

Engineering and Testing for EMC and Safety Compliance

TYPE CERTIFICATION REPORT

Vertex Standard Co., LTD.
4-8-8, Nakameguro, Meguro-ku, Tokyo 153-8644, Japan
81-(0) 3-5725-6122

MODEL: VX-160U/VX-180U
FCC ID: K66VX-160U

February 1, 2001

STANDARDS REFERENCED FOR THIS REPORT	
PART 2: 1999	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS
PART 15: 1999	§15.109: RADIATED EMISSIONS LIMITS
PART 22: 1998	PUBLIC MOBILES SERVICES
PART 74: 1998	LOW POWER AUXILIARY STATION
PART 90: 1998	PRIVATE LAND MOBILE RADIO SERVICES
ANSI C63.4-1992	STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL COMPUTER AND PERIPHERALS
ANSI/TIA/EIA 603- 1992	LAND MOBILE FM OR PM COMMUNICATIONS EQUIPMENT MEASUREMENT AND PERFORMANCE STANDARDS
ANSI/TIA/EIA 603-1-1992	ADDENDUM TO ANSI/TIA/EIA 603-1992
RSS-119, Issue 5: 1996	LAND MOBILE AND FIXED RADIO TRANSMITTERS AND RECEIVERS.27.41 TO 960.0 MHz

FCC Rules Parts	Frequency Range	Output Power (W)	Freq. Tolerance	Emission Designator
90.210	450-485 MHz	5	2.5 ppm	11K0F3E
90, 22, 74	450-485 MHz	5	2.5 ppm	16K0F3E
90.210	450-485 MHz	1	2.5 ppm	11K0F3E
90, 22, 74	450-485 MHz	1	2.5 ppm	16K0F3E
Canadian	Frequency Range	Output Power (W)	Freq. Tolerance	
RSS-119	450-485 MHz	5	2.5 ppm	16K0F3E
RSS-119	450-485 MHz	5	2.5 ppm	11K0F3E

REPORT PREPARED BY:

EMC Engineer: Daniel Baltzell
Technical Writer: Melissa Fleming

Document Number: 2001020

No part of this report may be reproduced without the full written approval of Rhein Tech Laboratories, Inc.

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

TABLE OF CONTENTS

1	GENERAL INFORMATION	4
1.1	TEST FACILITY	4
1.2	RELATED SUBMITTAL(S)/GRANT(S).....	4
2	CONFORMANCE STATEMENT.....	5
3	TESTED SYSTEM DETAILS	6
3.1	CONFIGURATION OF TESTED SYSTEM.....	6
4	FIELD STRENGTH CALCULATION.....	7
5	CONDUCTED MEASUREMENT	8
6	RADIATED MEASUREMENT	10
7	FCC RULES AND REGULATIONS PART 2 §2.1046 (A): RF POWER OUTPUT: CONDUCTED	11
7.1	TEST PROCEDURE	11
7.2	TEST DATA.....	11
7.3	TEST EQUIPMENT	11
8	PART 2.1046 (A) RF POWER OUTPUT: RADIATED - ERP	12
8.1	TEST PROCEDURE	12
8.2	TEST DATA.....	13
8.3	TEST EQUIPMENT	13
9	FCC RULES AND REGULATIONS PART 2 §2.1051: SPURIOUS EMISSIONS AT ANTENNA TERMINALS	14
9.1	TEST PROCEDURE	14
9.2	TEST DATA.....	14
9.2.1	<i>CFR Part 90 Requirements</i>	14
10	FCC RULES AND REGULATIONS PART 2 §2.1053 (A): FIELD STRENGTH OF SPURIOUS RADIATION.....	16
10.1	TEST PROCEDURE	16
10.2	TEST DATA.....	16
10.3	TEST EQUIPMENT	16
11	FCC RULES AND REGULATIONS PART 2 §2.1049 (C) (1): OCCUPIED BANDWIDTH	17
11.1	TEST PROCEDURE	17
11.2	TEST DATA.....	17
11.2.1	<i>Channel 2: 5W for 25 kHz Channel Bandwidth: Mask B (Audio Modulation: 2,500 Hz)</i>	17
11.2.2	<i>Channel 8: 5 W for 12.5 kHz Channel Bandwidth: Mask D (Audio Modulation: 2,500 Hz)</i>	18
11.3	TEST EQUIPMENT	18
12	FCC RULES AND REGULATION PART 2 §2.1055: FREQUENCY STABILITY.....	19
12.1	TEST PROCEDURE	19
12.2	TEST DATA.....	19
12.2.1	<i>Frequency stability/Temperature variation.....</i>	19
12.2.2	<i>Frequency Stability/Voltage Variation.....</i>	20
12.3	TEST EQUIPMENT	20

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

13 FCC RULES AND REGULATIONS PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE.....	21
13.1 TEST PROCEDURE	21
13.2 TEST DATA.....	21
<i>Channel 2 – 25 kHz Audio Frequency Response.....</i>	21
13.3 TEST EQUIPMENT.....	21
14 FCC RULES AND REGULATIONS PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO LOW PASS FILTER RESPONSE.....	22
14.1 TEST PROCEDURE	22
14.2 TEST DATA.....	22
14.3 TEST EQUIPMENT.....	23
15 FCC RULES AND REGULATIONS PART 2 §2.1047 (B): MODULATION CHARACTERISTICS - MODULATION LIMITING.....	24
15.1 TEST PROCEDURE	24
15.2 TEST DATA.....	24
15.3 TEST EQUIPMENT	26
16 FCC RULES AND REGULATIONS PART 90 §90.214 : TRANSIENT FREQUENCY BEHAVIOR	27
16.1 TEST PROCEDURE	27
16.2 TEST DATA WIDE BAND.....	27
16.3 TEST DATA NARROW BAND.....	29
16.4 TEST EQUIPMENT	31
17 FCC RULES AND REGULATIONS PART 2.202: NECESSARY BANDWIDTH AND EMISSION BANDWIDTH	31
18 PRODUCT DESCRIPTION	33
19 PARTS LIST.....	34
20 LABEL INFORMATION.....	35
21 BLOCK DIAGRAM	36
22 SCHEMATICS	37
23 OPERATOR'S MANUAL.....	38
24 TEST PHOTOGRAPHS	39
25 INTERNAL PHOTOGRAPHS	41
26 EXTERNAL PHOTOGRAPHS	42
27 SAR REPORT	43

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

1 GENERAL INFORMATION

The following Report of a Type Certification is prepared on behalf of *Vertex Standard Co., LTD* in accordance with the Federal Communications Commissions and Industry Canada Rules and Regulations. The Equipment Under Test (EUT) was the **VX_180U/160U**. The test results reported in this document relate only to the item that was tested. **The VX-180U and the VX-160U are identical both electrically and mechanically. The only difference between both units is a LCD display that is removed from the VX-180U to form the VX-160U. The VX-180U/160U supports 5 watt, and 1 watt. It was determined during testing that the VX-180U 5 watt was the worst-case. Hence throughout this report the VX-180U was used for testing. The manufacturer intends to remove the LCD display measured at 1 inch by 0.5 inch leaving all other electronic and mechanical supporting components.**

All measurements contained in this application were conducted in accordance with FCC Rules and Regulations CFR 47, Industry Canada RSS-119, and ANSI C63.4 Methods of Measurement of Radio Noise Emissions, 1992. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.1 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report submitted to and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

1.2 RELATED SUBMITTAL(S)/GRANT(S)

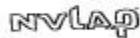
This is an original application for Certification report.

