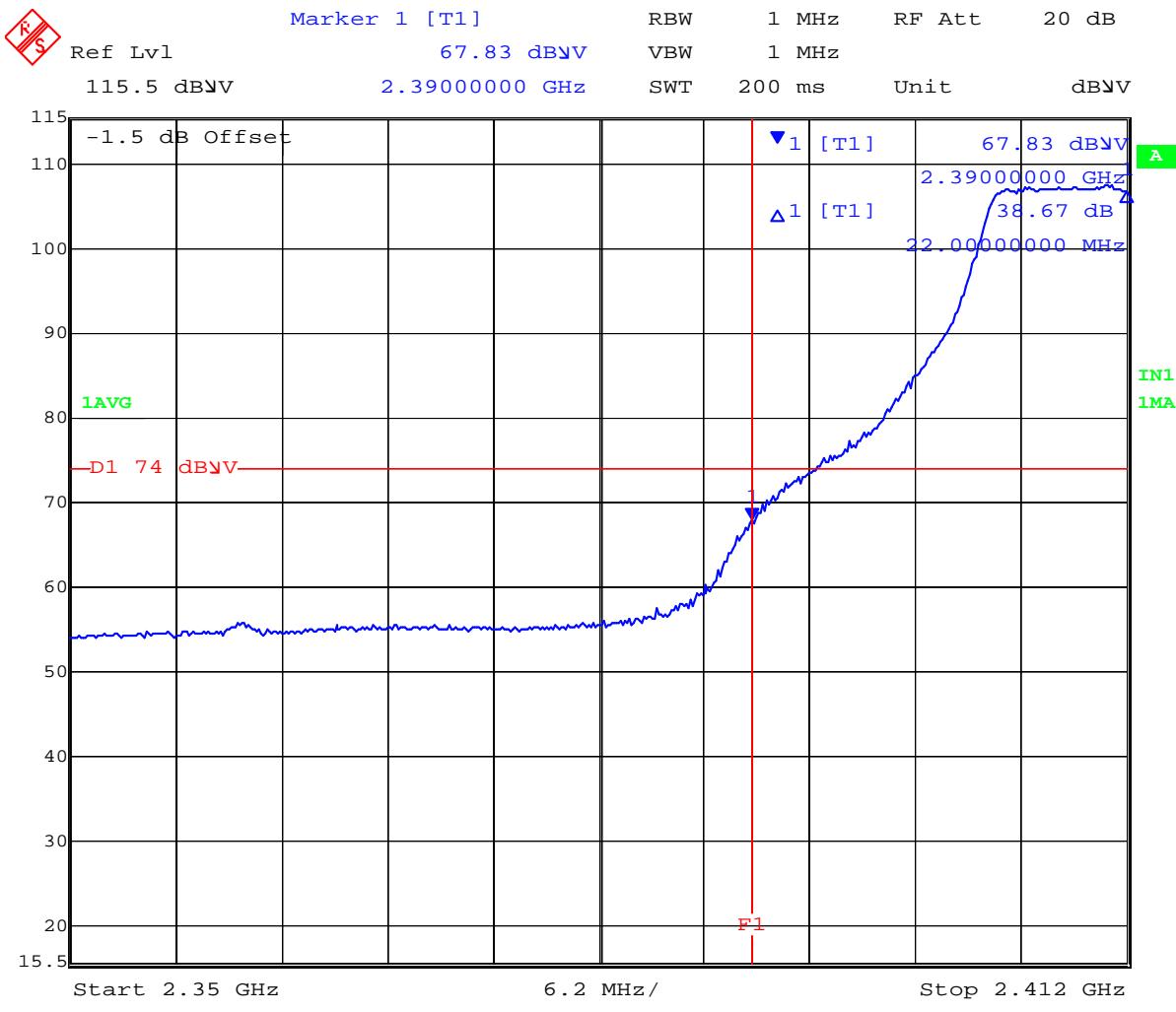
Tx Freq. (MHz)	Restricted Band Edge Frequency (MHz)	Measured (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,412 _{PEAK}	2,390	65.32	74.00	-8.68
2,412 _{AVE}	2,390	53.52	54.00	-0.48

Indirect Test Methodology for Band Edge 2,483.5 MHz

Tx Freq. (MHz)	Restricted Band Frequency (MHz)	Measured (dBuV/m)	Delta (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,462 _{PEAK}	2,483.5	109.76	55.32	54.44	74.00	-19.56
2,462 _{AVE}	2,483.5	106.31	55.32	52.31	54.00	-1.69

