

**HaveTest Report:** EDCS - 467665  
**For**

**AIR-LAP1510AG-A-K9**

**Cisco Aironet 1500 Series Outdoor Mesh Access Points**

**Against the following Specifications :**

**CFR47 Part 90.210**

**Cisco Systems**  
EMC Laboratory  
170 West Tasman Drive  
San Jose, CA 95134



**Certificate Number : 1178-01**

**Author:** James Nicholson  
**Approved By:**  
**Title:**

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

**SECTION 1: OVERVIEW .....**.....**3**

    TEST SUMMARY .....**3**

**SECTION 2: ASSESSMENT INFORMATION.....**4****

    2.1 GENERAL .....**4**

    2.3 REPORT ISSUE DATE .....**5**

    2.4 TESTING FACILITIES.....**5**

    2.6 EUT DESCRIPTION.....**5**

    2.7 SCOPE OF ASSESSMENT.....**6**

    2.8 UNITS OF MEASUREMENT .....**6**

    2.9 MEASUREMENT UNCERTAINTY .....**6**

**SECTION 3: SAMPLE DETAILS.....**8****

    3.1 SAMPLE DETAILS.....**8**

**APPENDIX A: FORMAL EMISSION TEST RESULTS.....**9****

    AVERAGE OUTPUT POWER .....**9**

    26dB BANDWIDTH.....**10**

    99% BANDWIDTH .....**11**

    PEAK OUTPUT POWER .....**13**

    POWER SPECTRAL DENSITY .....**14**

    FREQUENCY STABILITY .....**15**

    CONDUCTED SPURIOUS EMISSIONS .....**16**

    RADIATED TRANSMITTER SPURIOUS EMISSIONS .....**19**

    MAXIMUM PERMISSIBLE EXPOSURE (MPE) CALCULATIONS.....**21**

    30MHz-1GHz RADIATED SPURIOUS EMISSIONS.....**23**

    AC MAINS .150-30MHz CONDUCTED EMISSIONS.....**24**

**APPENDIX B: TEST SETUP PHOTOS.....**25****

**APPENDIX C: TEST PROCEDURES .....**.....**26**

**APPENDIX D: SCOPE OF ACCREDITATION: A2LA CERTIFICATE NUMBER 1178-01.....**27****

**APPENDIX E: TEST EQUIPMENT USED TO PERFORM THE TEST.....**28****

**APPENDIX E: TEST EQUIPMENT USED TO PERFORM THE TEST.....**28****

## Section 1: Overview

### Test Summary

**The samples were assessed against the tests detailed in section 3 under the requirements of the following standards:**

#### **Emissions:**

CFR47 Part 90.210

#### **Notes:**

- 1) Where a specification listed on the front cover of this report has deviations from the basic standards listed above, the additional technical requirements of the specification were also assessed.
- 2) Where appropriate, Cisco may have substituted a later revision of a basic standard to those referenced in the specification on the front sheet of this test report. This decision was based upon improved test methodology and repeatability and/or where the newer revision represented a more stringent test.
- 3) Where relevant, testing has been carried out to the requirements of both EN and IEC Specifications. This was possible because of the similarities of the test methods involved and the Cisco EMC test procedures.
- 4) For Radiated and Conducted emissions results refer to section 2.9 for measurement uncertainty considerations
- 5) Where applicable, details of the precise distance used when performing radiated immunity measurements can be found in Cisco document EDCS-221012.
- 6) Where testing has been performed to EN61000-4-3, additional measurements were conducted to establish the field strength at a 40cm height in both the horizontal and vertical antenna polarities (applies to floor standing EUT's only). This field strength data can be found in Cisco document ENG-72588.

## Section 2: Assessment Information

### 2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted.

**This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal Government.**

**This report may contain data that are not covered by the A2LA accreditation (Certificate number 1178-01). Please refer to Appendix F for further details.**

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:
  - Temperature 15°C to 35°C (54°F to 95°F)
  - Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")
  - Humidity 10% to 75\*%

\*[Where applicable] For ESD testing the humidity limits used were 30% to 60% and for EFT/B tests the humidity limits used were 25% to 75%.
- e) All AC testing was performed at one or more of the following supply voltages:
  - 110V (+/-10%) 60Hz
  - 220V (+/-10%) 50 or 60Hz
- f) Cisco Systems Inc., are accredited by the American Association for Laboratory Accreditation (A2LA). For the specific scope of accreditation under certificate number 1178-01.see appendix F for further details.

**This report must not be reproduced except in full, without written approval of Cisco Systems.**

## **2.2 Date of start of testing**

10-July-2005

## **2.3 Report Issue Date**

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

## **2.4 Testing facilities**

This assessment was performed by:

### **Testing Laboratory**

Cisco Systems, Inc.,  
170 West Tasman Drive  
San Jose, CA 95134,  
USA

### **Test Engineers**

James Nicholson

## **2.5 Equipment Assessed (EUT)**

AIR-LAP1510AG-x-K9 Cisco Aironet 1500 Series Outdoor Mesh Access Point

## **2.6 EUT Description**

The AIR-LAP1510AG-A-K9 access point operates simultaneously in both the 2.4 and either 4.9 or 5 GHz spectrum, to provide data rates up to 54 Mbps in each band in accordance with IEEE 802.11a and 802.11g standards, including backwards compatibility to 802.11b. AIR-LAP1510AG-x-K9 supports both inline power and local power. The AIR-LAP1510AG-A-K9 utilized standard "N" type antenna connectors, and requires professional installation. The 4.9GHz Channel Bandwidth is 20MHz.

## 2.7 Scope of Assessment

Tests have been performed in accordance with the relevant Test and Assessment Plan (TAP), a copy of which is contained in Appendix H of this report, and the relevant Cisco EMC compliance test procedures (ENG-23438). This test report may not cover all of the tests highlighted in the test plan.

## 2.8 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, these are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in dBuV and current in dBuA.

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The components of factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss, Current Probe Factors.

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm  $[(X \text{ dBuV/m})/20] = Y \text{ uV/m}$

## 2.9 Measurement Uncertainty

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

|                    |                       |
|--------------------|-----------------------|
| 10kHz - 30 MHz     | +/- 2.8 dB ( E Field) |
| 10kHz - 30 MHz     | +/- 2.8 dB ( H Field) |
| 30 MHz - 300 MHz   | +/- 3.8 dB            |
| 300 MHz - 1000 MHz | +/- 4.3 dB            |
| 1 GHz - 10 GHz     | +/- 4.0 dB            |
| 10 GHz - 18GHz     | +/- 8.2 dB            |
| 18GHz - 26.5GHz    | +/- 4.1 dB            |
| 26.5GHz - 40GHz    | +/- 3.9 dB            |

Conducted emissions (expanded uncertainty, confidence interval 95%)

|                 |                                  |
|-----------------|----------------------------------|
| 4 kHz - 30 MHz  | +/- 2.2 dB (using Current Probe) |
| 9 kHz - 150 kHz | +/- 4.1 dB (using LISN)          |

|                  |                                   |
|------------------|-----------------------------------|
| 10 kHz - 30 MHz  | +/- 2.6 dB (using Current Probe)  |
| 150 kHz - 30 MHz | +/- 3.7 dB (using LISN)           |
| 150 kHz - 30 MHz | +/- 3.1 dB (using CDN)            |
| 150 kHz - 30 MHz | Under Consideration (Using CVP-1) |

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line. For further explanation refer to Cisco Systems Inc Measurement Uncertainty Document: ENG-4001 8

