

Test report No. : 13735873H-R1 Page : 1 of 21 **Issued date** : June 10, 2021 FCC ID : KBRP55T0

RADIO TEST REPORT

Test Report No.: 13735873H-R1

Applicant Marelli Corporation

Type of EUT SWITCH ASSY, ENGINE START

Model Number of EUT P55T0

FCC ID KBRP55T0

Test regulation FCC Part 15 Subpart C: 2021

Test Result Complied (Refer to SECTION 3)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 13735873H. 13735873H is replaced with this report.

Date of test: May 19, 2021 Representative test engineer: Hiroyuki Furutaka Engineer Approved by: Shinichi Miyazono Engineer

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 2 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

REVISION HISTORY

Original Test Report No.: 13735873H

Revision	Test report No.	Date	Page revised	Contents
- (Original)	13735873H	May 24, 2021	-	-
1	13735873H-R1	June 10, 2021	P.9, 10	Correction of Configuration and peripherals diagram and list. B was excluded from the EUT.
1	13735873H-R1	June 10, 2021	P.12	Correction of the following sentence in SECTION 5; From - This EUT has two modes which transponder key is inserted or not. To - This EUT has two modes which transponder key is attached or not.
1	13735873H-R1	June 10, 2021	P.21	Replacement of the Worst case position photo (Without Key (Worst)).

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 3 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	MCS	Modulation and Coding Scheme
AC	Alternating Current	MRA	Mutual Recognition Arrangement
AFH	Adaptive Frequency Hopping	N/A	Not Applicable
AM	Amplitude Modulation	NIST	National Institute of Standards and Technology
Amp, AMP	Amplifier	NS	No signal detect.
ANSI	American National Standards Institute	NSA	Normalized Site Attenuation
Ant, ANT	Antenna	NVLAP	National Voluntary Laboratory Accreditation Program
AP	Access Point	OBW	Occupied Band Width
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
BT	Bluetooth	PK	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	RBW	Resolution Band Width
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RSS	Radio Standards Specifications
DSSS	Direct Sequence Spread Spectrum	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG.	Signal Generator
EMC EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI		TR	
EMI	ElectroMagnetic Interference	Tx	Test Receiver
	European Norm	VBW	Transmitting
ERP, e.r.p.	Effective Radiated Power		Video BandWidth
EU	European Union	Vert.	Vertical
EUT	Equipment Under Test	WLAN	Wireless LAN
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM _	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		
JAB	Japan Accreditation Board		
LAN	Local Area Network		
I DAG	X 1 X X X X X X X X X X X X X X X X X X		

UL Japan, Inc. Ise EMC Lab.

LIMS

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Laboratory Information Management System

Test report No. : 13735873H-R1
Page : 4 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

CONTENTS	PAGE
SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	5
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of EUT during testing	9
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	11
SECTION 6: -26 dB Bandwidth	14
SECTION 7: 99% Bandwidth	14
APPENDIX 1: Test data	15
Radiated Emission (Fundamental and Spurious Emission)	
Radiated Spurious Emission	16
-26 dB Bandwidth / 99 % Occupied Bandwidth	17
APPENDIX 2: Test instruments	18
APPENDIX 3: Photographs of test setup	
Radiated Spurious Emission	
Worst Case Position	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 5 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

SECTION 1: Customer information

Company Name : Marelli Corporation

Address : 2-1917 Nisshin-cho kita-ku,Saitama-city, Saitama 331-8501 Japan

Telephone Number : +81-48-661-0580 Contact Person : Takaichiro Ishida

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT)
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1. Identification of EUT

Type : SWITCH ASSY, ENGINE START

Model Number : P55T0

Serial Number : Refer to SECTION 4.2

Rating : DC 12.0 V Receipt Date : May 10, 2021

Country of Mass-production : China

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab.

2.2. Product Description

Model: P55T0 (referred to as the EUT in this report) is a SWITCH ASSY, ENGINE START.

Radio Specification

Radio Type : Transmitter
Frequency of Operation : 125 kHz
Modulation : ASK

Antenna type : Loop Antenna

Clock frequency (Maximum) : 8 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 6 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on May 3, 2021 and effective July 2, 2021

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.209 Radiated emission limits; general requirements.