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

2 CONFORMANCE STATEMENT

We, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this attached test record. No modifications were made to the equipment during testing in order to achieve compliance with these standards.

Furthermore, there was no deviation from, additions to or exclusions from the FCC Part 2, FCC Part 90 and Industry Canada RSS-119 Certification methodology.


Signature:

A handwritten signature in black ink, appearing to read "Desmond A. Fraser".

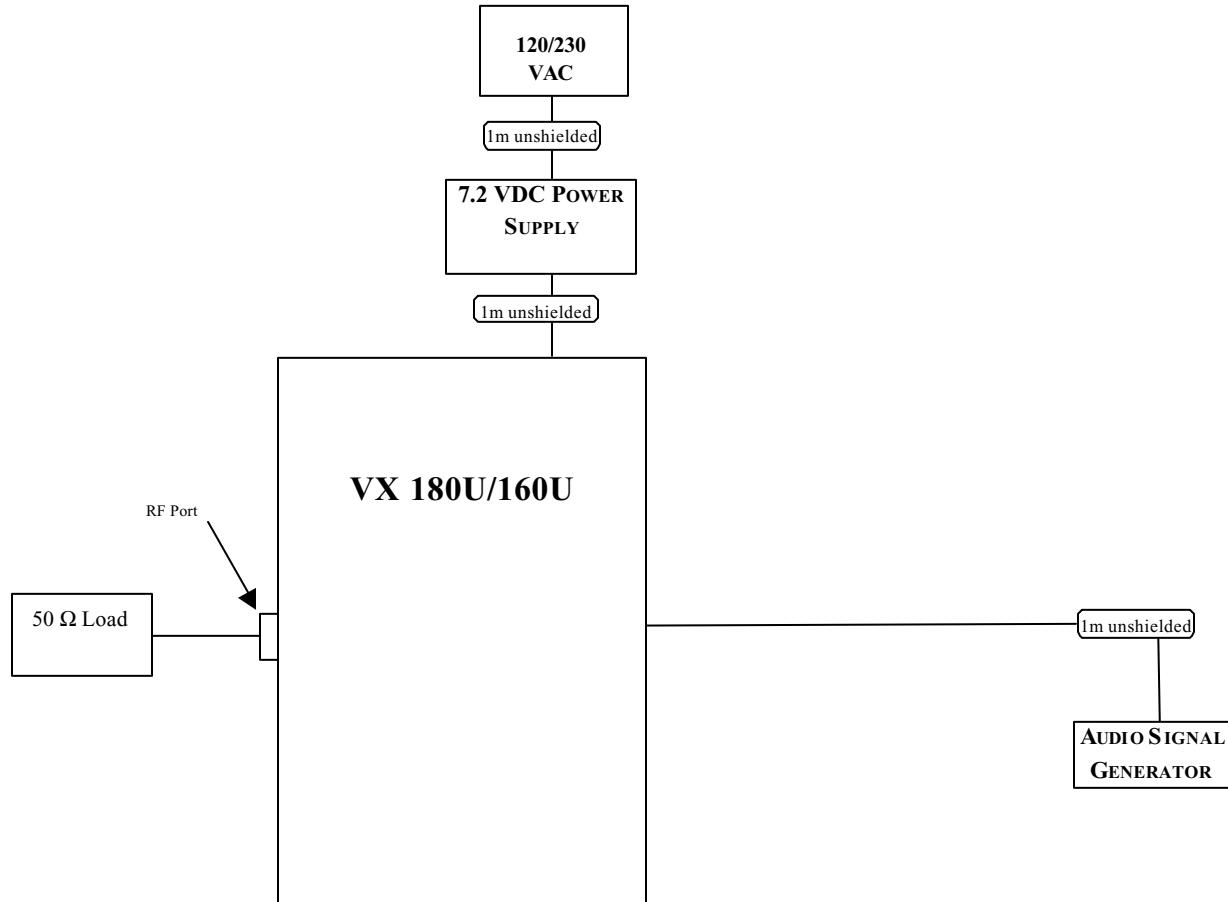
Date: December 8, 2000

Typed/Printed Name: Desmond A. Fraser

Position: President
(NVLAP Signatory)

Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 200061-0.

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.


360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

3 TESTED SYSTEM DETAILS

Listed below is the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this test, as applicable.

PART	MANUFACTURER	MODEL	SERIAL NUMBER	FCC ID
RADIO	VERTEX	VX-180U/160U	N/A	K66VX-160U
ANTENNA WHIP	VERTEX	N/A	N/A	N/A
AUDIO TEST CABLE	VERTEX	N/A	N/A	N/A
BATTERY	VERTEX	FNB-64	N/A	N/A
MICROPHONE / SPEAKER	VERTEX	MH-45	N/A	N/A

3.1 CONFIGURATION OF TESTED SYSTEM

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

4 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FI(dBuV/m) = SAR(dBuV) + SCF(dB/m)$$

FI = Field Intensity

SAR = Spectrum Analyzer Reading

SCF = Site Correction Factor

The Site Correction Factor (SCF) used in the above equation is determined empirically, and is expressed in the following equation:

$$SCF(dB/m) = - PG(dB) + AF(dB/m) + CL(dB)$$

SCF = Site Correction Factor

PG = Pre-amplifier Gain

AF = Antenna Factor

CL = Cable Loss

The field intensity in microvolts per meter can then be determined according to the following equation:

$$FI(uV/m) = 10^{FI(dBuV/m)/20}$$

For example, assume a signal at a frequency of 125 MHz has a received level measured as 49.3 dBuV. The total Site Correction Factor (antenna factor plus cable loss minus preamplifier gain) for 125 MHz is -11.5 dB/m. The actual radiated field strength is calculated as follows:

$$49.3 \text{ dBuV} - 11.5 \text{ dB/m} = 37.8 \text{ dBuV/m}$$

$$10^{37.8/20} = 10^{1.89} = 77.6 \text{ uV/m}$$

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

5 CONDUCTED MEASUREMENT

Device is battery powered.

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

6 RADIATED MEASUREMENT

Before final measurements of radiated emissions were made on the open-field three meter range, the EUT was scanned indoors at a three meter distance in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to insure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three-meter, open-field test site. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech quality manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as well as daily calibration methods, technician training, and emphasis to employees on avoiding error.

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

7 FCC RULES AND REGULATIONS PART 2 §2.1046 (A): RF POWER OUTPUT: CONDUCTED

7.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.1

The EUT was connected to a coaxial attenuator having a 50Ω load impedance.

7.2 TEST DATA

The following channel (in MHz) were tested: 450.025, 467.525, 484.975

CARRIER OUTPUT POWER (UNMODULATED)

Channel	TX Freq (MHz)	Ch Spacing (kHz)	Power measured (W)
2	467.525	25	4.95
5	467.525	25	1.15
8	467.525	12.5	4.72
11	467.525	12.5	1.16

*Measurement accuracy: +/- 3%

Rated Power:

Power Setting	Rated Power (W)
Low	1
High	5

7.3 TEST EQUIPMENT

Power Meter	HP437B	s/n 2949A02966
	HP 8901A	s/n 2545A04102 (power mode)
Power Sensor	HP8481B	s/n 2702A05059
Frequency Counter	HP8901A	s/n 2545A04102 (Frequency mode)

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

8 PART 2.1046 (A) RF POWER OUTPUT: RADIATED - ERP

8.1 TEST PROCEDURE

Substitution Method:

The EUT was setup at an antenna to EUT distance of 3 meters on an open area test site. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane.

The physical arrangement of the EUT and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations.

The worst-case, maximum radiated emission was recorded and used as reference for the ERP measurement.