### **Section 3: Sample Details**

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

#### **3.1 Sample Details**

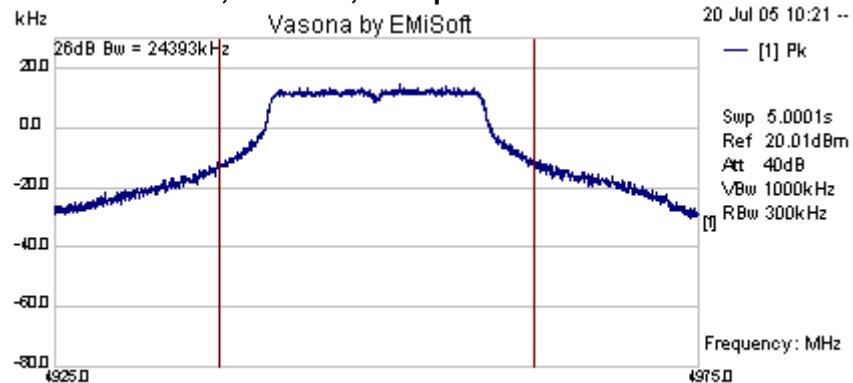
| Equipment Details                              |
|------------------------------------------------|
| AIR-LAP1510AG-A-K9                             |
| AIR-ANT5175V-N 4.9GHz, 6.5dBi Omni-Directional |

The following antennas are included in this filing:

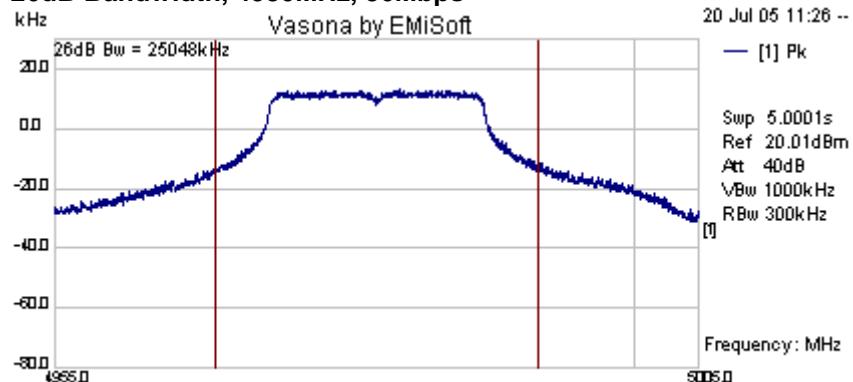
AIR-ANT5175V-N 4.9GHz, 6.5dBi Omni-Directional

## Appendix A: Formal Emission Test Results

### Average Output Power


#### 4.9GHz Average Power with 6.5dBi Antenna

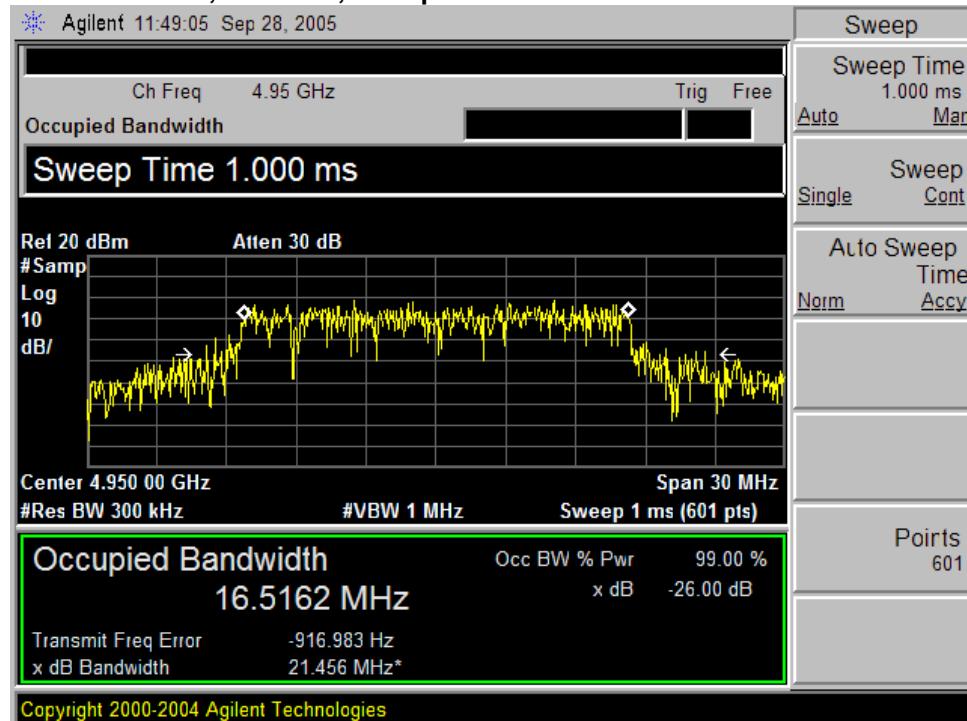
| Frequency (MHz) | Data Rate (Mbps) | Target Power (dBm) | Measured Power (dBm) |
|-----------------|------------------|--------------------|----------------------|
| 4950            | 36               | 20                 | 19.8                 |
| 4980            | 36               | 20                 | 19.6                 |


## 26dB Bandwidth

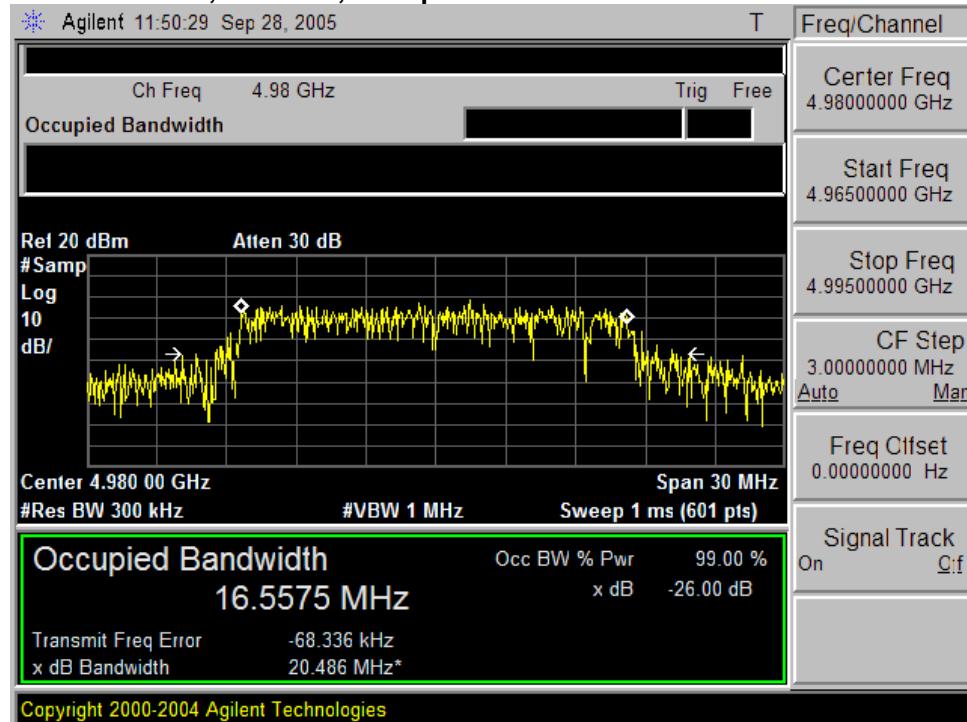
| Frequency (MHz) | Data Rate (Mbps) | 26dB Bandwidth (kHz) |
|-----------------|------------------|----------------------|
| 4950            | 36               | 24,393               |
| 4980            | 36               | 25,048               |