TABLE OF RESULTS – 802.11g 54 MBit/s

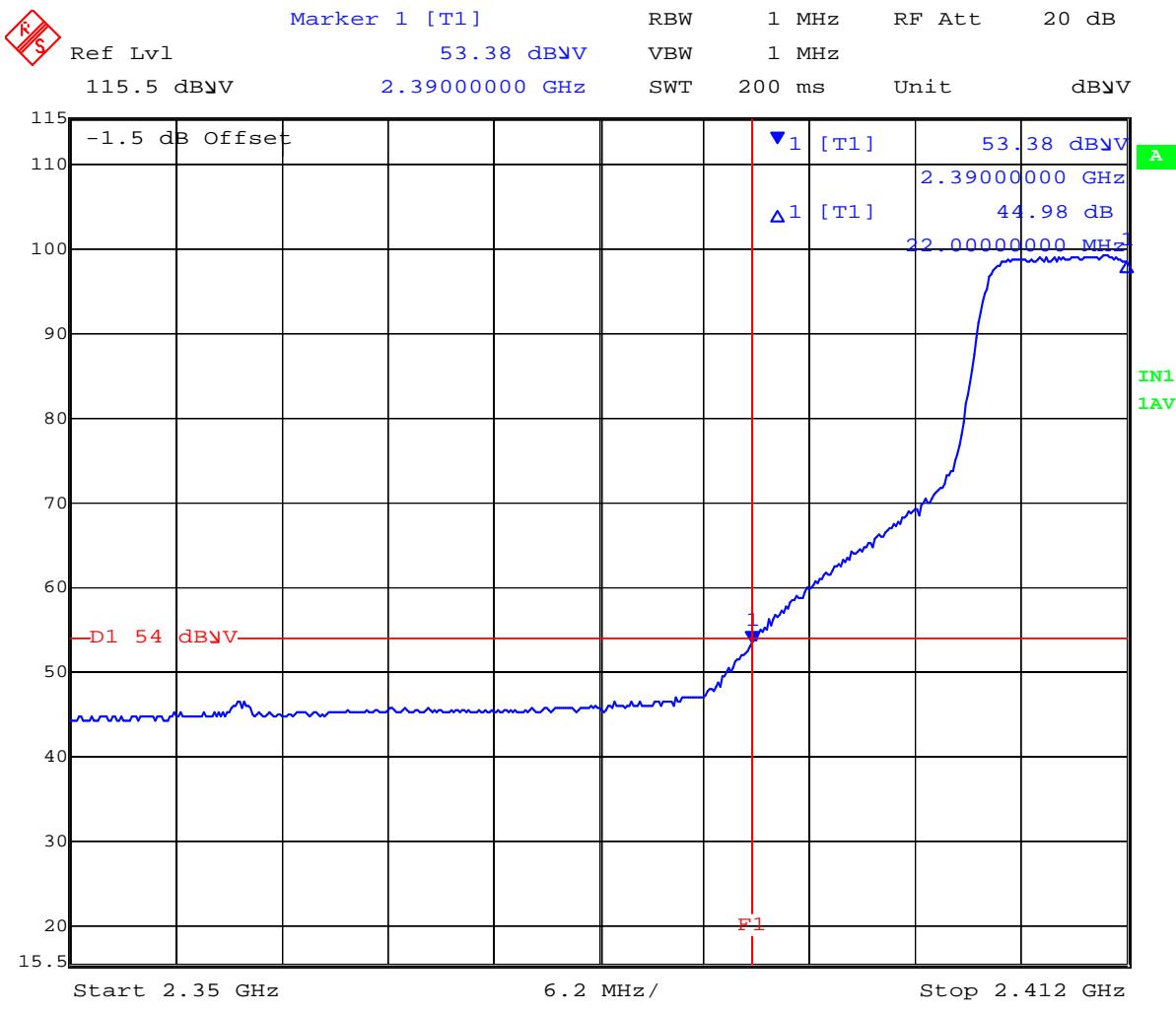
Direct Test Methodology for Band Edge 2,390 MHz


Tx Freq. (MHz)	Restricted Band Edge Frequency (MHz)	Measured (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,412 _{PEAK}	2,390	67.83	74.00	-6.17
2,412 _{AVE}	2,390	53.38	54.00	-0.62