The EUT was then replaced by an ½ wave dipole antenna and polarized in accordance with the EUT's antenna polarization. The ½ wave dipole antenna was connected to a RF signal generator with a coaxial cable.

The search antenna height, and search antenna polarity was set to levels that produced the maximum reading obtained in step 3. The signal generator was adjusted to a level that produced the radiated emission level obtained in step 3.

The signal generator level was recorded and corrected by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal ½ wave dipole antenna. The signal generator corrected level is the ERP level

Calculation Method:

$$P_{Watt} = \frac{E_{v/m}^2 \times d_m^2}{30 \times 1.64}$$

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

8.2 TEST DATA

Settings:

- High Power: 5 Watt delivered to antenna
- 5W VX-180U/160U radiated power measurements (3 meter)

Channel 2 (25 kHz channel spacing)

ERP Substitution method

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Corrected Antenna Gain (dB)	Corrected Signal Generator Level (dBm)	ERP* (Watt)
467.525	40.8	2.7	-0.54	37.56	5.7

*Measurement accuracy is +/- 1.5 dB

8.3 TEST EQUIPMENT

Spectrum Analyzer HP8566B
Antenna Roberts ½ wave dipoles

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

9 FCC RULES AND REGULATIONS PART 2 §2.1051: SPURIOUS EMISSIONS AT ANTENNA TERMINALS

9.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, Section 2.2.13

The transmitter is terminated with a 50Ω load and interfaced with a spectrum analyzer.

The transmitter is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1000 Hz.

9.2 TEST DATA

9.2.1 CFR PART 90 REQUIREMENTS

Frequency range of measurement per Part 2.1057: 9kHz to $10 \times F_c$

Limits: Mask B (dBm): $P(\text{dBm}) - (43 + 10 \times \text{LOG } P(W))$

Mask D (dBm): $P(\text{dBm}) - (50 + 10 \times \text{LOG } P(W))$

The following channel (in MHz) was investigated: 467.525 in 5W mode for both 25KHz and 12.5 KHz channel spacing.

The worst case (unwanted emissions) channels are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Channel 2 (467.525 MHz) – 5 Watt and 25 kHz Channel Bandwidth: Mask B

Frequency (MHz)	Level Measured (dBm)	Limit (dBm)	Margin (dB)
935.1	-41.0	-13.0	-28.0
1402.6	-59.7	-13.0	-46.7
1870.1	-59.8	-13.0	-46.8
2337.6	-47.0	-13.0	-34.0
2805.2	-72.2	-13.0	-59.2
3272.7	-66.7	-13.0	-53.7
3740.2	-75.0	-13.0	-62.0
4207.7	-70.8	-13.0	-57.8
4675.3	-76.2	-13.0	-63.2

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Channel 8 (467.525 MHz) – 5 Watt and 12.5 kHz Channel Bandwidth: Mask D

Frequency (MHz)	Level Measured (dBm)	Limit (dBm)	Margin (dB)
935.1	-42.8	-20.0	-22.8
1402.6	-58.3	-20.0	-38.3
1870.1	-63.5	-20.0	-43.5
2337.6	-47.5	-20.0	-27.5
2805.2	-75.0	-20.0	-55.0
3272.7	-65.0	-20.0	-45.0
3740.2	-84.0	-20.0	-64.0
4207.7	-70.0	-20.0	-50.0
4675.3	-79.0	-20.0	-59.0

4.3 Test Equipment

Audio Generator:

Synthesized Level Generator HP3336B s/n 2127A00559
Selective Level Meter HP3585 s/n B032374

Spectrum Analyzer:

HP8564E s/n 3943A01719
HP8546A s/n 3525A00159

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

10 FCC RULES AND REGULATIONS PART 2 §2.1053 (A): FIELD STRENGTH OF SPURIOUS RADIATION

10.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.12

The transmitter is terminated with a 50Ω load and is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1000 Hz.

Refer to section “Radiated Measurement” in this report for further information.

10.2 TEST DATA

The worst-case emissions test data are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

5Watt at 25 kHz channel spacing						
Radiated Emissions (Channel 8 at 467.525 MHz) Substitution Method						
Frequency	ERP S/G level (dBm)	Cable Loss* (dB)	Difference in gain (ref. to 1/2 wave dipole) (dB)	ERP Emission level (dBc)	Limit (dBc) Mask D	Margin (dB)
935.050	-32.8	4.2	-1.0	-75	-57	-18
1402.575	-29.6	6.7	3.8	-69.5	-57	-12.5
1870.100	-35.2	7.7	4.8	-75.1	-57	-18.1
2337.625	-17.0	10.3	5.1	-59.2	-57	-2.2
2805.150	-34.6	12.0	5.9	-77.7	-57	-20.7
3272.675	-36.2	13.5	6.2	-80.5	-57	-23.5
3740.200	-35.2	15.9	6.0	-82.1	-57	-25.1
4207.725	-36.9	16.0	6.4	-83.5	-57	-26.5
4675.250	-38.5	20.0	7.0	-88.5	-57	-31.5

*This insertion loss corresponds to the cable connecting the RF Signal Generator to the $\frac{1}{2}$ wave dipole antenna.

10.3 TEST EQUIPMENT

Antenna: CHASE CBL6112 s/n 2099
Amplifier: HP8449B s/n 3008A00505
Spectrum analyzer: HP8564E s/n 3943A01719

RF Signal Generator HP8648C s/n 3537A01741
Synthesized Sweeper HP83752A s/n 3610A00846

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

11 FCC RULES AND REGULATIONS PART 2 §2.1049 (C) (1): OCCUPIED BANDWIDTH

OCCUPIED BANDWIDTH - COMPLIANCE WITH THE EMISSION MASKS

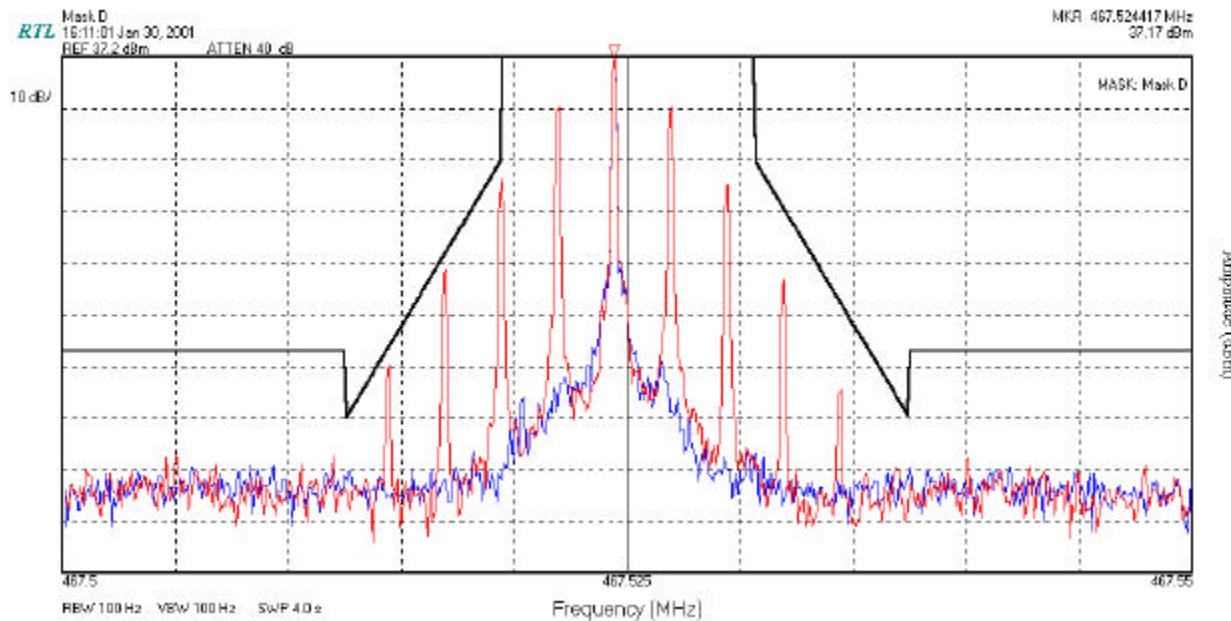
11.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.11

Device with audio modulation: Transmitter is modulated with a 2500 Hz sine wave at an input level of 16 dB greater than that required to produce 50% of rated system deviation at 1000 Hz.