### 26dB Bandwidth, 4950MHz, 36 Mbps




### 26dB Bandwidth, 4980MHz, 36Mbps



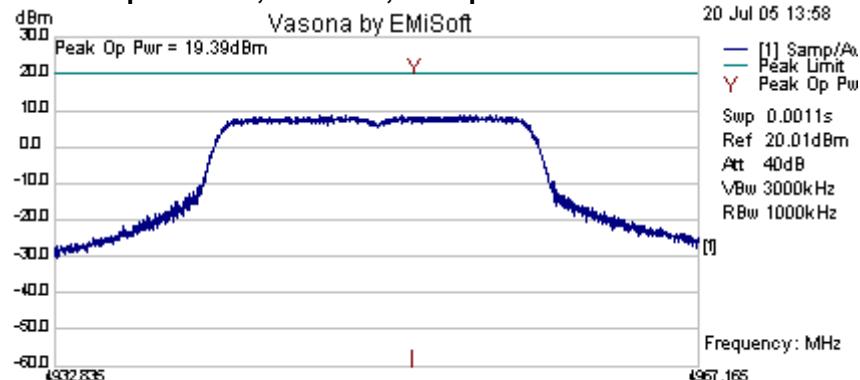

## 99% Bandwidth

| Frequency (MHz) | Data Rate (Mbps) | 99% Bandwidth (MHz) |
|-----------------|------------------|---------------------|
| 4950            | 36               | 16.56               |
| 4980            | 36               | 16.52               |

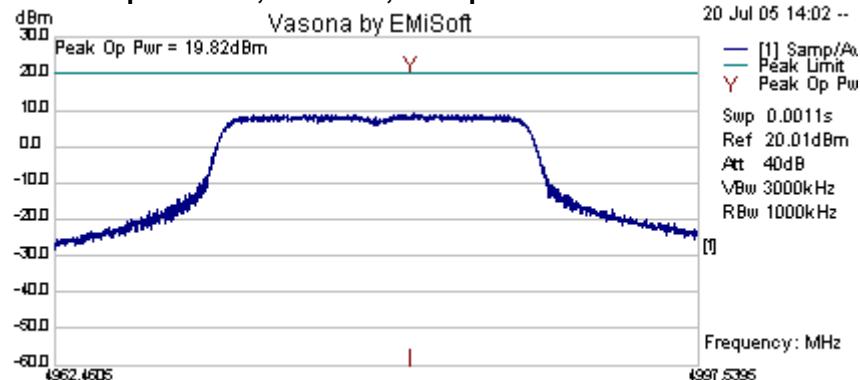
### 99% Bandwidth, 4950MHz,36 Mbps



**99% Bandwidth, 4980MHz,36 Mbps**




## Peak Output Power

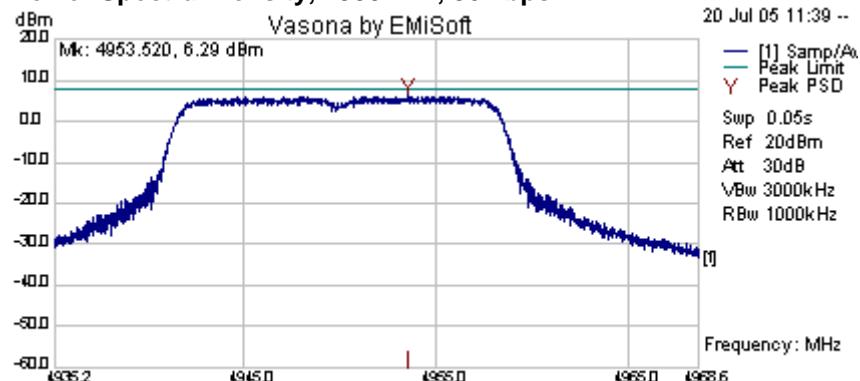

The transmitting power of stations operating in the 4940–4990 MHz band must not exceed 20dBm for a 20MHz low power device using antennas up to 9dBi gain.

| Frequency (MHz) | Data Rate (Mbps) | Peak Output Power (dBm) | Limit (dBm) | Margin (dB) |
|-----------------|------------------|-------------------------|-------------|-------------|
| 4950            | 36               | 19.39                   | 20          | 0.61        |
| 4980            | 36               | 19.82                   | 20          | 0.18        |

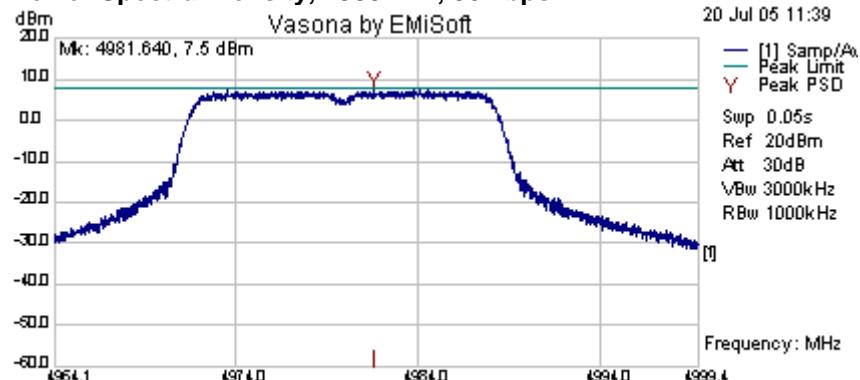
### Peak Output Power, 4950MHz, 36Mbps



### Peak Output Power, 4980MHz, 36Mbps




## Power Spectral Density


Low power devices operating in the 4940–4990 MHz band are limited to a peak power spectral density of 8 dBm per one MHz.

| Frequency (MHz) | Data Rate (Mbps) | Power Spectral Density (dBm/MHz) | Limit (dBm) | Margin (dB) |
|-----------------|------------------|----------------------------------|-------------|-------------|
| 4950            | 36               | 6.29                             | 8           | 1.71        |
| 4980            | 36               | 7.50                             | 8           | 0.50        |

### Power Spectral Density, 4950MHz, 36Mbps



### Power Spectral Density, 4980MHz, 36Mbps



## Frequency Stability

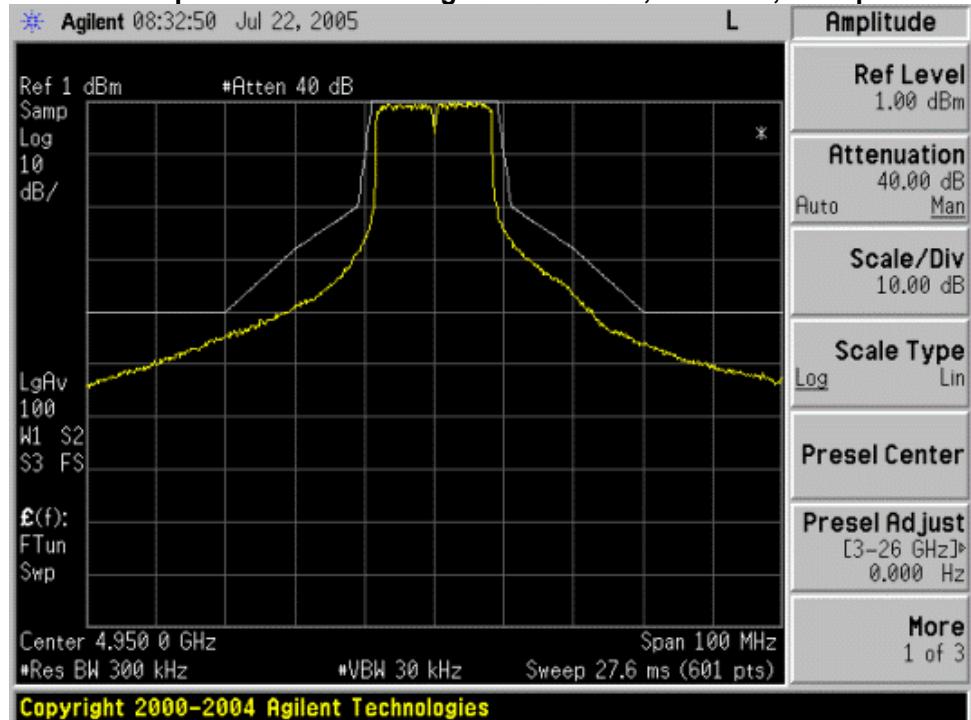
### Frequency Stability over Temperature