3.2 Procedures and results

Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
Conducted Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> RSS-Gen 8.8</ised></fcc>	<fcc> Section 15.207 <ised> RSS-Gen 8.8</ised></fcc>	-	N/A	N/A	N/A *1)
Electric Field Strength of Fundamental Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> RSS-Gen 6.5, 6.12</ised></fcc>	<fcc> Section 15.209 <ised> RSS-210 7.2 RSS-Gen 8.9</ised></fcc>	Radiated	N/A	1125 KHZ, U deg.	Complied a)
Electric Field Strength of Spurious Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> RSS-Gen 6.5, 6.6, 6.13</ised></fcc>	<fcc> Section 15.209 <ised> RSS-210 7.3 RSS-Gen 8.9</ised></fcc>	Radiated	N/A	24.0 dB 30.679 MHz, Vertical QP	Complied a)
-26 dB Bandwidth	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> -</ised></fcc>	<fcc> Reference data <ised> -</ised></fcc>	Radiated	N/A	IN/A	Complied b)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

a) Refer to APPENDIX 1 (data of Radiated emission) b) Refer to APPENDIX 1 (data of -26 dB Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

The EUT provides stable voltage constantly to the wireless transmitter regardless of input voltage.

Instead of a new battery, DC power supply was used for the test.

That does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The revision does not affect the test result conducted before its effective date.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

Test report No. : 13735873H-R1
Page : 7 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

3.3 Addition to standard

Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
99 % Occupied Band Width	RSS-Gen 6.7	-	Radiated	N/A	N/A	-
Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Ise EMC Lab.

Radiated emission

Radiated ellission		
Measurement distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.3 dB
10 m		3.2 dB
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.8 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB

Antenna Terminal test

Test Item	Uncertainty (+/-)
-26 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 8 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 199967

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

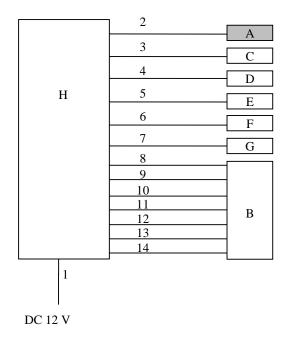
Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 9 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0


SECTION 4: Operation of EUT during testing

4.1. Operating Mode(s)

Tes	mode	Remarks				
1)	Tx 125 kHz	-				
* E	JT was set by the software as follows;					
Sof	ware: 4SX034_31ImmobiContinue2.mot Version 34					
	(Date: December 8, 2020, Storage location: EUT memory)					
*Tł	*This setting of software is the worst case.					
An	Any conditions under the normal use do not exceed the condition of setting.					
In a	ddition, end users cannot change the settings of the output power of the produc	t.				

Justification : The system was configured in typical fashion (as a user would normally use it) for testing.

4.2. Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13735873H-R1

 Page
 : 10 of 21

 Issued date
 : June 10, 2021

 FCC ID
 : KBRP55T0

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	SWITCH ASSY, ENGINE START	P55T0	2012131 0072	Marelli Corporation	EUT
В	BCM	K67T0	001	Marelli Corporation	-
С	LF Antenna	MSAS0915-03	-	Murata Manufacturing Co., Ltd	-
D	LF Antenna	MSAS0915-03	-	Murata Manufacturing Co., Ltd	-
Е	LF Antenna	MSAS0915-03	-	Murata Manufacturing Co., Ltd	-
F	LF Antenna	MSAS0915-03	-	Murata Manufacturing Co., Ltd	-
G	LF Antenna	MSAS0915-03	-	Murata Manufacturing Co., Ltd	-
Н	BCM SDX Checker	-	No.4	Marelli Corporation	-

List of cables used

∡ist of	<u>cables used</u>				-
No.	Name	Length (m)	Shi	Shield	
			Cable	Connector	
1	DC Cable	2.0	Unshielded	Unshielded	-
2	Antenna Cable	1.8	Unshielded	Unshielded	-
3	Antenna Cable	2.2	Unshielded	Unshielded	-
4	Antenna Cable	2.2	Unshielded	Unshielded	-
5	Antenna Cable	2.2	Unshielded	Unshielded	-
6	Antenna Cable	2.2	Unshielded	Unshielded	-
7	Antenna Cable	2.2	Unshielded	Unshielded	-
8	Signal Cable	2.0	Unshielded	Unshielded	-
9	Signal Cable	2.0	Unshielded	Unshielded	-
10	Signal Cable	2.0	Unshielded	Unshielded	-
11	Signal Cable	2.0	Unshielded	Unshielded	-
12	Signal Cable	2.0	Unshielded	Unshielded	-
13	Signal Cable	2.0	Unshielded	Unshielded	-
14	Signal Cable	2.0	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 11 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