Indirect Test Methodology for Band Edge 2,483.5 MHz

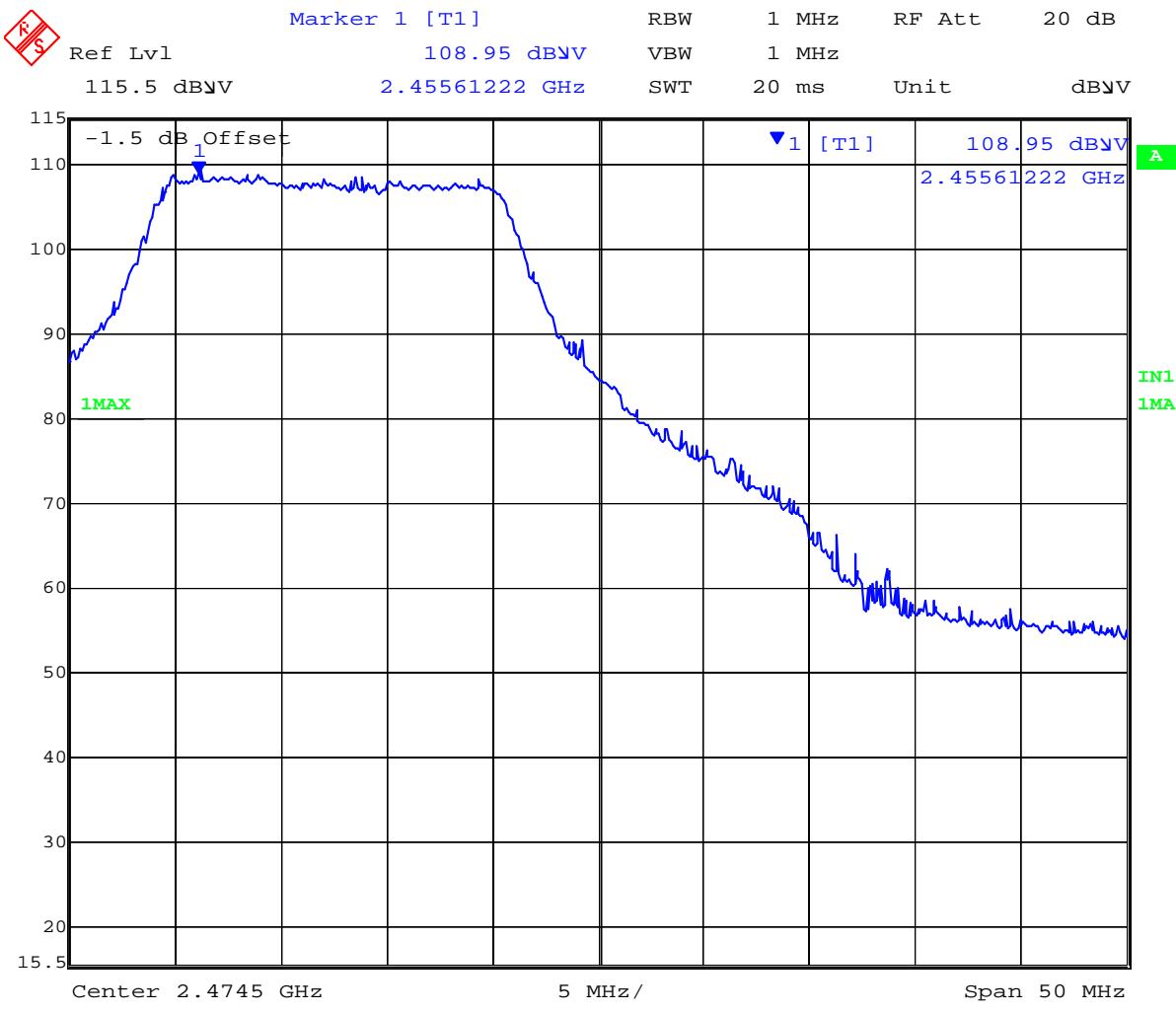
Tx Freq. (MHz)	Restricted Band Frequency (MHz)	Measured (dBuV/m)	Delta (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2,462 _{PEAK}	2,483.5	108.95	43.83	65.12	74.00	-8.88
2,462 _{AVE}	2,483.5	97.47	43.83	53.64	54.00	-0.36

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.


ANTENNA: AIR-ANT1728 Omni Ceiling Antenna (5.2 dBi)

Radiated Band Edge (Direct) – 802.11g Ch 1 PEAK

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.


ANTENNA: AIR-ANT1728 Omni Ceiling Antenna (5.2 dBi)