The frequency stability shall be measured with variation of ambient temperature from -30[deg] to +50[deg] centigrade. (Frequency variation listed in parts per million)

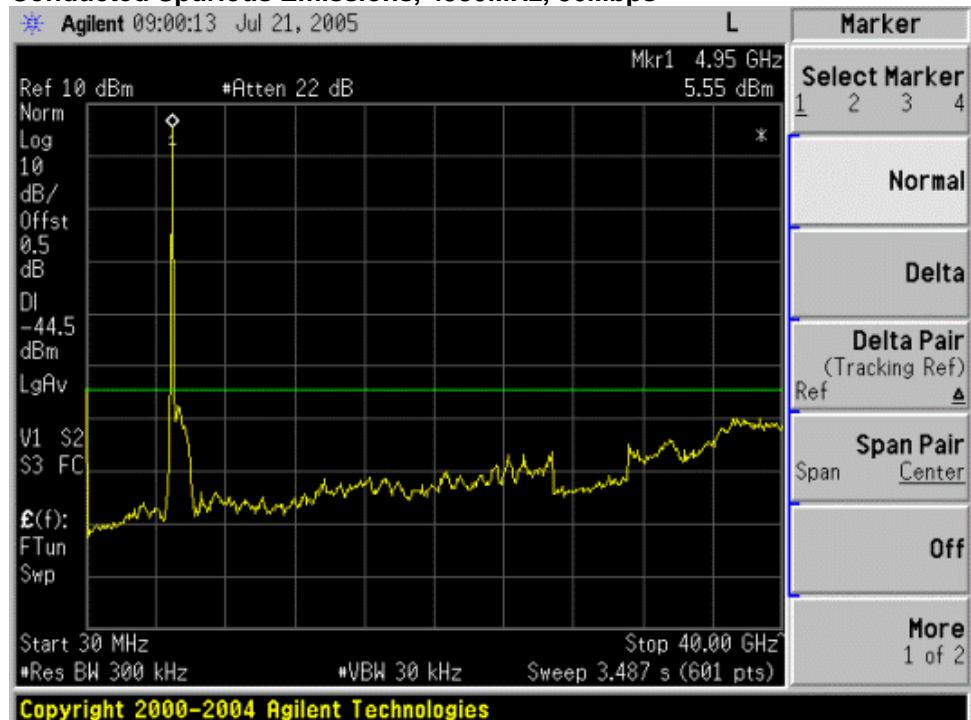
| Frequency<br>(MHz) | -35°C | -25°C | -15°C | -5°C | 5°C  | 15°C | 25°C | 35°C | 45°C | 55°C |
|--------------------|-------|-------|-------|------|------|------|------|------|------|------|
| 4950               | -0.1  | 0.69  | 1.47  | 2.26 | 2.07 | 1.87 | 1.68 | 3.99 | 6.30 | 8.61 |
| 4980               | -0.1  | 0.69  | 1.47  | 2.26 | 2.07 | 1.87 | 1.68 | 3.99 | 6.30 | 8.61 |

### Frequency Stability over Primary Supply Voltage (100-240 Vac)

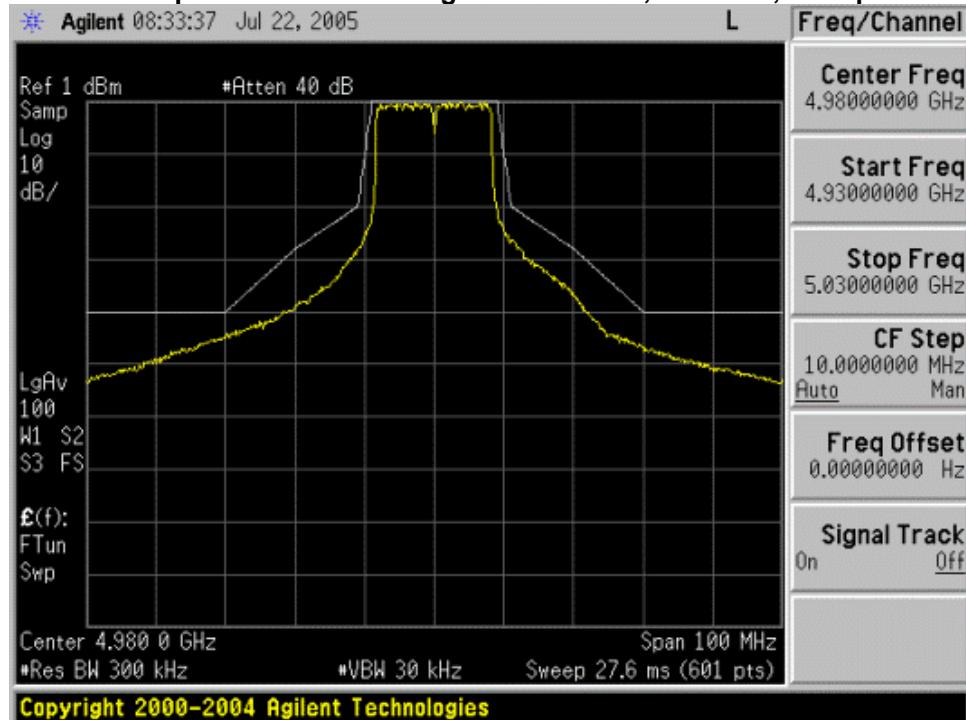
The frequency stability shall be measured with variation of primary supply voltage from 85 to 115 percent of the nominal value. (Frequency variation listed in parts per million)


| Frequency<br>(MHz) | 85Vac | 276Vac |
|--------------------|-------|--------|
| 4950               | 2.19  | 2.68   |
| 4980               | 2.19  | 2.68   |