Frequency: From 9 kHz to 30 MHz

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency: From 30 MHz to 1 GHz

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

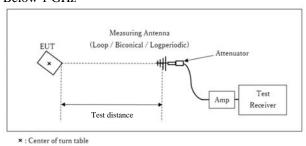
Frequency	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz
Instrument used			Test Receiver		
Detector	PK / AV	QP	PK / AV	QP	QP
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m

^{*1)} Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore, the measured level of emissions may be higher than if measurements were made without a ground plane.

However, test results were confirmed to pass against standard limit.


The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

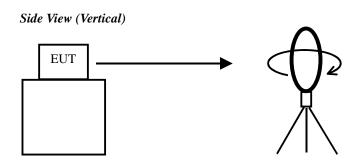
^{*2)} Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

Test report No. : 13735873H-R1
Page : 12 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

[Test Setup] Below 1 GHz

Test Distance: 3 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.
- This EUT has two modes which transponder key is attached or not. The worst case was confirmed with and without transponder key, as a result, the test without transponder key was the worst case. Therefore the test without transponder key was performed only.


The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz - 1 GHz
Test data : APPENDIX
Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

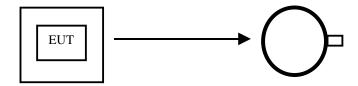
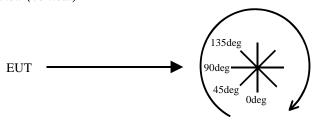

Test report No. : 13735873H-R1
Page : 13 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

Figure 1: Direction of the Loop Antenna

.....


Top View (Horizontal)

Antenna was not rotated.

......

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 14 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

SECTION 6: -26 dB Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-26 dB Bandwidth	75 kHz	1 kHz	3 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

Test data : APPENDIX 1

Test result : Pass

SECTION 7: 99% Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *)	Max Hold *)	Spectrum Analyzer
*) The measurem	ent was performed with Pea	k detector. Max	Hold since the	duty cycle was	s not 100 %.		

*) The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 % Peak hold was applied as Worst-case measurement.

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 15 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

APPENDIX 1: Test data

Radiated Emission (Fundamental and Spurious Emission)

Report No. 13735873H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date May 19, 2021 Temperature / Humidity 22 deg. C / 60 % RH Engineer Hiroyuki Furutaka

Mode Mode 1

PK or QP

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.125	PK	93.4	18.89	-73.79	32.13	-	6.4	45.6	39.23	Fundamental
0deg	0.250	PK	50.3	18.86	-73.77	32.10	-	-36.7	39.6	76.3	
0deg	0.375	PK	54.7	18.82	-73.75	32.07	-	-32.3	36.1	68.4	
0deg	0.500	QP	32.6	18.78	-33.73	32.04	-	-14.4	33.6	48.0	
0deg	0.625	QP	44.6	18.78	-33.72	32.07	-	-2.4	31.7	34.1	
0deg	0.750	QP	31.0	18.77	-33.70	32.10	-	-16.0	30.1	46.1	
0deg	0.875	QP	39.8	18.77	-33.69	32.12	-	-7.2	28.7	36.0	
0deg	1.000	QP	30.4	18.76	-33.68	32.15	-	-16.7	27.6	44.2	
0deg	1.125	QP	36.6	18.77	-33.67	32.15	-	-10.5	26.5	37.0	
0deg	1.250	QP	30.1	18.78	-33.66	32.15	-	-16.9	25.6	42.5	
Hori.	30.679	QP	22.4	18.12	7.14	32.04	-	15.6	40.0	24.4	
Hori.	67.116	QP	32.4	6.46	7.64	32.02	-	14.5	40.0	25.5	
Hori.	75.424	QP	27.2	6.40	7.74	32.02	-	9.3	40.0	30.7	
Hori.	118.159	QP	22.4	12.61	8.14	31.98	-	11.2	43.5	32.4	
Hori.	131.649	QP	22.8	13.79	8.26	31.97	-	12.9	43.5	30.6	
Hori.	213.849	QP	22.3	11.22	8.94	31.91	-	10.6	43.5	33.0	
Vert.	30.679	QP	22.8	18.12	7.14	32.04	-	16.0	40.0	24.0	
Vert.	67.117	QP	32.2	6.46	7.64	32.02	-	14.3	40.0	25.7	
Vert.	76.220	QP	32.2	6.45	7.74	32.02	-	14.4	40.0	25.6	
Vert.	118.159	QP	22.3	12.61	8.14	31.98	-	11.1	43.5	32.5	
Vert.	131.649	QP	22.2	13.79	8.26	31.97	-	12.3	43.5	31.2	
Vert.	213.849	QP	22.4	11.22	8.94	31.91	-	10.7	43.5	32.9	