Device with digital modulation: N/A

11.2 TEST DATA


11.2.1 CHANNEL 2: 5W FOR 25 kHz CHANNEL BANDWIDTH: MASK B (AUDIO MODULATION: 2,500 Hz)

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

11.2.2 CHANNEL 8: 5 W FOR 12.5 kHz CHANNEL BANDWIDTH: MASK D (AUDIO MODULATION: 2,500 Hz)

11.3 TEST EQUIPMENT

Spectrum Analyzer HP8564E s/n 3943A01719

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

12 FCC RULES AND REGULATION PART 2 §2.1055: FREQUENCY STABILITY

12.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.2

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

The EUT was evaluated over the temperature range -30°C to +50°C.

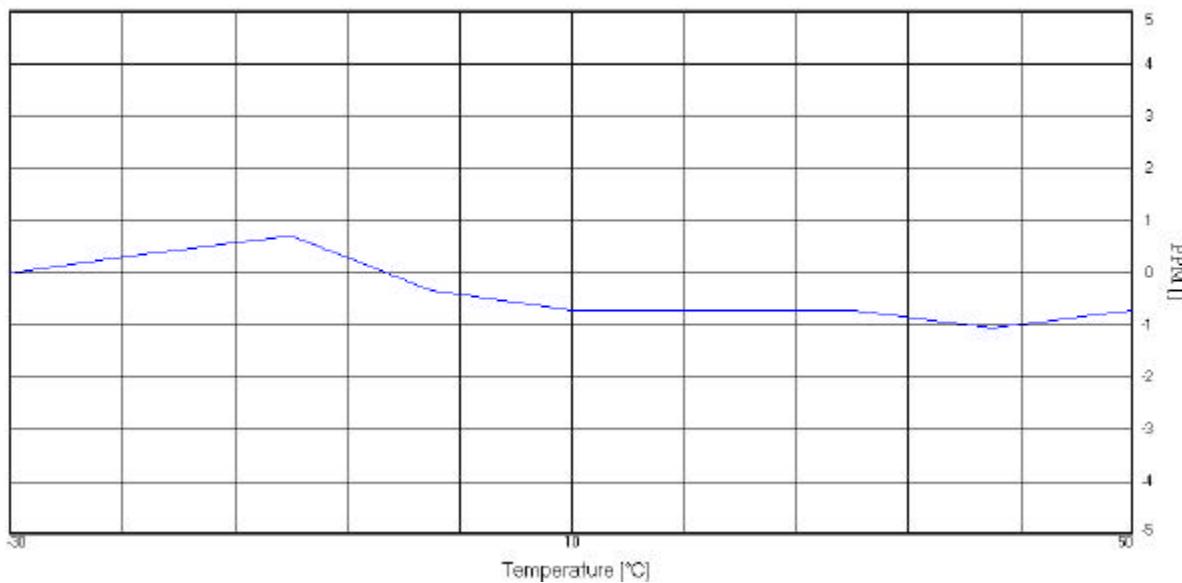
The temperature was initially set to -30°C and a 2-hour period was observed for stabilization of the EUT.

The frequency stability was measured within one minute after application of primary power to the transmitter. The temperature was raised at intervals of 10 degrees centigrade through the range. A $\frac{1}{2}$ an hour period was observed to stabilize the EUT at each measurement step and the frequency stability was measured within one minute after application of primary power to the transmitter.

Additionally, the power supply voltage of the EUT was varied from 85% to 115% of the nominal voltage.

The worst-case test data are shown.

12.2 TEST DATA

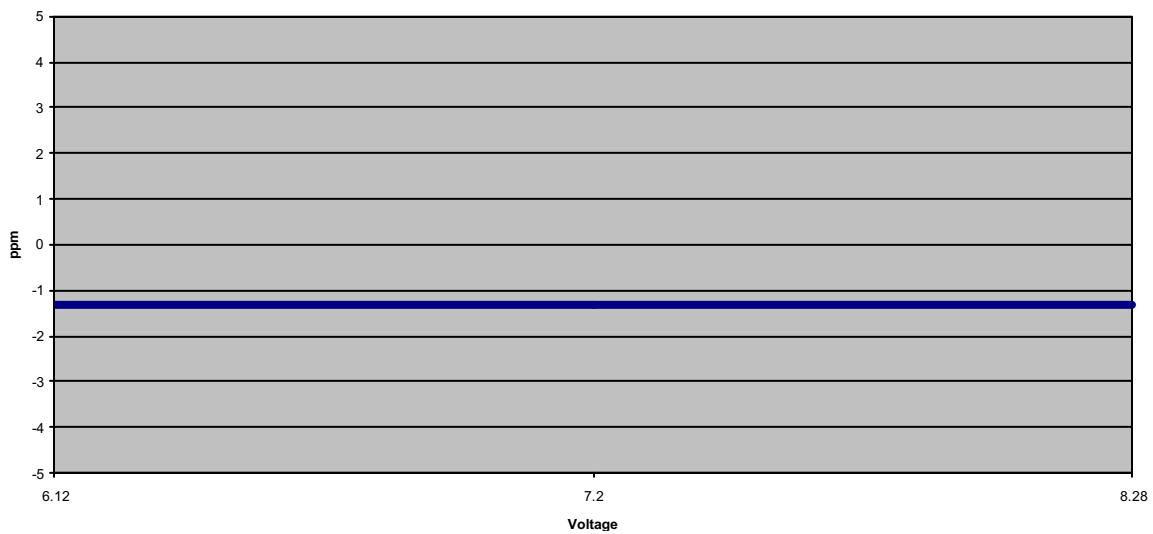

12.2.1 FREQUENCY STABILITY/TEMPERATURE VARIATION

Limit is 2.5 ppm for device with a 12.5 kHz channel bandwidth

Limit is 5 ppm for device with a 25 kHz channel bandwidth

The VX-180U/160U 5Watt radios was tested with 25 kHz channel bandwidth. The worst-case temperature deviation is shown on the following plot.