Radiated Band Edge (Direct) – 802.11g Ch 1 AVERAGE

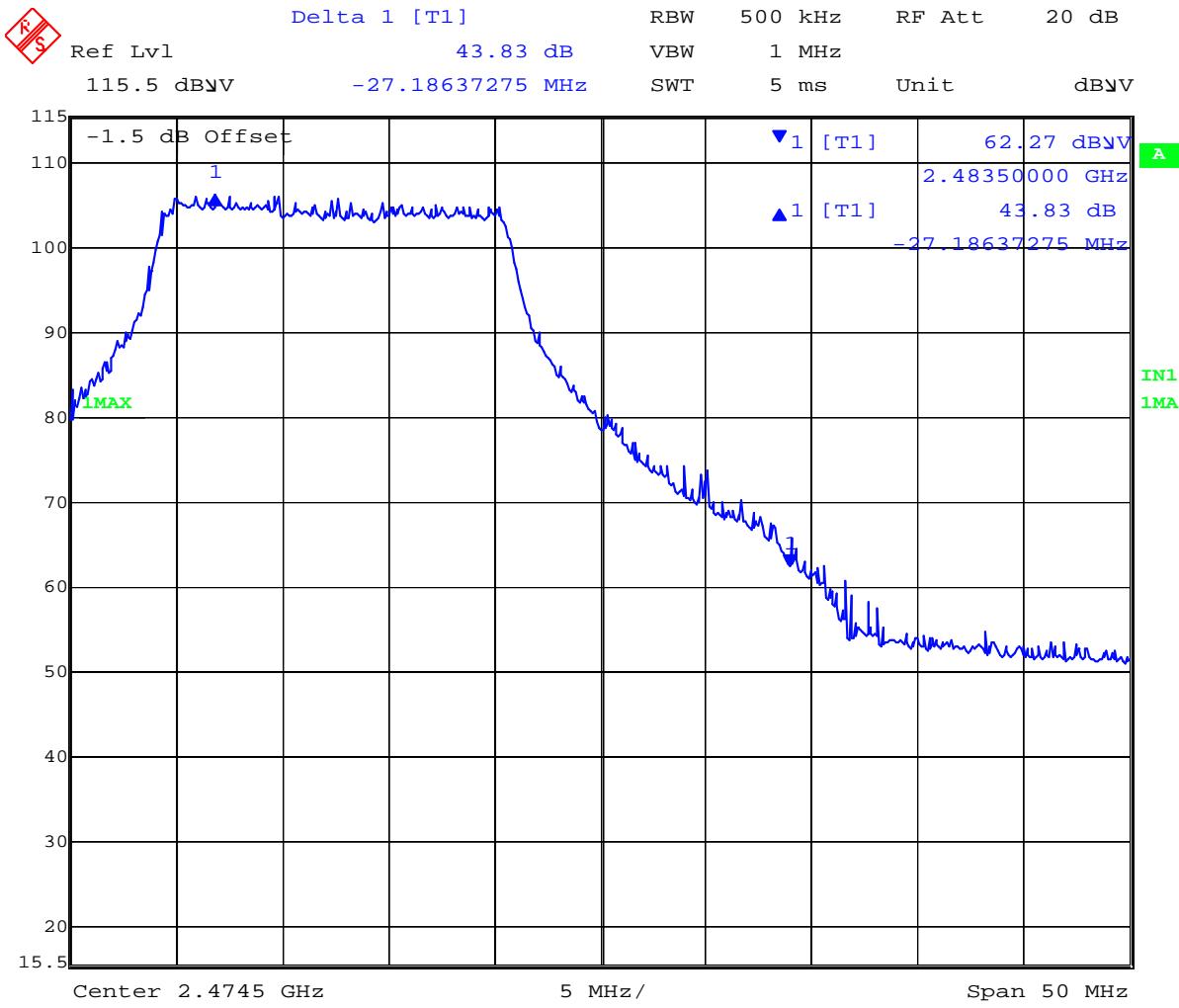
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

ANTENNA: AIR-ANT1728 Omni Ceiling Antenna (5.2 dBi)

Radiated Band Edge (Indirect) – 802.11g Ch 11 PEAK

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

ANTENNA: AIR-ANT1728 Omni Ceiling Antenna (5.2 dBi)



Date: 24.MAR.2005 23:58:11

Radiated Band Edge (Indirect) – 802.11g Ch 11 AVERAGE

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

ANTENNA: AIR-ANT1728 Omni Ceiling Antenna (5.2 dBi)

Date: 24.MAR.2005 23:54:48

Radiated Band Edge (Indirect) – 802.11g Ch 11 DELTA

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 70 of 84

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

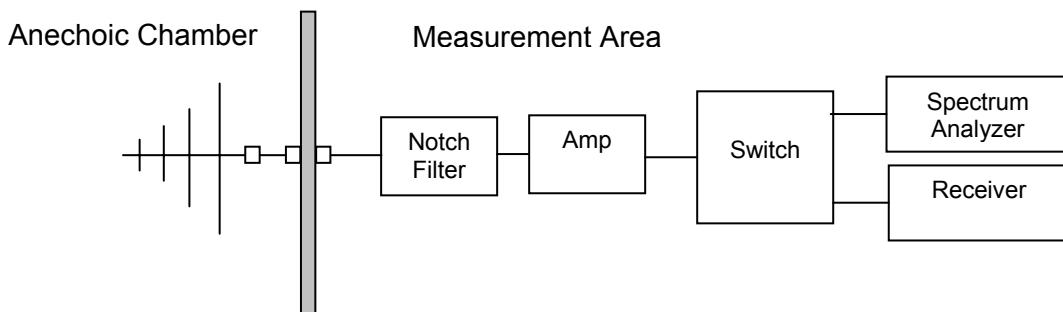
Measurement Uncertainty Radiated Emissions

Measurement uncertainty (dB)	+5.6/ -4.5
------------------------------	------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0088, 0156, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.