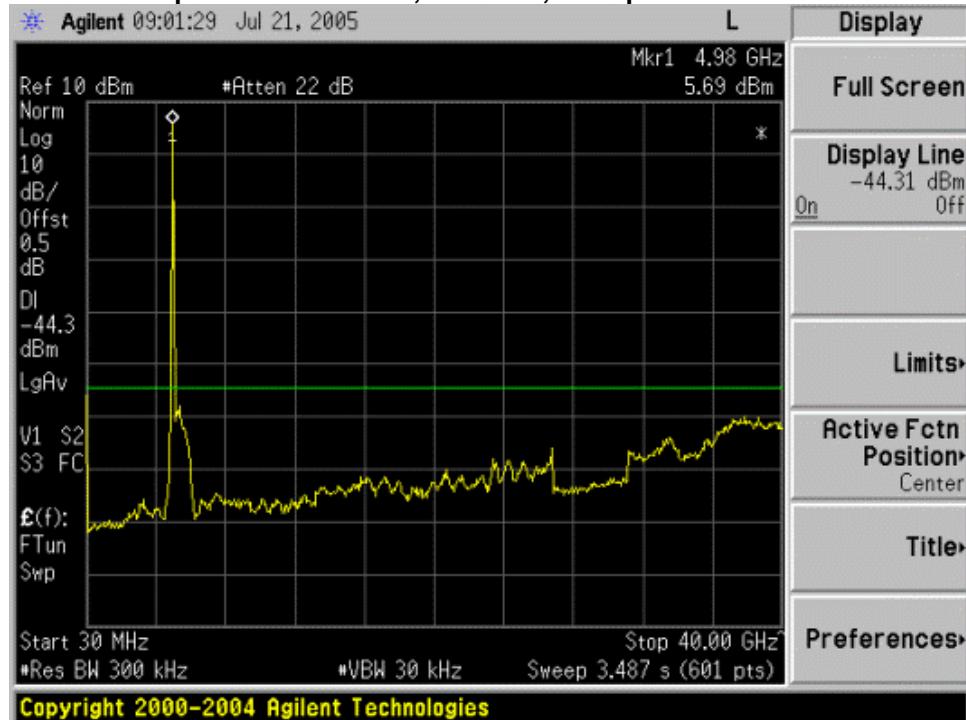
## **(1) Conducted Spurious Emissions**


For low power transmitters (20 dBm or less) operating in the 4940–4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

- (1) On any frequency removed from the assigned frequency between 0–45% of the authorized bandwidth (BW): 0 dB.
- (2) On any frequency removed from the assigned frequency between 45–50% of the authorized bandwidth:  $219 \log (\% \text{ of (BW)}/45)$  dB.
- (3) On any frequency removed from the assigned frequency between 50–55% of the authorized bandwidth:  $10 + 242 \log (\% \text{ of (BW)}/50)$  dB.
- (4) On any frequency removed from the assigned frequency between 55–100% of the authorized bandwidth:  $20 + 31 \log (\% \text{ of (BW)}/55)$  dB attenuation.
- (5) On any frequency removed from the assigned frequency between 100–150% of the authorized bandwidth:  $28 + 68 \log (\% \text{ of (BW)}/100)$  dB attenuation.
- (6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.


## Conducted Spurious Emissions Against Mask “L”, 4950MHz, 36Mbps




## Conducted Spurious Emissions, 4950MHz, 36Mbps



**Conducted Spurious Emissions Against Mask "L", 4980MHz, 36Mbps**

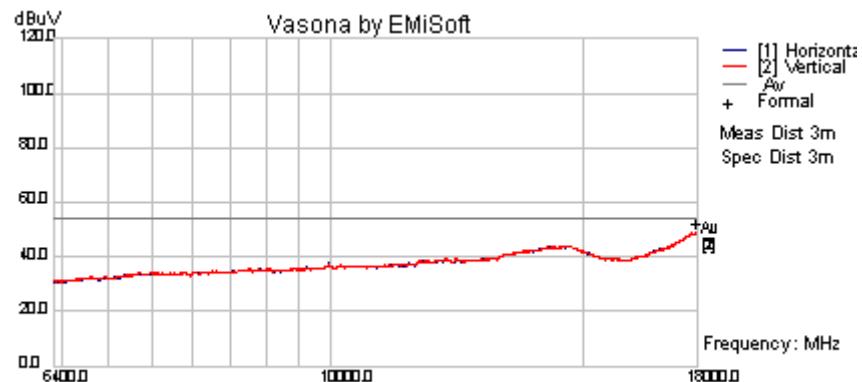
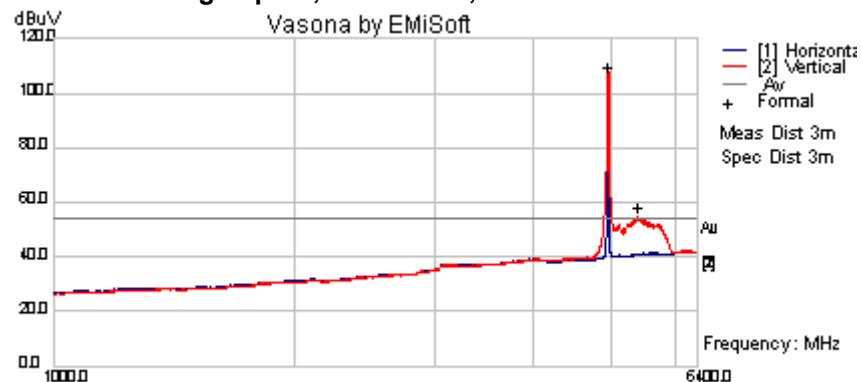


**Conducted Spurious Emissions, 4980MHz, 36Mbps**



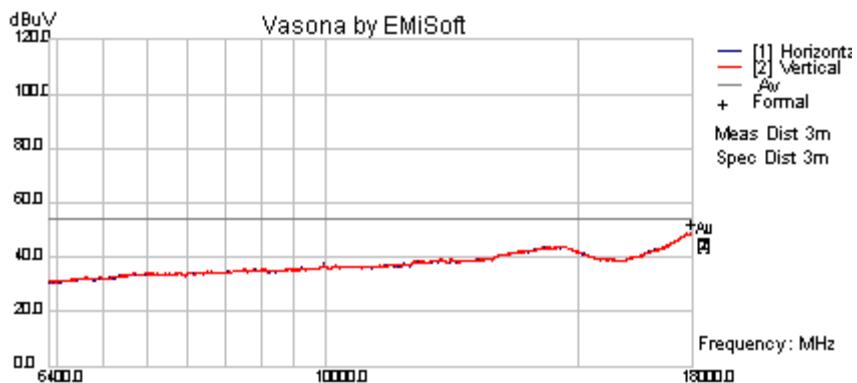
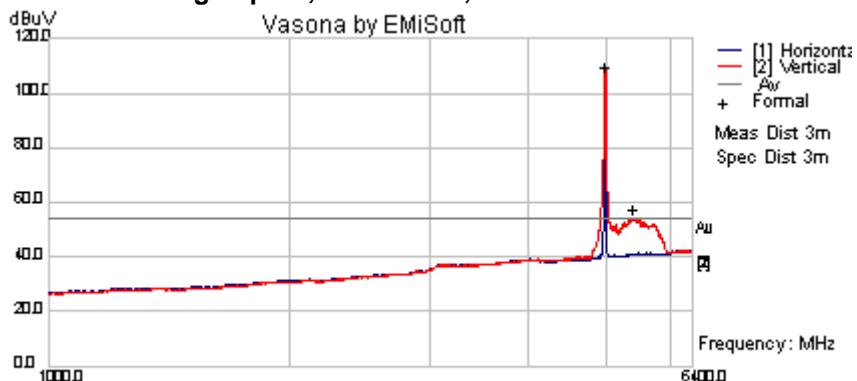
## Radiated Transmitter Spurious Emissions

The data in the table below reflects measurements using the substitution method as defined in accordance with FCC 2.1053 and TIA/EIA-603B and in the Cisco Substitution Method Test Procedure EDCS-479519. The graphical representations below display all recorded spurs in terms of field strength.