 $Result = Reading + Ant \; Factor + Loss \; (Cable + Attenuator + Filter + D.Factor) - Gain (Amprifier)$

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	M argin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.125	PK	93.4	18.89	-73.79	32.13	0.0	6.4	25.6	19.2	Fundamental
0deg	0.250	PK	50.3	18.86	-73.77	32.10	0.0	-36.7	19.6	56.3	
0deg	0.375	PK	54.7	18.82	-73.75	32.07	0.0	-32.3	16.1	48.4	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor + Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor + Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty\ factor * Filter + D.Factor + Cable +$

Result of the fundamental emission at 3m without Distance factor $\,$

PK or QP

- 3	I K OI QI											
ſ	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
ı					Factor			Factor				
L		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	0	0.12500	PK	93.4	18.89	6.21	32.13	-	86.4	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power.

The pre-amplifier used for carrier frequency measurement was not saturated.

Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

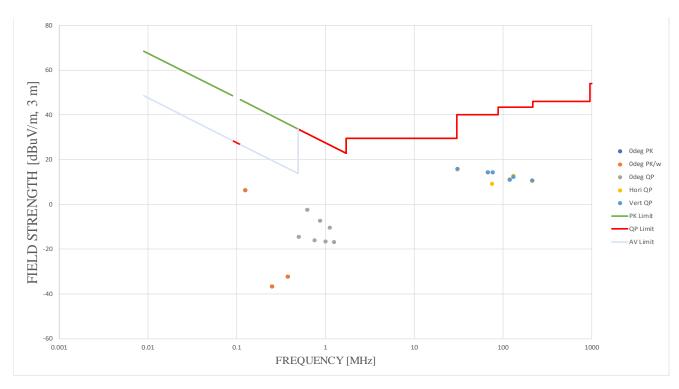
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*} All spurious emissions lower than this result.

Test report No. : 13735873H-R1
Page : 16 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0


Radiated Spurious Emission (Plot data, Worst case)

Report No. 13735873H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

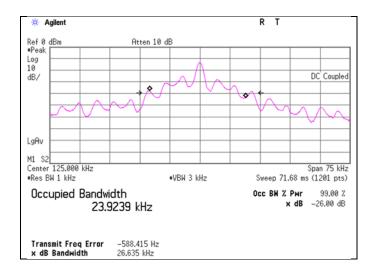
Date May 19, 2021
Temperature / Humidity 22 deg. C / 60 % RH
Engineer Hiroyuki Furutaka

Mode 1

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 17 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

-26 dB Bandwidth / 99 % Occupied Bandwidth


Report No. 13735873H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date May 19, 2021
Temperature / Humidity 22 deg. C / 60 % RH
Engineer Hiroyuki Furutaka

Mode 1

-26 dB Bandwidth [kHz]	99 % Occupied Bandwidth [kHz]
26.635	23.9239

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13735873H-R1
Page : 18 of 21
Issued date : June 10, 2021
FCC ID : KBRP55T0

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/25/2020	24
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/15/2021	12
RE	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	01/07/2021	12
RE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	_
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/02/2021	12
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	VHA 91031302	08/31/2020	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	11/06/2020	12
RE	MLA-23	141267	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-192	09/02/2020	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/18/2021	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/18/2020	12
RE	MSA-15	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	10/15/2020	12
RE	MCC-219	159670	Coaxial Cable	UL Japan Inc.	-	-	11/17/2020	12
RE	MLPA-02	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	12/04/2020	12
RE	MCC-113	141217	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM141/ 421-010/ sucoform141-PE/ RFM-E121(SW)	-/04178	06/18/2020	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: RE: Radiated Emission test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN