Certification Test Report

For a

8 Channel Bi- Directional Booster Amplifier

Manufacturer:

AeroComm, Inc. 19516 Amaranth Drive Germantown, MD 20874

Testing Facility:

F-Squared Laboratories 10880 Moxley Road Damascus, MD 20872

The 8 Channel Bi- Directional Booster Amplifier, model 504830202, has been tested and was found to comply with the requirements of the Federal Communications Commission outlined in the Federal Register CFR 47, Part 2 and Part 90 for a Class B Private Land Mobile Radio Service Signal Booster. The product was received on September 1, 1999 and the testing was completed on November 25, 1999.

Evaluation Conducted By:

Dale Royston

Del fit

EMC Technical Manager

Report Reviewed By:

Robert Pellizze
General Manager

F-Squared Laboratories 9890 Main Street Damascus, MD 20872 (301) 253-4500 Fax (301) 253-5179

This report shall not be duplicated except in full without the written approval of F-Squared Laboratories.

Table of Contents

Exhibit	Exhibit Title	
	Cover Page	1
	Table of Contents	2
I	Engineering Statements	3
II	Measurement Instrument List	5
Ш	EUT Information and Data	6
IV	Block Diagram	10
${f V}$	EUT Configuration and Cables	11
VI	Conducted Data	12
VII	Radiated Data (Per Section 2.1053)	13
VIII	Data for CFR 47 Part 2.1041	14
IX	Compliance Information	31

 Client: AeroComm, Inc.
 Report #: 9200-02-A

 Model: 504830202
 Issue Date: 5/22/00

Exhibit I

Engineering Statements

This report has been prepared on behalf of AeroComm, Inc. to certify a Private Land Mobile Radio Service Bidirectional Signal Booster. The test was performed for above said device under Parts 2 and Part 90 of the FCC Rules and Regulations. The test results found in this test report relate only to the items tested.

EQUIPMENT UNDER TEST: 8 Channel Programmable Bi-Directional Signal Booster

Model: 504830202

FCC ID: KJA504830202

APPLICABLE RULES: CFR 47 Part 2.1033 (c); 2.1046, 90.209, 90.219

EQUIPMENT CATEGORY: Non- Broadcast amplifier

MEASUREMENT LOCATION: F-Squared Laboratories in Damascus, MD. Site description and attenuation

data are on file with the FCC's Sampling and Measurement Branch at the FCC

Laboratory in Columbia, MD.

MEASUREMENT PROCEDURE: All measurements were performed according to the 1992 version of ANSI

C63.4. A list of the measurement equipment can be found in Exhibit II.

Client: AeroComm, Inc. Model: 504830202

Model: 504830202

del: 504830202

Client: AeroComm, Inc.

Parart #, page 02.4

Report #: 9200-02-A Issue Date: 5/22/00

Report #: 9200-02-A

UNCERTAINTY BUDGET:

Radiated Emission

Combined Uncertainty (+ or -) 2.24 dB Expanded Uncertainty (+ or -) 4.48 dB

• Conducted Emission

Combined Uncertainty (+ or -) 1.13 dB Expanded Uncertainty (+ or -) 2.26 dB

ENGINEERING STATEMENT #1:

I hereby state that: The measurements shown in this application were made in accordance with the procedures indicated and the energy emitted by this equipment was found to be within the limits. I assume full responsibility for the accuracy and completeness of these measurements.

I further state that: On the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 90 of the FCC Rules under normal use and maintenance.

ENGINEERING STATEMENT #2:

RADIO FREQUENCY RADIATION EXPOSURE DECLARATION

The FCC Rules as noted in Part 2.1091 is not applicable for this fixed station device.