EIRP (dBm) = SG Reading (dBm)+Cable Loss (dB)+Antenna Gain (dBi)

Spur Limit (dBm) = Fundamental EIRP (dBm)-40dB

| f (MHz) | SA Reading (dBuV/m) | Antenna Polarity | SG Reading (dBm) | Cable Loss (dB) | Antenna Gain (dBi) | EIRP (dBm) | Limit (dBm) | Margin (dB) | Notes       |
|---------|---------------------|------------------|------------------|-----------------|--------------------|------------|-------------|-------------|-------------|
| 4950    | 119                 | V                | -13.4            | 1.1             | 8.2                | -4.1       |             |             | Fundamental |
| 5400    | 66.4                | V                | -65.8            | 1.2             | 8.5                | -56.1      | -44.1       | 12          | Spur        |
|         |                     |                  |                  |                 |                    |            |             |             |             |
| 4980    | 118.3               | V                | -13.7            | 1.1             | 8.3                | -4.3       |             |             | Fundamental |
| 5400    | 66.6                | V                | -65.6            | 1.2             | 8.5                | -55.9      | -44.3       | 11.6        | Spur        |



### 4950MHz, 36Mbps, 6.5dBi Omni-Directional Antenna

#### 1-18GHz Average Spurs, 1MHz RBW, 10Hz VBW



**4950MHz, 36Mbps, 6.5dBi Omni-Directional Antenna**

**1-18GHz Average Spurs, 1MHz RBW, 10Hz VBW**



**All Transmit Frequencies, 36Mbps, 6.5dBi Omni-Directional Antenna**

**18-40GHz Average Spurs, 1MHz RBW, 10Hz VBW**



## Maximum Permissible Exposure (MPE) Calculations

Given

$$E = \sqrt{(30 \cdot P \cdot G) / d} \quad \text{and} \quad S = E^2 / 3770$$

where

E=Field Strength in Volts/meter  
P=Power in Watts  
G=Numeric Antenna Gain  
d=Distance in meters  
S=Power Density in mW/cm<sup>2</sup>

Combine equations and rearrange the terms to express the distance as a function of the remaining variables:

$$d = \sqrt{(30 \cdot P \cdot G) / (3770 \cdot S)}$$

Changing to units of power in mW and distance in cm, using:

$$P(\text{mW}) = P(\text{W}) / 1000 \quad d(\text{cm}) = 100 \cdot d(\text{m})$$

yields

$$d = 100 \cdot \sqrt{(30 \cdot (P/1000) \cdot G) / (3770 \cdot S)}$$
$$d = 0.282 \cdot \sqrt{(P \cdot G) / S}$$

where

d=Distance in cm  
P=Power in mW  
G=Numerica Antenna Gain  
S=Power Density in mW/cm<sup>2</sup>

Substituting the logarithmic form of power and gain using:

$$P(\text{mW}) = 10^{(P(\text{dBm}) / 10)} \quad G(\text{numeric}) = 10^{(G(\text{dBi}) / 10)}$$

yields

$$d = 0.282 \cdot 10^{((P+G)/20) / S} \quad \text{Equation (1)}$$

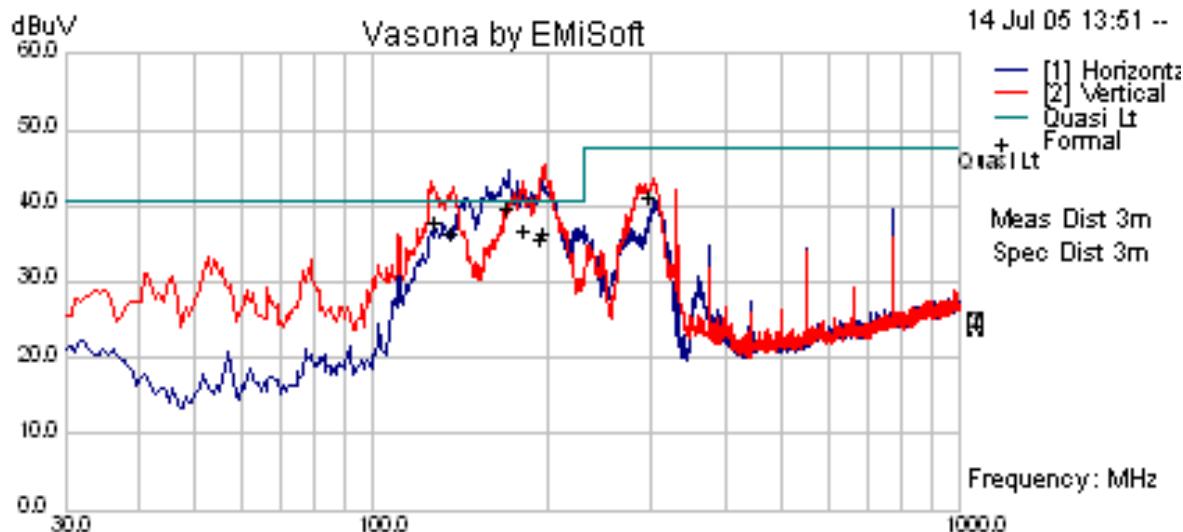
where

d=MPE distance in cm  
P=Power in dBm  
G=Antenna Gain in dBi  
S=Power Density in mW/cm<sup>2</sup>

Equation (1) and the measured peak power is used to calculate the MPE distance. Note that for mobile or fixed location transmitters such as an access point, the minimum separation distance is 20 cm even if the calculations indicate that the MPE distance may be less.

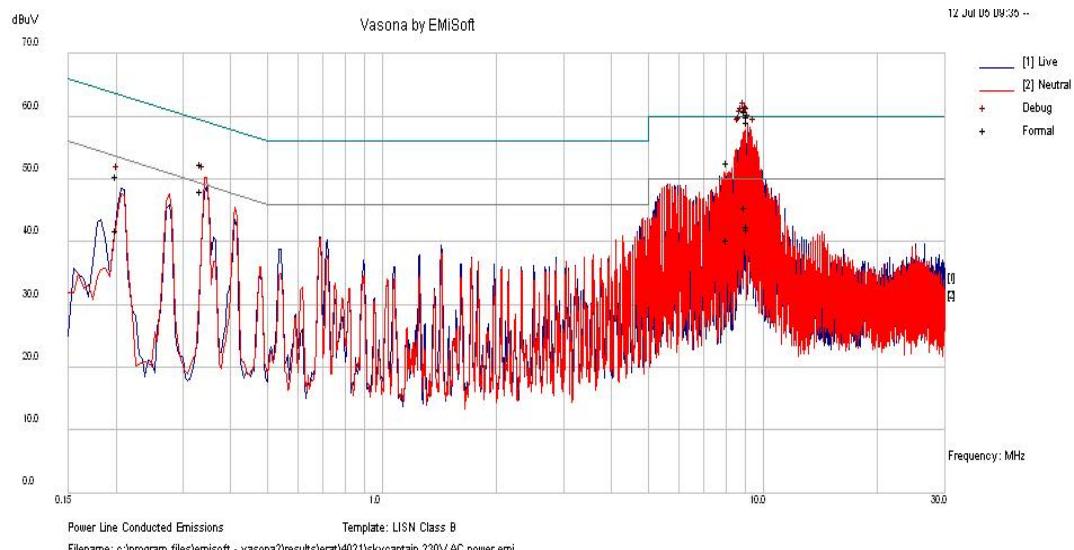
S=1mW/cm<sup>2</sup> maximum. The highest 4.9GHz antenna gain supported is 6.5 dBi. Using the peak power levels recorded in the test report along with Equation 1 above, the MPE distances are calculated as follows.

| Frequency<br>(MHz) | Bit Rate<br>(Mbps) | Power<br>Density<br>(mW/cm <sup>2</sup> ) | Peak<br>Transmit<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | MPE<br>Distance<br>(cm) | Limit<br>(cm) | Margin<br>(cm) |
|--------------------|--------------------|-------------------------------------------|------------------------------------|--------------------------|-------------------------|---------------|----------------|
| 4950               | 36                 | 1                                         | 20                                 | 6.5                      | 5.96                    | 20            | 14.04          |
| 4980               | 36                 | 1                                         | 20                                 | 6.5                      | 5.96                    | 20            | 14.04          |