RTL



360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

12.2.2 FREQUENCY STABILITY/VOLTAGE VARIATION

Assigned Frequency 467.525 MHz

Voltage Frequency Stability (Nominal Voltage 7.2VDC)

Voltage (7.2V +/- 85-115%)	Frequency (MHz)	ppm
6.12	467.524390	-1.305
7.2	467.524387	-1.311
8.38	467.524385	-1.315

Battery end point = 5.83V

12.3 TEST EQUIPMENT

Temperature Chamber Tenney TH65 s/n 11380

Frequency Counter HP8901A (Frequency Mode) s/n 2545A04102

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

13 FCC RULES AND REGULATIONS PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE

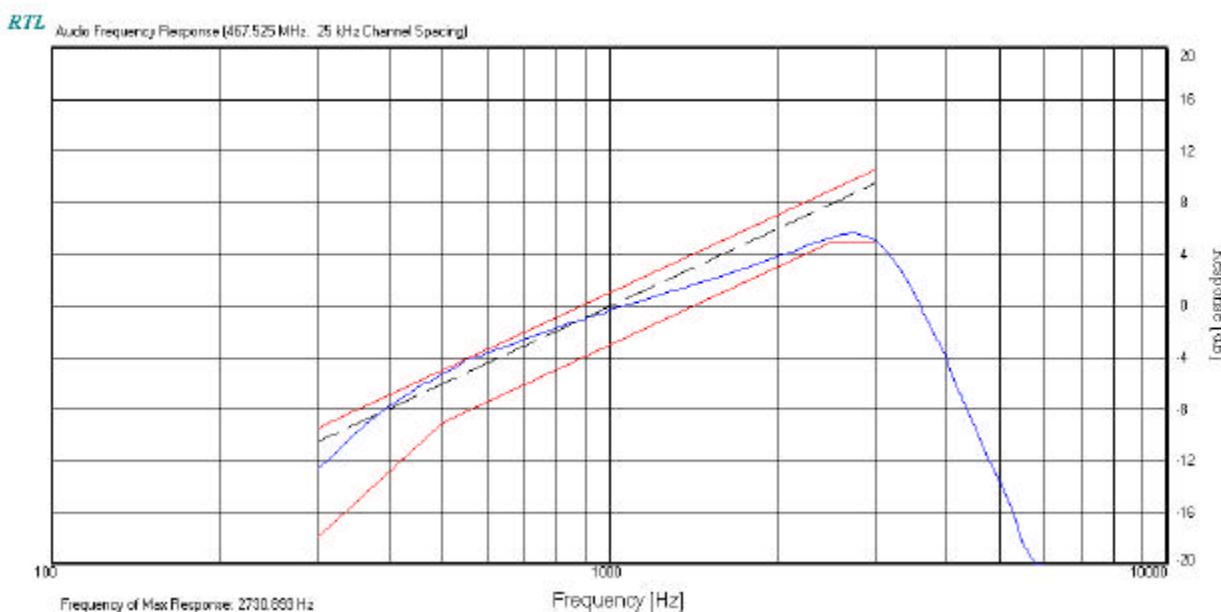
13.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.6

The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic.

The input audio level at 1000 Hz is set to produce 20% of the rated system deviation. This point is shown as the 0 dB reference level, noted DEVref.

The audio signal generator was varied from 100Hz to 5kHz with the input level held constant.


The deviation in kHz was recorded using a modulation analyzer as DEVfreq.

The response in dB relative to 1 kHz was calculated as follows:

$$\text{Audio Frequency Response} = 20 \text{ LOG} (\text{DEVfreq}/\text{DEVref})$$

13.2 TEST DATA

CHANNEL 2 – 25 kHz AUDIO FREQUENCY RESPONSE

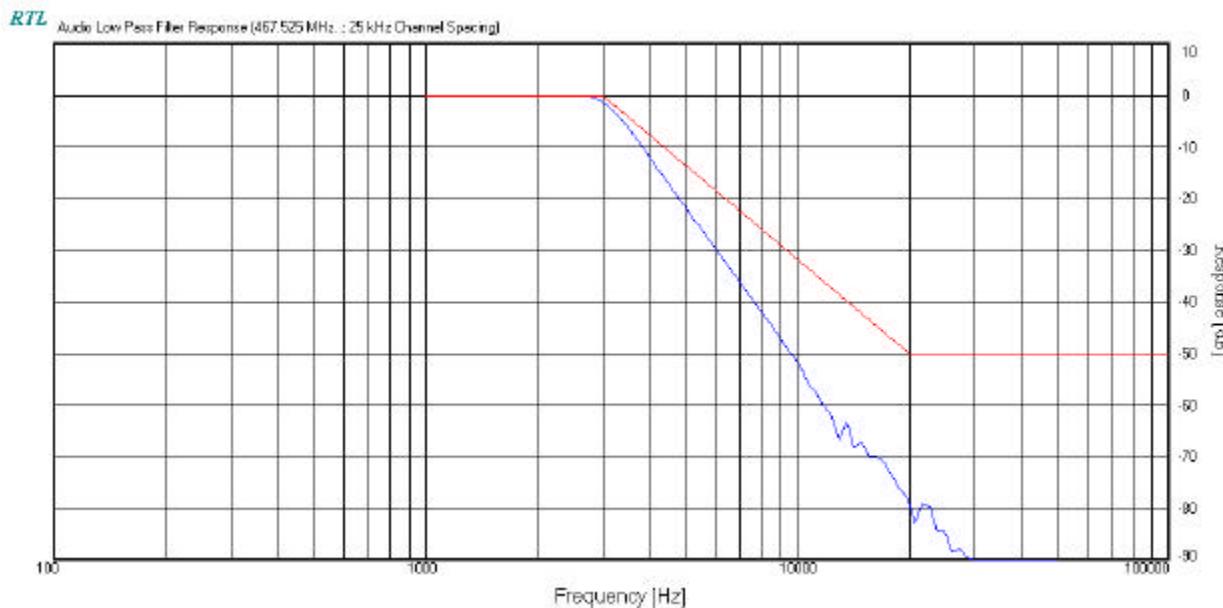
13.3 TEST EQUIPMENT

Audio generator	HP3336B	s/n 2127A00559
Modulation analyzer	HP8901A	s/n 2545A04102

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

14 FCC RULES AND REGULATIONS PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO LOW PASS FILTER RESPONSE

14.1 TEST PROCEDURE

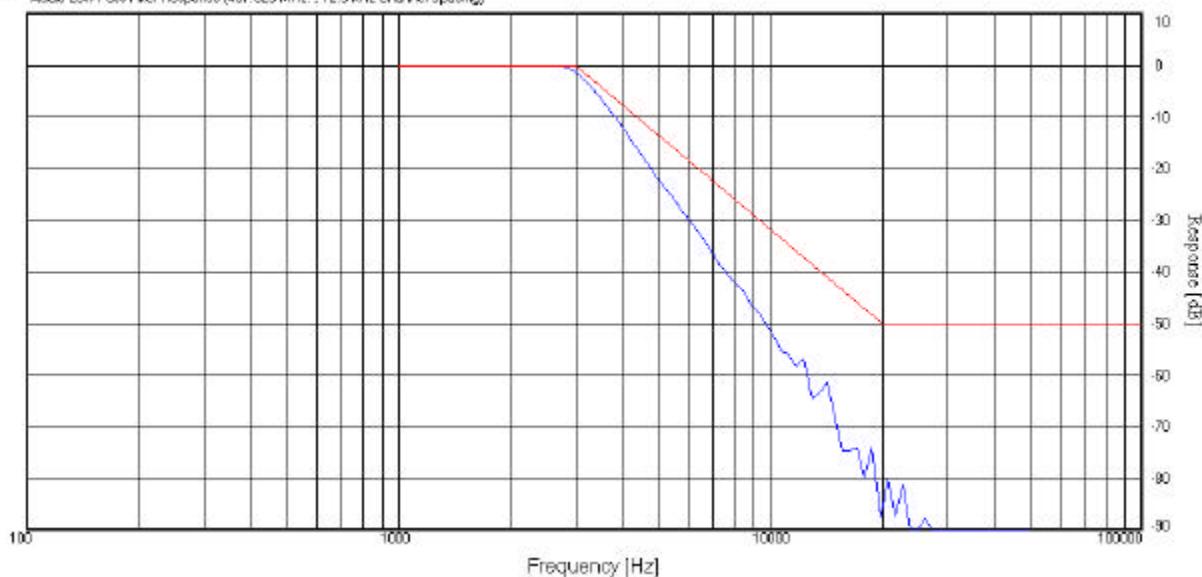

ANSI/TIA/EIA-603-1992, 2.2.15

The Audio Low Pass Filter Response is the frequency response of the post limiter low pass filter circuit above 3000 Hz.