Certified by:

Robert Pellizze, General Manager

Exhibit II

List of Measurement Instrumentation

Equipment Type	Manufacturer	Model #	Serial #	Cal. Due Date
Receiver Systems	Rohde & Schwarz	ESMI	DE23119	Feb. 2000
LISN #1	Solar	8012-50-R-24-BNC	910488	Jan. 2000
LISN #2	Solar	8012-50-R-24-BNC	933201	Jan. 2000
Biconical Antenna	Compliance Design Inc.	B100	383	Jan. 2000
Biconical Antenna	Compliance Design Inc.	B200	292	Jan. 2000
Biconical Antenna	Compliance Design Inc.	B300	318	Jan. 2000
Horn Antenna	Antenna Research Associates	DRG-118/A	1105	Feb. 2000
Antenna Mast	Compliance Design Inc.	M100	NA	NA
Turntable	F ² Laboratories	Site 1	NA	NA
Isolator #1*	UTE Microwave Inc.	CT-1059-OT	U6049	**
Isolator #2*	UTE Microwave Inc.	CT-1059-OT	U6050	**
Combiner*	Mini-Circuits	ZESC-2-11	15542	**
RF Signal Generator#1	Giga-Tronics	6061A	9637902	Jan. 2000
RF Signal Generator#2	HP	E4420B-1E5	US38220249	July 2000
RF Signal Generator#3	Marconi	2024	1151131019	April 2001
Amplifier	HP	8447f	3113A04704	July 2000
Data Logger	Honeywell	DRS-4505	88137287001	Jan 2000
Spectrum Analyzer	HP	8391A	3149A07546	Feb. 2000
DMM	Wavetek	10XL	981103749	Jan 2000

^{*} Note 1: Customer Provided Equipment

Note: All Equipment was in calibration at the time of test.

^{**}Note2: Calibrated with the Rohde & Schwarz receiver and the HP and Gigatronics Signal Generators

 Client: AeroComm, Inc.
 Report #: 9200-02-A

 Model: 504830202
 Issue Date: 5/22/00

Exhibit III

Equipment Under Test Information and Data

TEST ITEM CONDITION:

The equipment to be tested was received in good condition.

TESTING ALGORITHM:

The EUT was driven with a -60 to -50 dBm input signal level. The worst case emissions are recorded in the data tables.

CONDUCTED EMISSION TESTING:

The EUT was placed on a 0.1 meter high, non-conductive pallet. Power was provided to the EUT through a LISN bonded to a 3 X 2 meter ground plane. The LISN and peripherals were supplied power through a filtered AC power source. The output of the LISN was connected to the input of the receiver and emissions in the range 450kHz to 30 MHz were measured. The measurements were recorded using the quasi-peak values, and the resolution bandwidth during testing was 9kHz. All data for conducted emissions is found in Exhibit VI.

RADIATED EMISSIONS: SPURIOUS EMISSIONS TESTING

The EUT was tested at a distance of 3 meters. The emissions were maximized by rotating the table and raising/lowering the antenna mounted on a 4 meter mast. Cable and peripheral positions were also varied to produce maximum emissions. Both horizontal and vertical field components were measured. The output of the antenna was connected to the input of the receiver and emissions were measured in the range 30MHz to 8.5 GHz. The measured values up to 1GHz with a resolution bandwidth of 120KHz are quasi-peak readings made at 3 meters. Emissions from 1 GHz to 8.6 GHz were measured with a resolution bandwidth of 1 MHz and placed in the average detector mode. All data for radiated spurious emissions is found in Exhibit VII.

RADIATED SPURIOUS EMISSION ANTENNA PORT TESTING:

The EUT was tested near the spectrum analyzer and source signal generators with the shortest available length cables to insure correct data collection. The output of the EUT was connected to the EMI receiver input port and the emissions were measured as shown in Exhibit VII.

 Client: AeroComm, Inc.
 Report #: 9200-02-A

 Model: 504830202
 Issue Date: 5/22/00

INTERMODULATION DISTORTION AND EMISSIONS MASK TESTING:

The EUT was tested by the use of 3 signal generators, 2 combiners, and 3 isolators in line with each signal generator. The output of the EUT was connected to the receiver and the emissions were measured as shown in Exhibit VIII.