5.1.6.2. Radiated Emissions (30M-1GHz)

FCC, Part 15 Subpart C §15.247(c)/ §15.209
Industry Canada RSS-210 §6.2.2(q1)(ii)

Test Procedure

Testing 30M-1GHz was subcontracted to the company identified in Section 3.9 Subcontracted Testing. Preliminary radiated emissions are measured in the anechoic chamber at a 10-meter distance on every azimuth in both horizontal and vertical polarity. The emissions are recorded with a spectrum analyzer in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

Test Measurement Set up

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

For example:

Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3\text{dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$$

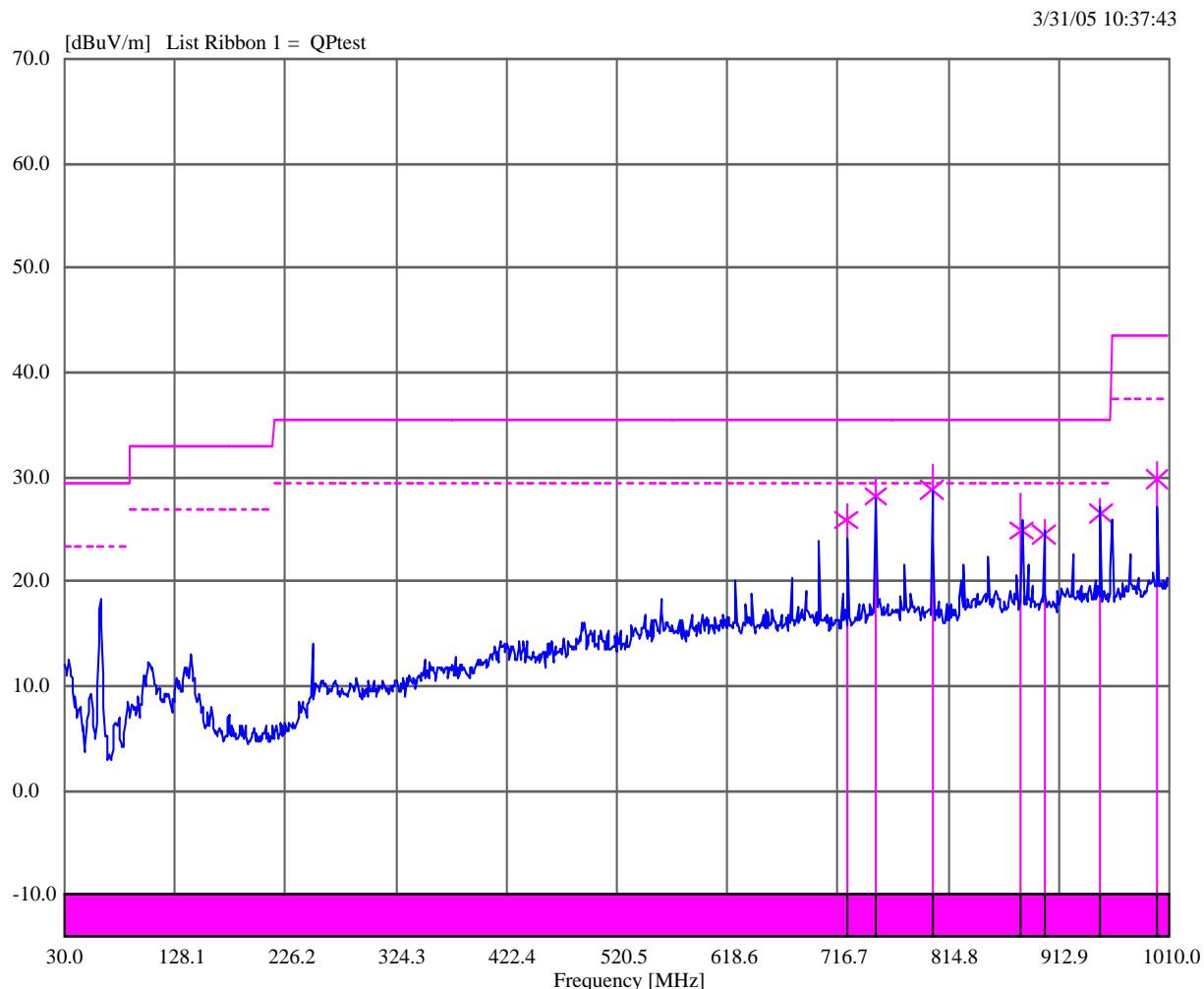
Measurement Results for Spurious Emissions (30MHz – 1GHz)

Ambient conditions.

Temperature: 19 to 26 °C Relative humidity: 31 to 57% Pressure: 999 to 1009 mbar

Radio parameters.

Data Rate(s): 11Mbps


Transmission:

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

TABLE OF RESULTS

Freq. (MHz)	Peak (dBuV/m)	QP (dBuV/m)	QP Lmt (dBuV/m)	QP Margin (dB)	Angle (deg)	Hgt (cm)	Pol	Total Corr'n Factor
724.986	27.32	25.85	35.50	-9.65	80	104	Horz	-8.50
749.993	29.88	28.10	35.50	-7.40	79	101	Horz	-7.27
799.990	31.29	28.82	35.50	-6.68	92	101	Horz	-7.79
880.115	28.39	24.83	35.50	-10.67	83	102	Horz	-6.30
899.998	25.90	24.51	35.50	-10.99	47	203	Vert	-6.17
949.992	27.87	26.58	35.50	-8.92	94	97	Horz	-5.22
999.997	31.52	29.85	43.50	-13.65	32	150	Vert	-3.62

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 74 of 84

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

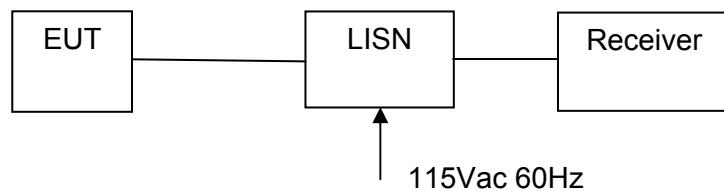
Measurement Uncertainty Radiated Emissions

Measurement uncertainty (dB)	+5.6/ -4.5
------------------------------	------------

Traceability

Method	SANMINA Test Equipment Used
Measurements were made per Sanmina work instruction	8546A HP Receiver and RF Filter, HP Pre-amp, Antenna EMCO Biconilog

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.


5.1.7. AC Wireline Conducted Emissions (150KHz – 30MHz)

FCC, Part 15 Subpart C §15.207
Industry Canada RSS-210 §6.6(b), §7.4

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9KHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

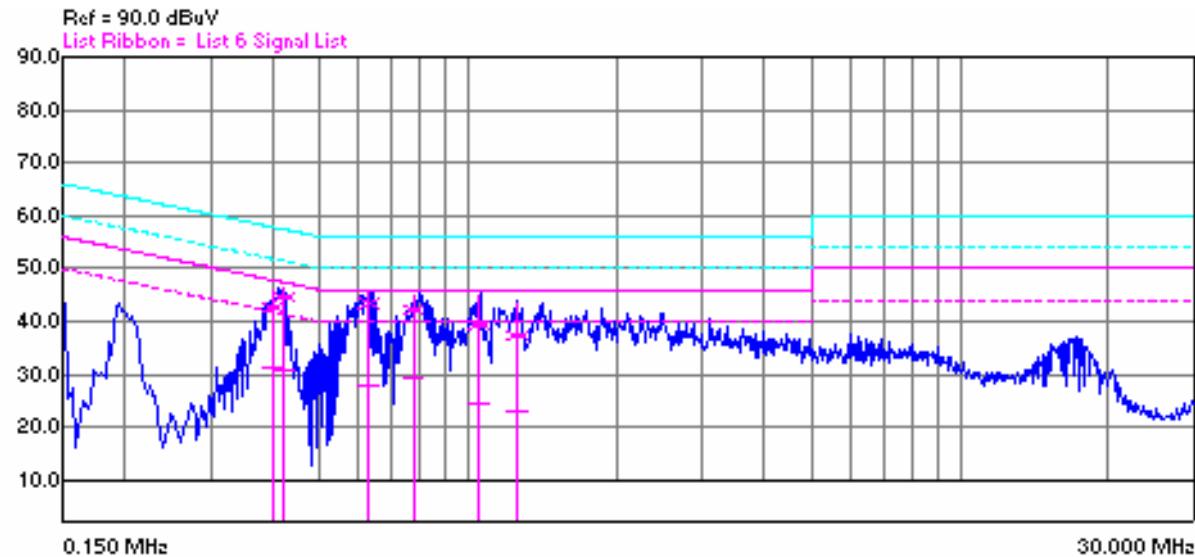
Measurement Results for AC Wireline Conducted Emissions (150KHz – 30MHz)

Ambient conditions.

Temperature: 19 to 26 °C Relative humidity: 31 to 57% Pressure: 999 to 1009 mbar

Radio parameters.

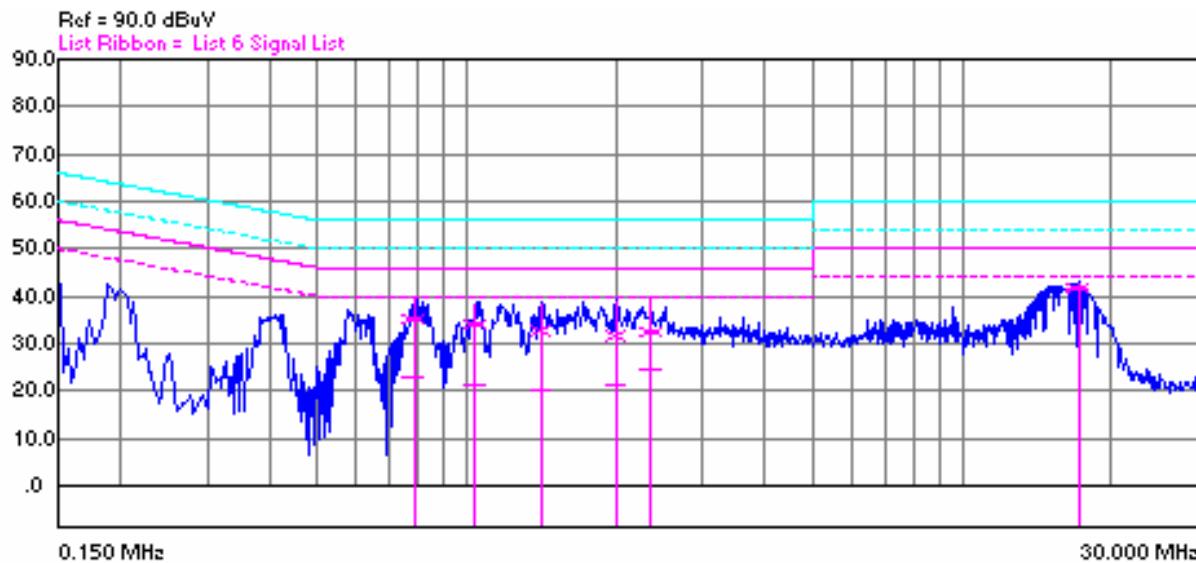
Data Rate(s): 11Mbps



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

TABLE OF RESULTS

LINE - LIVE


Frequency (MHz)	Peak (dB μ V)	QP (dB μ V)	QP Limit (dB μ V)	QP Margin (dB)	Ave. (dB μ V)	Ave. Limit (dB μ V)	Ave. Margin (dB)
0.401592	46.17	42.79	57.84	-15.05	31.23	47.84	-16.61
0.423502	46.86	44.77	57.43	-12.66	30.95	47.43	-16.48
0.627359	45.80	43.43	56.00	-12.57	27.95	46.00	-18.05
0.777885	45.41	42.09	56.00	-13.91	29.21	46.00	-16.79
1.054981	45.20	39.18	56.00	-16.82	24.48	46.00	-21.52
1.261671	44.15	37.52	56.00	-18.48	23.05	46.00	-22.95

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

LINE – NEUTRAL

Frequency (MHz)	Peak (dB μ V)	QP (dB μ V)	QP Limit (dB μ V)	QP Margin (dB)	Ave. (dB μ V)	Ave. Limit (dB μ V)	Ave. Margin (dB)
0.785215	39.86	35.34	56.00	-20.66	22.86	46.00	-23.14
1.043759	38.70	34.07	56.00	-21.93	21.18	46.00	-24.82
1.419595	38.72	32.68	56.00	-23.32	20.38	46.00	-25.62
2.008017	39.15	31.62	56.00	-24.38	21.00	46.00	-25.00
2.359189	39.59	32.32	56.00	-23.68	24.45	46.00	-21.55
17.218202	42.90	41.85	60.00	-18.15	41.20	50.00	-8.80

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150KHz to 30MHz shall not exceed the limits in the following table, as measured using a 50 μ Ω line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

6.6(b) On any frequency or frequencies within the band of 0.15-30 MHz, the measured RF voltage (CISPR meter) shall not exceed 250 μ V, 48dB μ V (across 50 ohms)

Transmitters marketed for use only in a commercial, industrial or business environment and not intended for use in homes are permitted a limit of 1000 μ V (60dB μ V, 0.45 - 1.705 MHz) and 3000 μ V (69.5dB μ V, 1.705 - 30 MHz).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

Title: CISCO 74-3625 802.11b/g Wireless Module
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: TUVR74-A1 Rev B
Issue Date: 25th April '05
Page: 78 of 84

§15.207 (a) Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	± 2.64 dB
-------------------------	---------------

Traceability

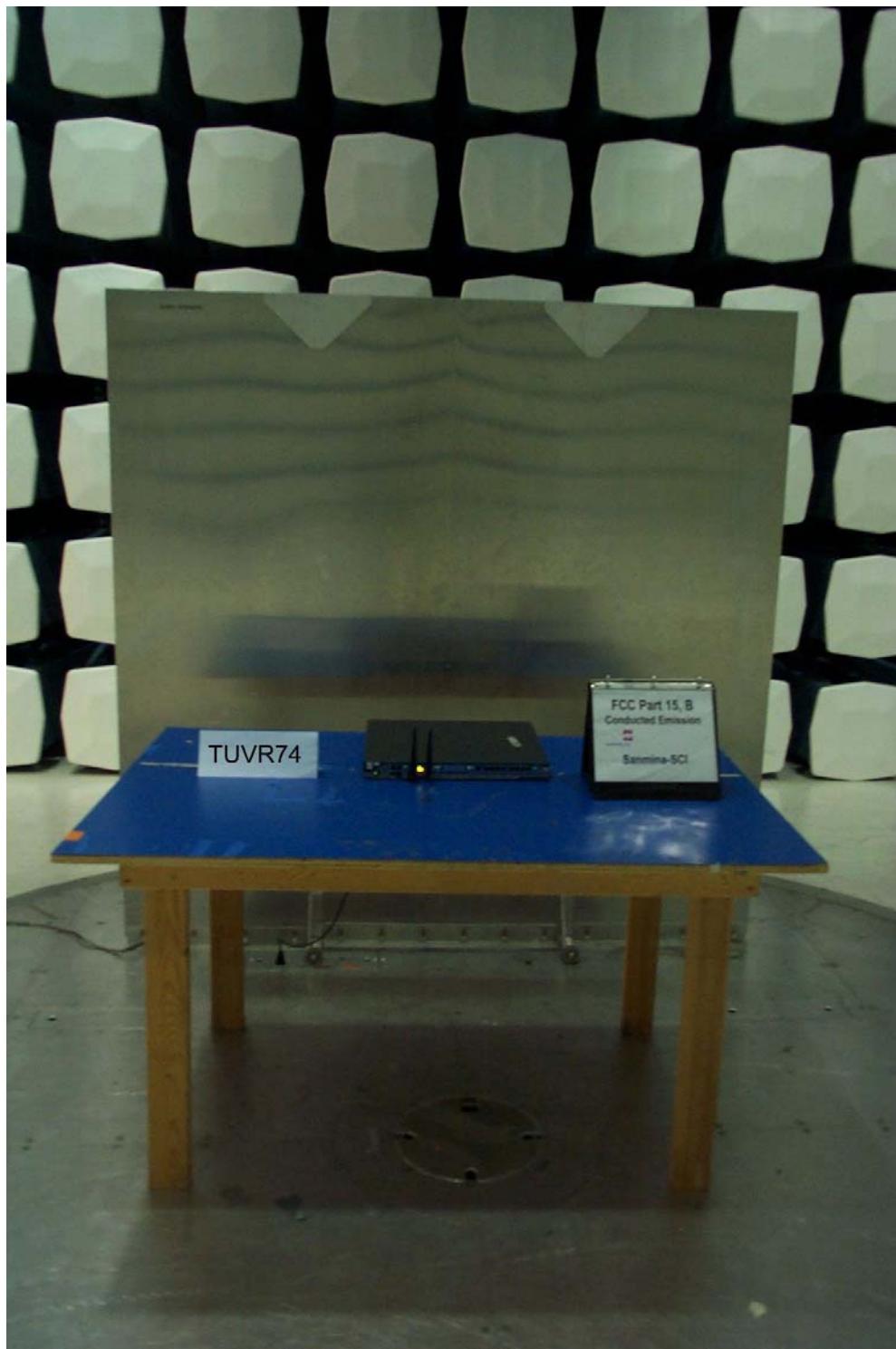
Method	SANMINA Test Equipment Used
Measurements were made per Sanmina work instruction	8546A HP Receiver and RF Filter, HP Pre-amp

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

6. TEST SET-UP PHOTOGRAPHS

6.1. Radiated Emissions (30MHz-1GHz)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.


6.2. Spurious Emissions >1GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

6.3. Conducted Emissions (150KHz - 30MHz)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

6.4. General Measurement Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

6.5. CISCO 74-3625 802.11b/g Module Labels

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Calibration Due Date	Serial #
0070	Power Meter	Hewlett Packard	437B	13 th May '05	3125U13554
0078	Antenna (30M-2GHz)	Schaffner and Chase	CBLG140A	Not Applicable	1195
0088	Spectrum Analyzer	Hewlett Packard	8564E	15 th May '05	
0104	1-18GHz Horn Antenna	The Electro-Mechanics Company	3115	12 th Aug '05	9205-3882
0107	26.5GHz-40GHz	Northeast Microwave System	261A1599	30 th Apr '05	971716-027
0116	Power Sensor	Hewlett Packard	R8485A	16 th Apr '05	3318A19694
0134	Amplifier	Com Power	PA 122	1 st Sept '05	181910
0145	18GHz-26.5GHz	Millimeter Products	261K	30 th Apr '05	595
0156	Barometer /Thermometer	Control Co.	4196	12 th Aug '05	E2844
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	1 st Dec '05	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	3 rd Apr '05	836679/006
0193	EMI Receiver	Rhode & Schwartz	ESI 7	16 th Apr '05	838496/007
0251	SMA Cable	Megaphase	Sucoflex 104	18 th Jun '05	Unknown
0252	SMA Cable	Megaphase	Sucoflex 104	18 th Jun '05	Unknown
0253	SMA Cable	Megaphase	Sucoflex 104	18 th Jun '05	Unknown
0256	SMA Cable	Megaphase	Sucoflex 104	18 th Jun '05	Unknown
0293	BNC Cable	Megaphase	Unknown	18 th Jun '05	Unknown
0304	2.4GHz Notch Filter	Micro-Tronics	--	N/A	--
0307	BNC Cable	Megaphase	Unknown	18 th Jun '05	Unknown
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787-3G03G0	16 th Dec '05	209089-001
0311	12-18GHz High Pass Filter	CMT	--	--	--
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181-3G0300	16 th Dec '05	209092-001
0313	Coupler	Hewlett Packard	86205A	N/A	1623
0314	30dB N-Type Attenuator	NARDA	32319	N/A	--
0315	17-26.5GHz High Pass Filter	HP	--	--	--

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any change will be noted in the Document History section of the report.

3922 Valley Avenue, Suite "B"
Pleasanton, CA 94566, USA
Tel: 1.925.462.0304
Fax: 1.925.462.0306
www.micmlabs.com