14.2 TEST DATA

Audio Low Pass Filter Response

Channel 2; 25 kHz Channel Spacing



360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Audio Low Pass Filter Response

Channel 8; 12.5 kHz Channel Spacing

RTL Audio Low Pass Filter Response (467.525 MHz.; 12.5 kHz Channel Spacing)

14.3 TEST EQUIPMENT

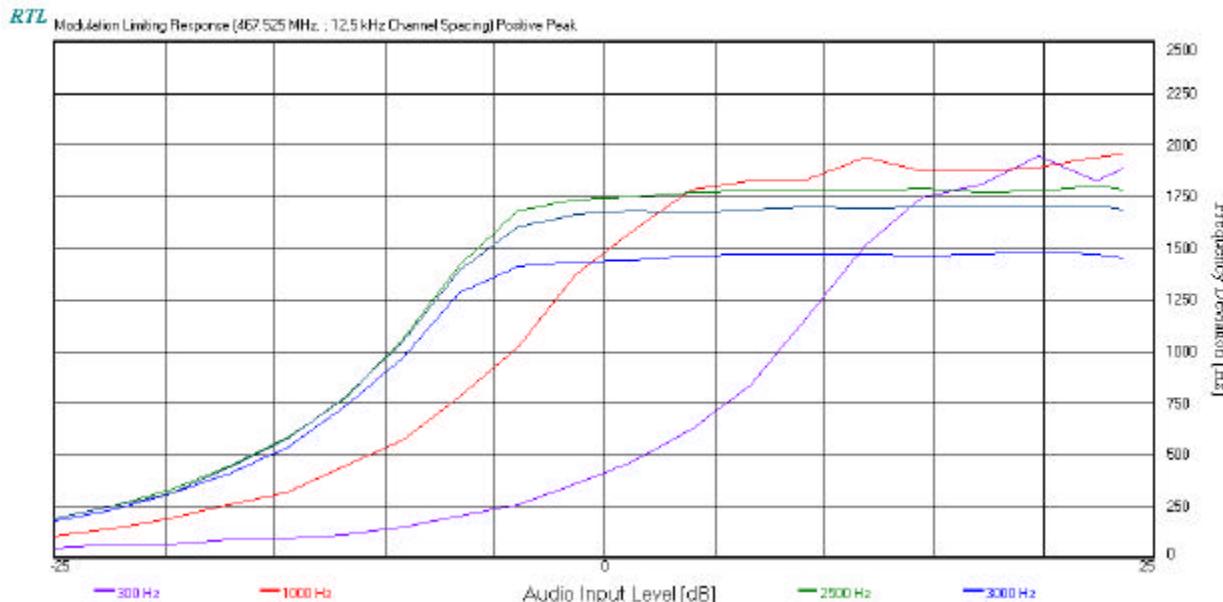
Audio generator	HP3336B	s/n 2127A00559
Modulation analyzer	HP8901A	s/n 2545A04102
Selective level meter	HP3586B	s/n 1928A01892
Synthesizer/Level generator	HP3336B	s/n 2514A02585

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

15 FCC RULES AND REGULATIONS PART 2 §2.1047 (B): MODULATION CHARACTERISTICS - MODULATION LIMITING

15.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.3

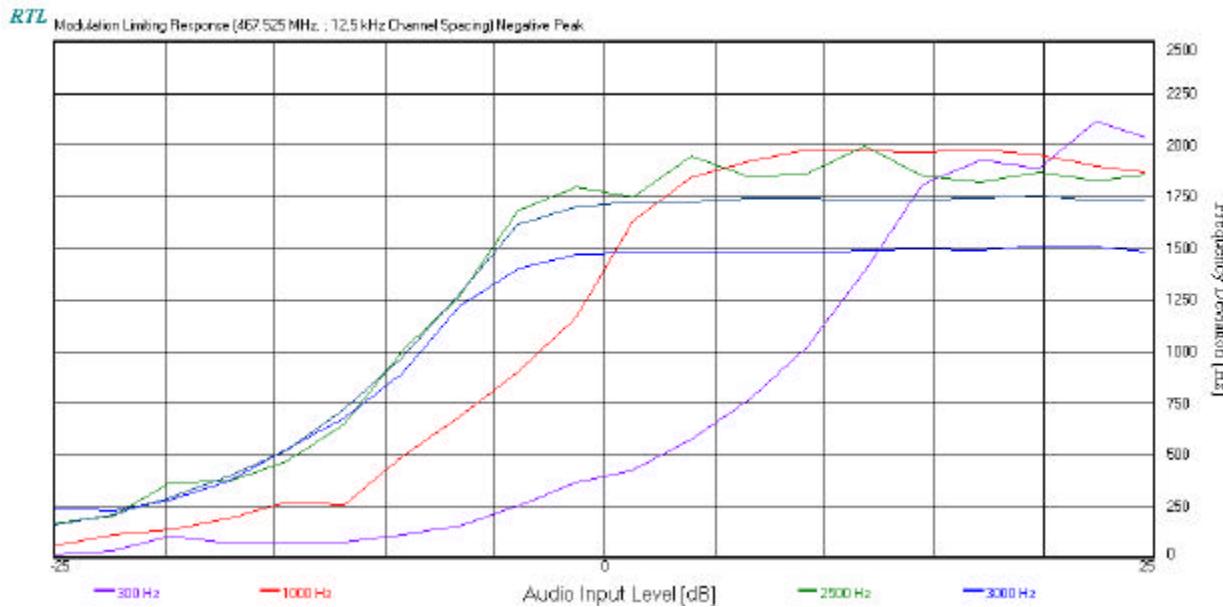

The transmitter is adjusted for full rated system deviation. The audio input level is adjusted for 60% of rated system deviation at 1000Hz. Using this level as a reference (0dB) the audio input level is varied from the reference to a level +20 dB above it and -20 dB under it, for modulation frequencies of 300Hz, 1,000Hz, and 2,500Hz. The system deviation obtained as a function of the input level is recorded. Both Positive and Negative Peak deviations were recorded.