CALCULATION OF DATA #1:

RADIATED EMISSIONS - The antenna factors (including cable losses) of the biconical antennas were used along with the pre-amplifier gain, which were entered into the memory of the receiver. The receiver uses these values to correct the reading for amplitude automatically. The field strength reading taken directly from the receiver and compared to the FCC limits in dBuV/m. The following equation is used to convert to uV/m:

$$E_{uV/m} = antilog(E_{dBuV/m}/20)$$

SAMPLE OF FIELD STRENGTH CALCULATION:

$$Ea = Va + AF + Ae + (-AG)$$

Where Ea = Field Strength(dBuV/m)

Va= 20 x log10 (Measure RF voltage, uV)

Ae= Cable Loss Factor, dB

AG= Amplifier Gain, dB

AF= Antenna Factor dB(m-1)

i.e. if the reading is 57.0 dBuV, the antenna factor 8.0 dB, cable loss factor 1.0 dB and Amplifier gain is 25.0 dB, so the field strength will be:

Ea(dBuV/m) =
$$57 + 8 + 1 + (-25)$$

= 41 dBuV/m

or

$$Ea(uV/m) = 10^{(41/20)}$$

= 112.20 uV/m

CALCULATION OF DATA#2:

Emission Mask Limits – All of the calculations were based on the measured unmodulated output power level of the EUT and Emissions Mask B of section 90.210 (B). The EUT does have an audio low-pass filter and the limits specified in sub sections 1 to 3 were applied. The limits are based on the following Mask (B) criteria's:

KHz offset from Center Frequency	DB of attenuation down from Center Frequency
12.5 KHz to 25 KHz	25 dB
25 KHz to 62.5 KHz	35 dB
> 62.5 KHz	43 + Log (P) dB

The spreadsheet on the next page reveals all of the limit data points used for the test as shown in Exhibit VIII.

EMISSION Mask dBmW Limit Levels

Frequency (MHz)	Output Power (dBmW)
30	-13.19
822.8442	-13.19
822.442	-8.19
822.8592	-8.19
822.8592	1.81
822.8682	1.81
822.8682	26.81
822.8750	26.81
822.8818	26.81
822.8818	1.81
822.89.08	1.81
822.8908	-8.19
822.9058	-8.19
822.9058	-13.19
8300.00	-13.19

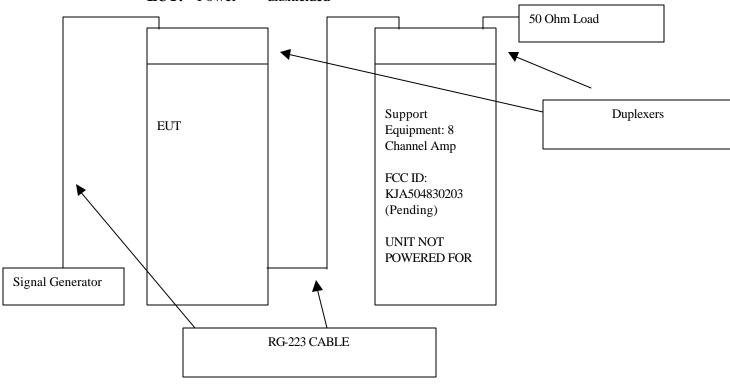
Exhibit IV

Block Diagram

Please see Block.pdf

Exhibit V

EUT Configuration and Cables


EUT:

Device	Manufacturer	Model #	FCC ID
Signal Booster	AeroComm, Inc.	504830202	KJA504830202

Cable: All one meter or greater in length – bundled according to ANSI

C63.4 - 1992

EUT: Power - unshielded

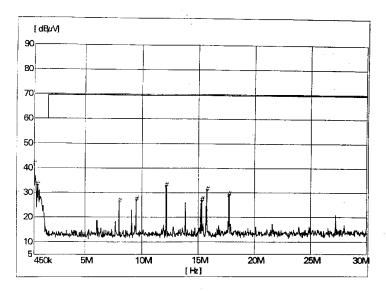
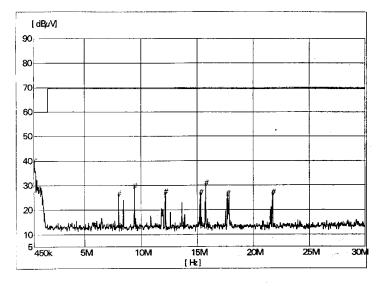