**MPE Calculations**

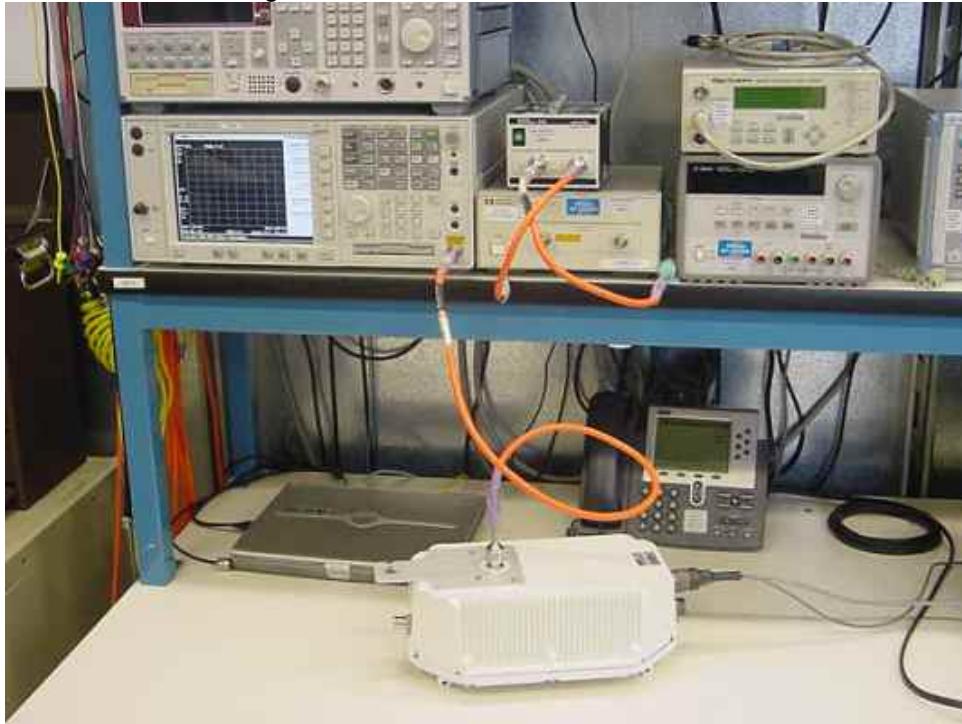
To maintain compliance, installations will assure a separation distance of at least 2 meters.

## 30MHz-1GHz Radiated Spurious Emissions


Radiated emissions which fall in the restricted bands, as defined in Sec. 15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a).

| Spur Frequency (MHz) | Spur Level (dBuV/m) | Limit (dBuV/m) | Margin (dB) |
|----------------------|---------------------|----------------|-------------|
| 128.52               | 36.20               | 40.5           | 4.30        |
| 136.66               | 34.75               | 40.5           | 5.75        |
| 170.71               | 38.07               | 40.5           | 2.43        |
| 182.95               | 35.08               | 40.5           | 5.42        |
| 194.83               | 33.93               | 40.5           | 6.57        |
| 196.18               | 34.70               | 40.5           | 5.80        |
| 296.86               | 39.29               | 47.5           | 8.21        |




## AC Mains .150-30MHz Conducted Emissions

| Frequency (MHz) | Level (dBuV) | Type | Line | Limit dBuV | Margin dB |
|-----------------|--------------|------|------|------------|-----------|
| 9.168           | 57.2         | Qp   | N    | 60         | 2.8       |
| 9.302           | 56.4         | Qp   | N    | 60         | 3.6       |
| 9.305           | 55.6         | Qp   | L    | 60         | 4.4       |
| 0.341           | 44.6         | Av   | N    | 49.2       | 4.6       |
| 9.168           | 41.8         | Av   | N    | 50         | 8.2       |
| 0.341           | 48.8         | Qp   | N    | 59.2       | 10.4      |
| 8.217           | 49           | Qp   | N    | 60         | 11        |
| 9.302           | 38.8         | Av   | N    | 50         | 11.2      |
| 9.305           | 38.4         | Av   | L    | 50         | 11.6      |
| 8.217           | 36.6         | Av   | N    | 50         | 13.4      |
| 0.204           | 38.2         | Av   | L    | 53.4       | 15.2      |
| 0.204           | 46.8         | Qp   | L    | 63.4       | 16.6      |



## Appendix B: Test Setup Photos

### Conducted Test Configuration



8dBi 2.4GHz Omni-Directional Antenna with 7.5dBi 5GHz/6dBi 4.9GHz Omni-Directional Antenna



## Appendix C: Test Procedures

Test procedures are summarized below

|                                     |                 |
|-------------------------------------|-----------------|
| 6dB Bandwidth                       | EDCS # - 422115 |
| 26dB Bandwidth                      | EDCS # - 422115 |
| Average Output Power                | EDCS # - 422117 |
| Co-Located Transmitter              | EDCS # - 422118 |
| Conducted Spurious Test             | EDCS # - 422119 |
| Peak Transmit Power Measurement     | EDCS # - 422123 |
| Power Spectral Density              | EDCS # - 422113 |
| Peak Excursion Test                 | EDCS # - 422121 |
| Radiated Band Edge                  | EDCS # - 422124 |
| Radiated Spurious Test              | EDCS # - 422125 |
| Extreme Test Condition              | EDCS # - 450056 |
| Equivalent Isotropic Radiated Power | EDCS # - 450047 |
| Frequency Tolerance                 | EDCS # - 462996 |
| Power per MHz                       | EDCS # - 463000 |

#### **Appendix D: Scope of Accreditation: A2LA certificate number 1178-01**

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

<http://www.a2la2.net/scopepdf/1178-01.pdf>

##### **Summary of accredited radio testing capabilities:**

|                           |                                                                                           |
|---------------------------|-------------------------------------------------------------------------------------------|
| San Jose, CA, Building P: | LP0002: 2004<br>RRL no.2005-25                                                            |
| San Jose, CA, Building N: | LP0002: 2004<br>RRL no.2005-25                                                            |
| San Jose, CA, Building I: | LP0002: 2004<br>RRL no. 2005-25                                                           |
| San Jose, CA, Building B: | LP0002: 2004 (conducted measurements only)<br>RRL no.2005-25 (conducted measurement only) |

**Appendix E: Test Equipment Used to perform the test**

| Equip# | Manufacturer/ Model                           | Description                            | Last Cal         | Next Due    |
|--------|-----------------------------------------------|----------------------------------------|------------------|-------------|
| 000513 | Gigatronics/ 8542C                            | Universal Power Meter                  | 21-JAN-2005      | 21-JAN-2006 |
| 000514 | Gigatronics/ 80420A                           | Power Sensor, 0.01-18GHz               | 11-JAN-2005      | 11-JAN-2006 |
| 000579 | Megaphase/ SF26 S1S1 36                       | RF Coaxial Cable, to 26GHz, 36in       | 15-FEB-2005      | 15-FEB-2006 |
| 000590 | Agilent/ E4448A                               | Spectrum Analyzer                      | 02-FEB-2005      | 02-FEB-2006 |
| 000599 | Weinschel Corp./ 69-20-12                     | 20dB Attenuator                        | 20-DEC-2004      | 20-DEC-2005 |
| 001229 | HP/ 85460A                                    | RF Filter Section                      | 06-DEC-2004      | 06-DEC-2005 |
| 001230 | HP/ 85462A                                    | EMI Receiver RF Section                | 06-DEC-2004      | 06-DEC-2005 |
| 003003 | HP/ 83731B                                    | Synthesized Signal Generator           | 21-JAN-2005      | 21-JAN-2006 |
| 004882 | EMC Test Systems/ 3115                        | Double Ridged Guide Horn Antenna       | 29-APR-2005      | 29-APR-2006 |
| 005691 | Miteq/ NSP1800-25-S1                          | Broadband Preamplifier (1-18GHz)       | 07-OCT-2004      | 07-OCT-2005 |
| 007036 | HP/ E7401A                                    | Spectrum Analyzer                      | 23-JUL-2004      | 23-JUL-2005 |
| 007221 | EMC Test Systems/ 3115                        | Double Ridged Guide Horn Antenna       | Cal Not Required | N/A         |
| 008097 | Huber + Suhner/ RG-223                        | RG-233 Cable 9m                        | 29-JUL-2004      | 29-JUL-2005 |
| 008123 | Huber + Suhner/ SF106A                        | 1m Sucoflex Cable                      | 03-SEP-2004      | 03-SEP-2005 |
| 008166 | HP/ 8491B Opt 010                             | 10dB Attenuator                        | 19-JAN-2005      | 19-JAN-2006 |
| 008002 | Fischer Custom Communications/ FCC-450B-2.4-N | Instrumentation Limiter                | 21-JAN-2005      | 21-JAN-2006 |
| 008197 | TTE/ H613-150K-50-21378                       | Hi Pass Filter - 150KHz cutoff         | 29-MAR-2005      | 29-MAR-2006 |
| 008448 | Cisco/ NSA 5m Chamber                         | NSA 5m Chamber                         | 03-JAN-2005      | 03-JAN-2006 |
| 018719 | Rohde & Schwarz/ ESCS 30                      | EMI Test Receiver, 9kHz-2.75GHz        | 13-SEP-2004      | 13-SEP-2005 |
| 019630 | Rohde & Schwarz/ ESI 40                       | EMI Test Receiver, 20Hz - 40GHz        | 21-OCT-2004      | 21-OCT-2005 |
| 020666 | EMC Test Systems/ 3160-10                     | Standard Gain Horn Antenna, 26.5-40GHz | Cal Not Required | N/A         |
| 020821 | Micro-Coax/ UFB142A-1-1572-200200             | RF Coaxial Cable, to 40GHz, 157.2 in   | 23-SEP-2004      | 23-SEP-2005 |
| 020975 | Micro-Coax/ UFB311A-0-1344-520520             | RF Coaxial Cable, to 18GHz, 134.4 in   | 28-MAR-2005      | 28-MAR-2006 |
| 021117 | Micro-Coax/ UFB311A-0-2484-520520             | RF Coaxial Cable, to 18GHz, 248.4 in   | 19-AUG-2004      | 19-AUG-2005 |

|        |                                              |                                                |                     |                 |
|--------|----------------------------------------------|------------------------------------------------|---------------------|-----------------|
| 021382 | Solar Electronics Company/<br>9252-50-24-BNC | LISN                                           | 26-APR-2005         | 26-APR-2006     |
| 025654 | Micro-Coax/<br>UFB311A-1-0840-<br>504504     | RF Coaxial Cable, to 18GHz,<br>84 in           | 28-MAR-<br>2005     | 28-MAR-<br>2006 |
| 025657 | Micro-Coax/<br>UFB311A-1-0840-<br>504504     | RF Coaxial Cable, to 18GHz,<br>84 in           | 19-AUG-2004         | 19-AUG-<br>2005 |
| 025666 | Micro-Coax/<br>UFB142A-1-0720-<br>200504     | RF Coaxial Cable, to 40GHz,<br>72 in           | 23-SEP-2004         | 23-SEP-2005     |
| 026860 | Cisco/<br>1840                               | 18-40GHz EMI Test<br>Head/Verification Fixture | 23-SEP-2004         | 23-SEP-2005     |
| 030265 | Agilent/<br>11713A                           | Attenuator/Switch Driver                       | Cal Not<br>Required | N/A             |
| 030495 | Agilent/<br>8761B                            | SPDT RF Switch, to 18GHz                       | 28-MAR-<br>2005     | 28-MAR-<br>2006 |
| 030560 | Micro-Coax/<br>UFB311A-1-0950-<br>504504     | RF Coaxial Cable, to 18GHz                     | 28-MAR-<br>2005     | 28-MAR-<br>2006 |
| 030562 | Micro-Coax/<br>UFB311A-1-0950-<br>504504     | RF Coaxial Cable, to 18GHz                     | 19-AUG-2004         | 19-AUG-<br>2005 |
| 030563 | Micro-Coax/<br>UFB311A-1-0950-<br>504504     | RF Coaxial Cable, to 18GHz                     | 28-MAR-<br>2005     | 28-MAR-<br>2006 |
| 030569 | Micro-Coax/<br>UFB311A-1-3510-<br>504504     | RF Coaxial Cable, to 18GHz                     | 28-MAR-<br>2005     | 28-MAR-<br>2006 |
| 031700 | Micro-Tronics/<br>BRC50705                   | Notch Filter, SB:5.725-<br>5.875GHz, to 12 GHz | 06-OCT-2004         | 06-OCT-2005     |
| 033599 | Midwest Microwave/<br>CSY-NMNM-80-<br>273001 | RF Coaxial Cable, 27ft. to<br>18GHz            | 09-MAY-2005         | 09-AUG-<br>2005 |
| 033599 | Midwest Microwave/<br>CSY-NMNM-80-<br>273001 | RF Coaxial Cable, 27ft. to<br>18GHz            | 10-FEB-2005         | 09-AUG-<br>2005 |
| 034064 | Micro-Coax/<br>UFB293C-2-0840-<br>300504     | RF Coaxial Cable, 7ft to<br>18GHz              | 28-OCT-2004         | 28-OCT-2005     |
| 034075 | Schaffner/<br>RSG 2000                       | Reference Spectrum<br>Generator, 1-18GHz       | 12-AUG-2004         | 12-AUG-<br>2005 |
| 034188 | Micro-Tronics/<br>BRC50703-02                | Notch Filter, SB:5.150-<br>5.350GHz, to 11GHz  | 26-APR-2005         | 26-APR-2006     |
| 034189 | Micro-Tronics/<br>BRC50704-02                | Notch Filter, SB:5.470-<br>5.725GHz, to 12GHz  | 26-APR-2005         | 26-APR-2006     |
| 034304 | Micro-Tronics/<br>BRM50702-02                | Band Reject Filter                             | 26-APR-2005         | 26-APR-2006     |
| 035040 | Micro-Tronics/<br>HPM50112-02                | Hi Pass Filter                                 | 26-APR-2005         | 26-APR-2006     |
| 035268 | Agilent/<br>E4440A                           | Precision Spectrum Analyzer                    | 12-APR-2005         | 12-APR-2006     |
| 6717   | EMCO 3115                                    | 1-18GHz Horn Antenna                           | 22-APR-2005         | 22-APR-2006     |
| 29301  | ETS 3117                                     | 1-18GHz Horn Antenna                           | 22-APR-2005         | 22-APR-2006     |

|                |                |                                |             |                 |
|----------------|----------------|--------------------------------|-------------|-----------------|
| MY4000<br>1647 | Agilent 8753ES | 30kHz-6GHz Network<br>Analyzer | 19-NOV-2005 | 19-NOV-<br>2006 |
| US4207<br>0220 | Agilent E4446A | 3Hz-44GHz Spectrum<br>Analyzer | 01-JAN-2005 | 01-JAN-2006     |