Note: Support Equipment not powered to protect signal generator from overload

Exhibit VI

Conducted Emissions


Conducted Test Line: Phase (Case "A")

After Modified (Cap=0.22uF X2) LCR Electronics, Inc. P/N KNB153224K0270602706B

Frequency	Level
MHz	dBμV
0.450000	41.75
0.745500	33.45
8.001667	26.64
9.512000	27.43
12.138667	33.22
15.290667	27.02
15.750333	31.41
17.720333	29.35

Conducted Test Line: Neutral

Frequency	Level
MHz	dΒμV
0.515667	40.33
8.001667	26.59
9.413500	29.66
12.138667	27.30
15.290667	26.92
15.750333	30.62
17.720333	26.48
21.758833	26.89

 Client: AeroComm, Inc.
 Report #: 9200-02-A

 Model: 504830202
 Issue Date: 5/22/00

Exhibit VII

RADIATED DATA

 Temperature:
 22
 °C

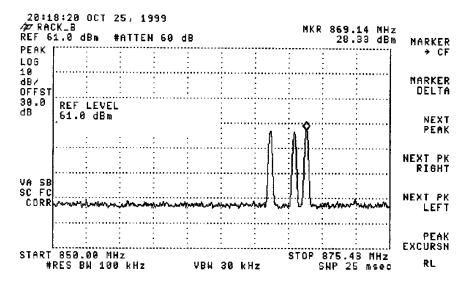
 Humidity:
 39
 % RH

 Pressure:
 100.5
 Mb

Frequency Reading (dBuV)/m		Emission	(uV)/m FCC Limits @ 3 meters		3 meters	
(MHz)	Horizontal	Vertical	Horizontal	Vertical	(dBuV/m)	(uV/m)
63.99	33.07	33.53	45.03	47.48	84.20	16218.10
71.99	44.63	36.27	170.41	65.09	84.20	16218.10
135.98	45.95	45.21	198.38	182.18	84.20	16218.10
159.98	39.55	36.55	94.95	67.22	84.20	16218.10
175.98	40.62	37.03	107.40	71.04	84.20	16218.10
255.98	43.77	39.14	154.35	90.57	84.20	16218.10
207.98	39.49	37.28	94.30	73.11	84.20	16218.10
823.98	35.38	32.06	58.75	40.09	84.20	16218.10
*821.2	75.79	70.12	6158.86	3206.27	124.24	1629296.03

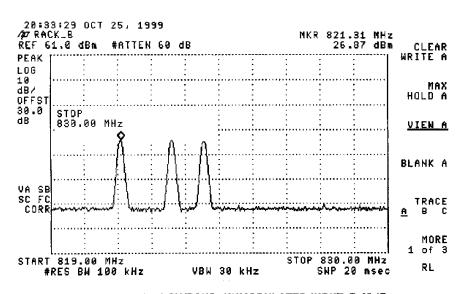
Note * = Carrier Frequency

Signal Generator Frequency 821.21250 MHz Input Level -60 dBm

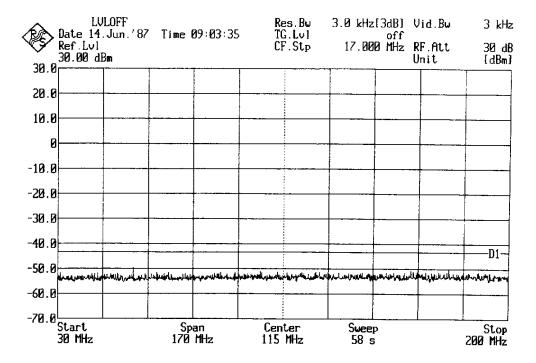

Field Strength Calculation = $F v/m = (49.2 X P (w))^{1/2}/D$ P(w) = 26.87 dBmW = .486 WattsD=3 meters

 $F= 1.62 \text{ V/m} = (49.2 * .486)^{\frac{1}{2}}/3$ 1.62 V/m = 124.24 dBuV/m Lowest Limit For Mask B = 43+ 10 Log (P) = -40dBc 124.24 - 40dBc = 84.24 dBuV/m

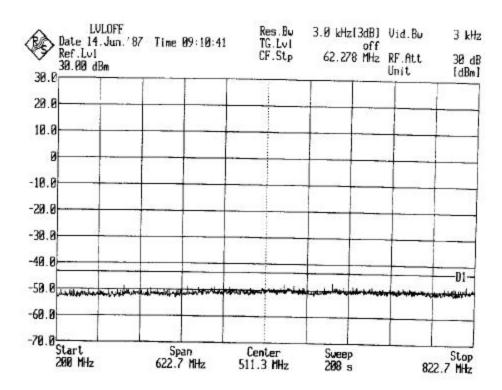
Exhibit VIII

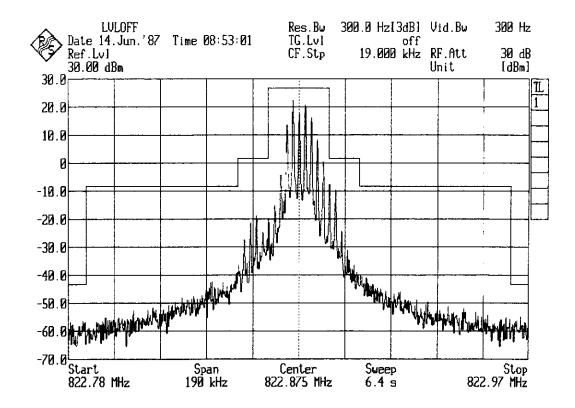

Data for CFR 47 Part 2.1041

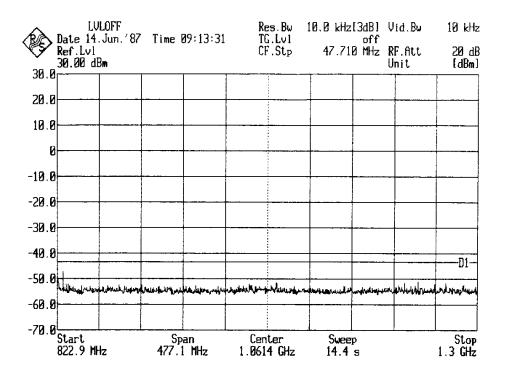
Section 2.1046 –RF Power Output Section 2.1047 –Modulation Characteristics Sections 2.1049 (i) and 90.219 (b & c) - Emissions Mask Section 2.1051 – Spurious Emissions at Antenna Terminal

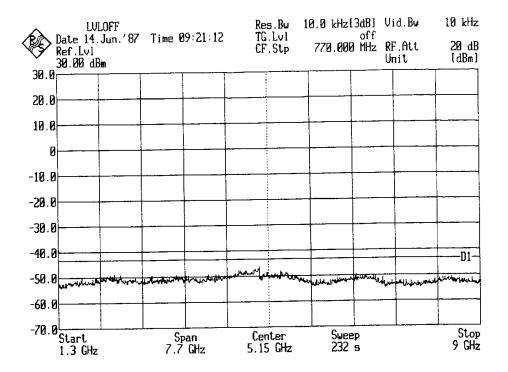


OUTPUT POWER PLOT - HIGH BAND UNMODULATED INPUT @ -60dBm 866.2125 MHz 27.90 dBm, 868.9125 MHz 27.34 dBm, 868.9125 28.33 dBm


Note: Above plot is for Pending Application FCC ID: KJA504830203


OUTPUT POWER PLOT - LOWBAND- UNMODULATED INPUT @ 60dBm 821.2150 MHz 26.87 dBm, 822.8750 MHz 26.81 dBm, 823.9125 MHz 26.33 dBm


Occupied Bandwidth/ Antenna Conducted Spurs Plot 1 of 5


Occupied Bandwidth/ Antenna Conducted Spurs Plot 2 of 5

Occupied Bandwidth/ Antenna Conducted Spurs Plot 3 of 5

Occupied Bandwidth/ Antenna Conducted Spurs Plot 4 of 5

Occupied Bandwidth/ Antenna Conducted Spurs Plot 5 of 5

 Client: AeroComm, Inc.
 Report #: 9200-02-A

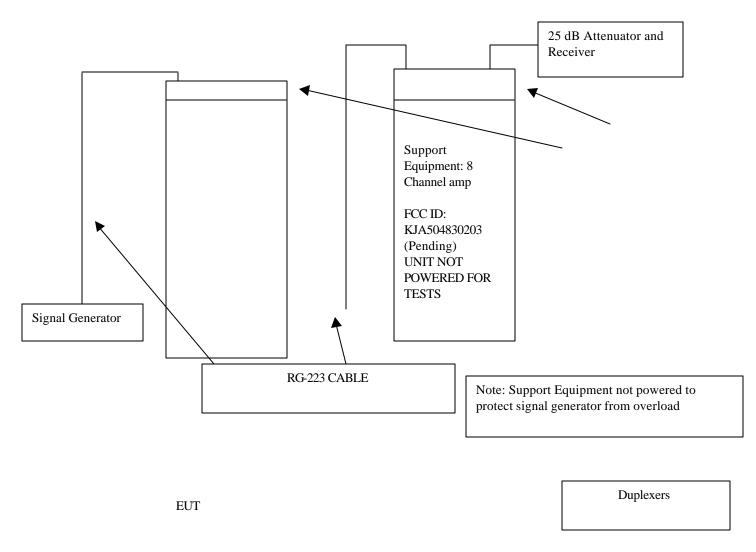
 Model: 504830202
 Issue Date: 5/22/00

Occupied Bandwidth, Antenna Conducted Spurious and Intermodulation Test Setup

Equipment Settings

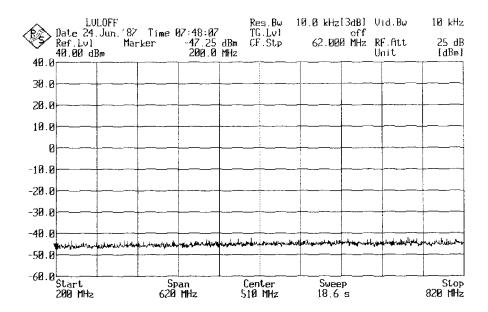
Occupied Bandwidth:

Input Level -50dBm to -60dBm

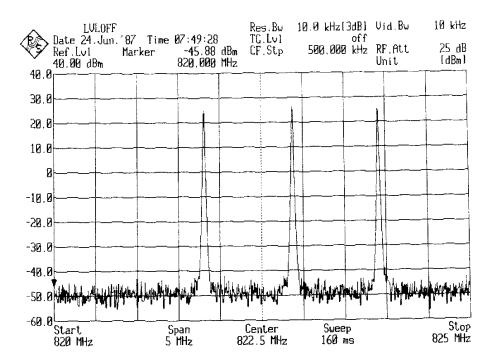

Modulation: FM Deviation: 4.2KHz

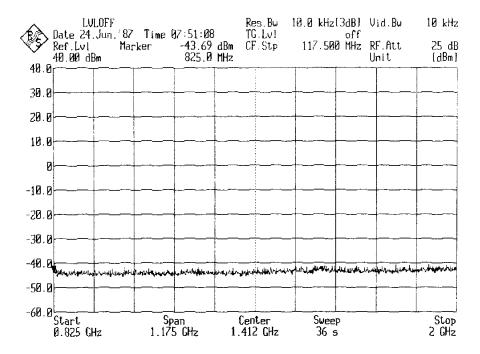
Modulation Frequency: 2.5 KHz

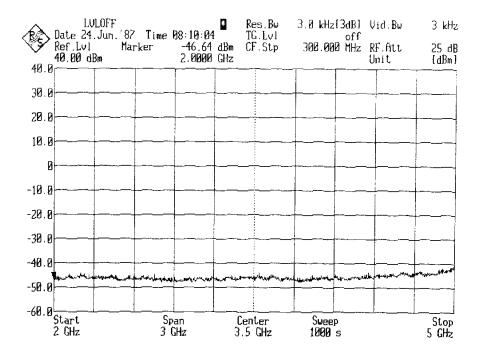
Intermodulation and Antenna Conducted Spurious Emissions:


Input Level: -50 dBm per frequency

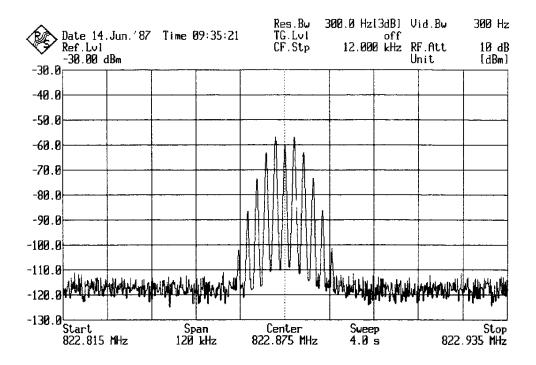
Modulation: Off




Intermodulation Plot 1 of 6


Intermodulation Plot 2 of 6

Intermodulation Plot 3 of 6


Intermodulation Plot 4 of 6

Intermodulation Plot 5 of 6

LVLOFF
Date 24.Jun.'87 Time 08:15:27
Ref.Lvl Marker -46.03 dBm
40.00 dBm 5.0000 GHz Res.B⊍ TG.Lvi CF.Stp 10.0 kHz[3dB] Vid.Bw 10 kHz off 400.000 MHz RF.Att 20 dB [dBm] Unit 40.0 30.0 20.0 10.0 -10.0 -20.0 -30.0 -40.0 -60.0 Start 5 GHz Span 4 GHz Center 7 GHz Sweep 120 s Stop 9 GHz

Intermodulation Plot 6 of 6

Modulation Characteristics EUT Input signal

Voltage and Temperature Stability

Voltage Stability

Frequency =821.2125	Tolerance = $+/00015\%$	Limits (KHz)= +/- 1.23KHz
Nominal Voltage = +12 Vdc		
Input Voltage	Measured Freq.	Deviation
10.2Vdc	821.21270	+30Hz
12Vdc	821.21267	0
13.8Vdc	821.21270	+30Hz
Frequency =823.55	Tolerance = +/00015%	Limits (KHz)= +/- 1.24KHz
Nominal Voltage = +12 Vdc		
Input Voltage	Measured Freq.	Deviation
10.2Vdc	823.55017	0
12Vdc	823.55017	0
13.8Vdc	823.55025	+80Hz
Frequency =823.9125	Tolerance = +/00015%	Limits (KHz)= +/- 1.24KHz
Nominal Voltage = +12 Vdc		
Input Voltage	Measured Freq.	Deviation
10.2Vdc		
12Vdc	823.9180	0
12 V UC		

Note: All Output Frequencies are directly dependant on the input Frequencies. See Block diagram for Oscillator and mixer information.

Temperature Stability

Frequency = 821.21250 MHz		
Temperature in Celsius	Measured Frequency (MHz)	Deviation (Hz)
-30	821.212512	+12
-20	821.212512	+12
-10	821.212475	-25
0	821.212438	-62
10	821.212575	+75
20	821.212575	+75
30	821.212562	+62
40	821.212575	+75
50	821.212662	+162

Exhibit XI

Compliance Information

The following statement, or equivalent, is required to be in the user's manual:

FCC COMPLIANCE STATEMENT

The equipment described in this manual generates and uses radio frequency energy. If it is not installed and used properly, that is, in strict accordance with the manufacturer's instructions, it may cause interference to radio and television reception.

This equipment has been tested and found to comply with the limits for a Class B Private Land Mobile Radio Service Bidirectional Signal Booster device pursuant to CFR 47 Part 2.1041 and Part 90 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference at the end use installation intended for this product. This device can only be operated with a station license issued by the FCC.

Warning to User:

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.