15.2 TEST DATA

Modulation Limiting

467.525 MHz; 12.5 kHz channel spacing

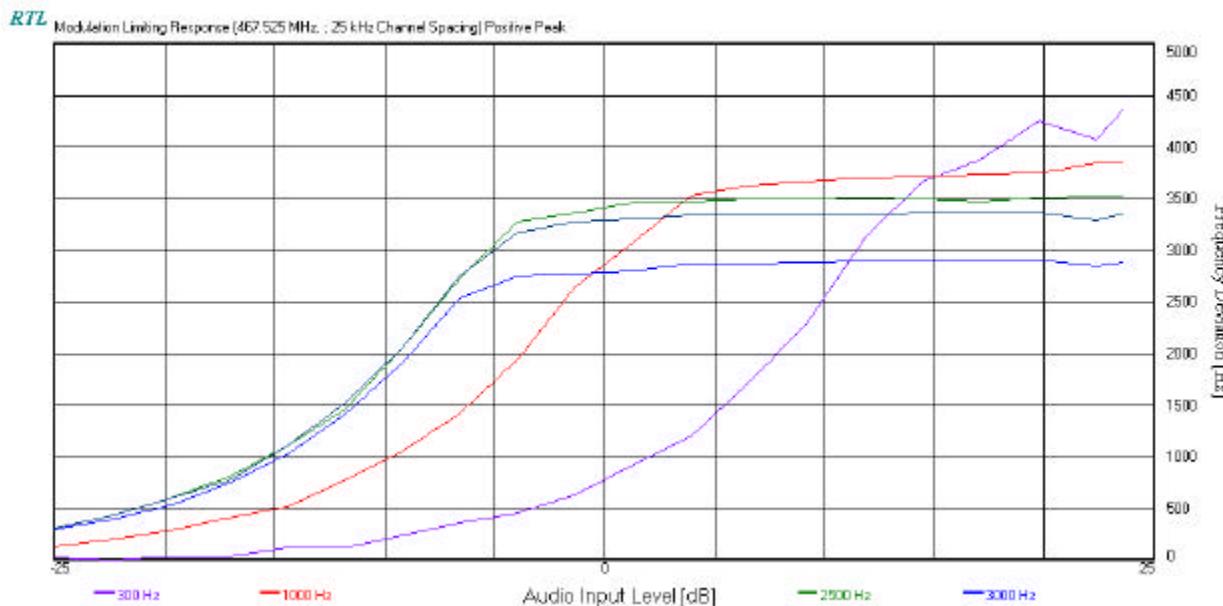
Positive Peak



360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Modulation Limiting

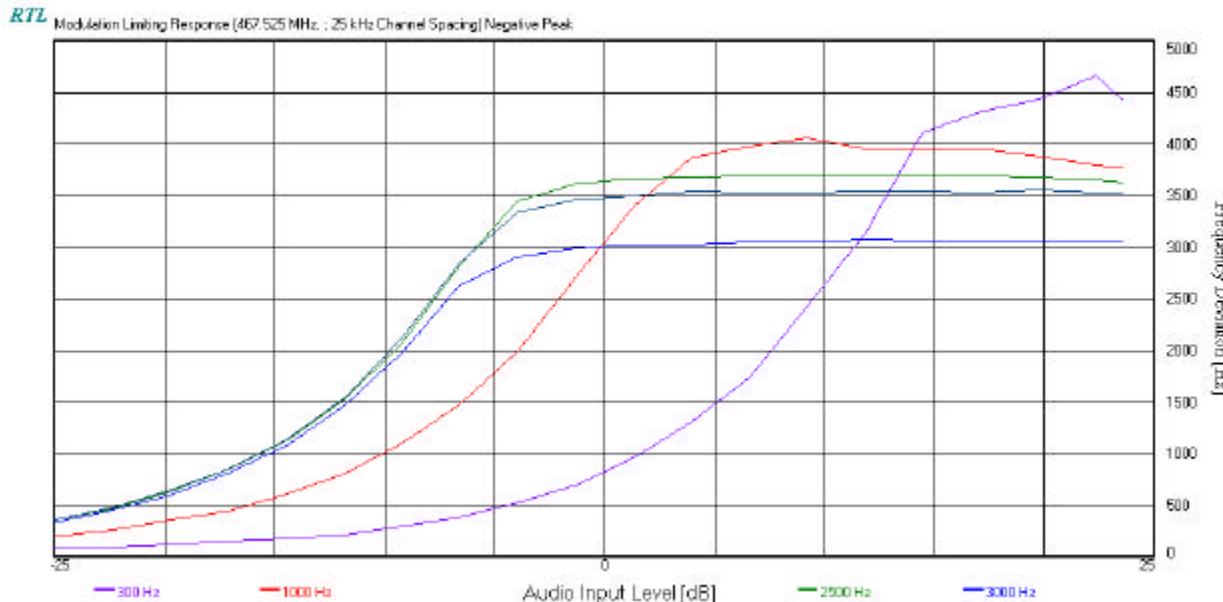
467.525 MHz; 12.5 kHz channel spacing


Negative Peak

Modulation Limiting

467.525 MHz; 25 kHz channel spacing

Positive Peak



360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Modulation Limiting

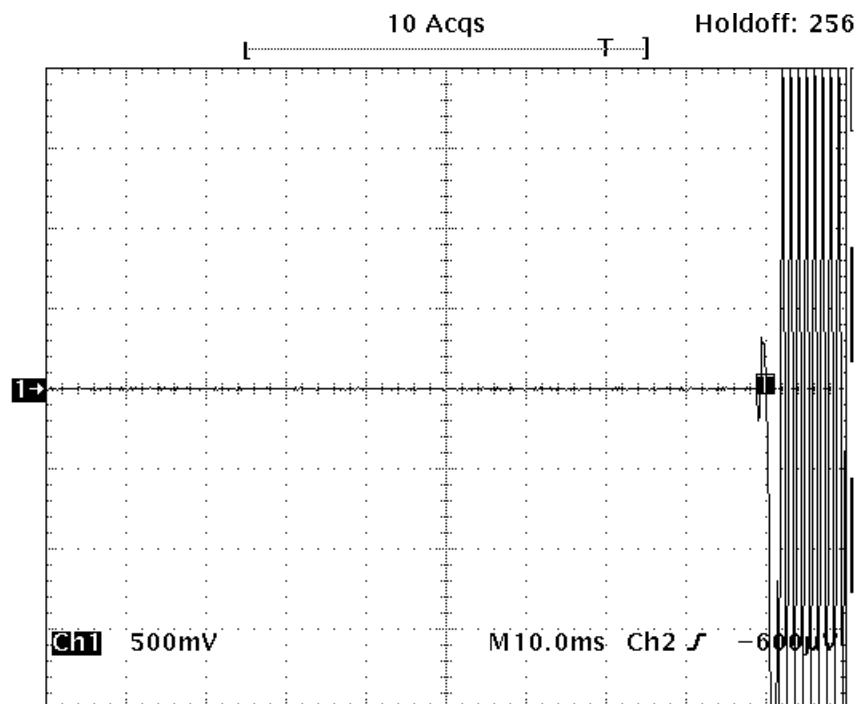
467.525 MHz; 25 kHz channel spacing

Negative Peak

15.3 TEST EQUIPMENT

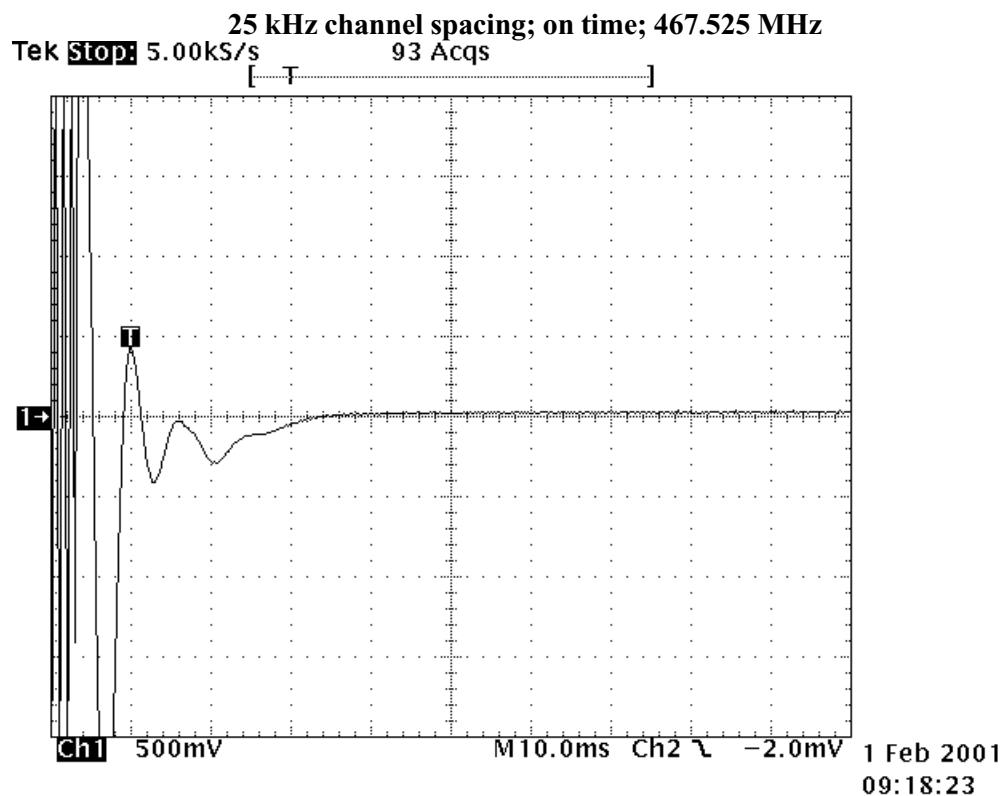
Audio generator	HP3336B	s/n 2127A00559
Modulation analyzer	HP8901A	s/n 2545A04102
Selective level meter	HP3586B	s/n 1928A01892
Synthesizer/Level generator	HP3336B	s/n 2514A02585

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>


16 FCC RULES AND REGULATIONS PART 90 §90.214 : TRANSIENT FREQUENCY BEHAVIOR

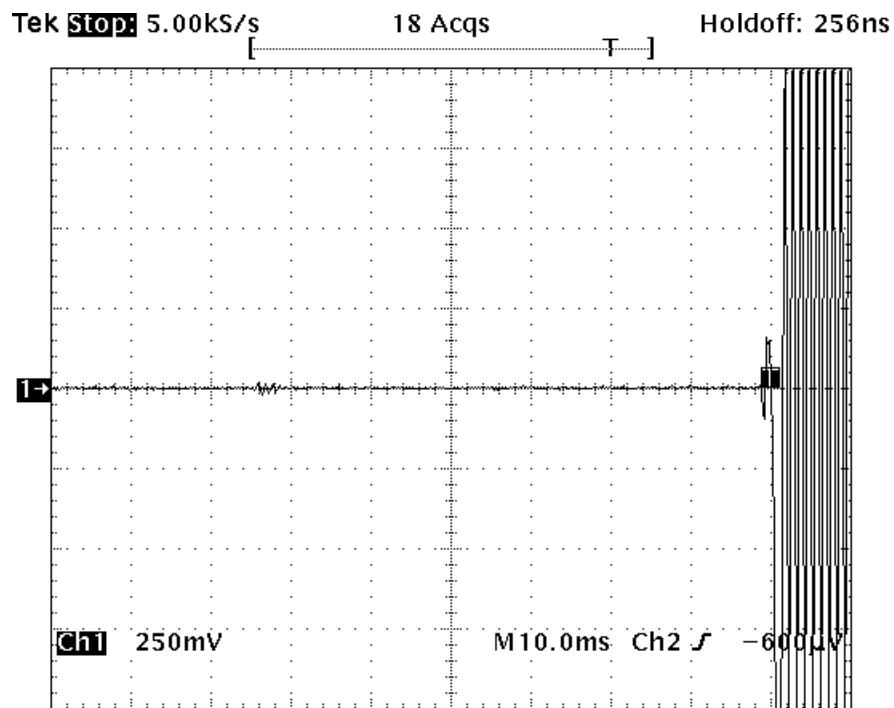
16.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.19


16.2 TEST DATA WIDE BAND

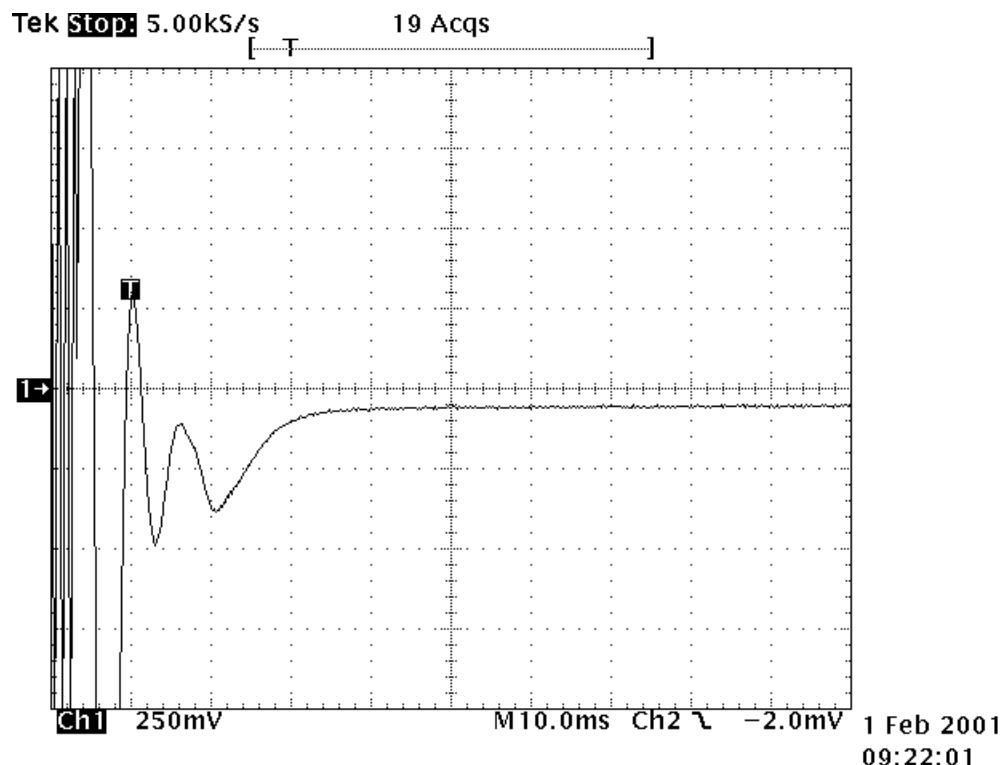
25 kHz channel spacing ; off time; 467.525 MHz

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>



360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

16.3 TEST DATA NARROW BAND


12.5 kHz channel spacing ; off time; 467.525 MHz

12.5KHz channel spacing; on time; 467.525 MHz

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Limits:

Requirements for EUT with 25 kHz channel spacing:

Time Intervals (*)(**)	Maximum Frequency Difference(***)	150-174 MHz	421-512 MHz
t1(****)	± 25 kHz	5.0 mSec	10.0 mSec
t2	± 12.5 kHz	20.0 mSec	25.0 mSec
t3(****)	± 25 kHz	5.0 mSec	10.0 mSec

Requirements for EUT with 12.5 kHz channel spacing:

Time Intervals (*)(**)	Maximum Frequency Difference(***)	150-174 MHz	421-512 MHz
t1(****)	± 12.5 kHz	5.0 mSec	10.0 mSec
t2	± 6.25 kHz	20.0 mSec	25.0 mSec
t3(****)	± 12.5 kHz	5.0 mSec	10.0 mSec

(*) t_{on} is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.
 t_1 is the time period immediately following t_{on} .

t_2 is the time period immediately following t_1 .

t_3 is the time period from the instant when the transmitter is turned off until t_{off} .

t_{off} is the instant when the 1 kHz test signal starts to rise.

(**) During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.

(***) Difference between the actual transmitter frequency and the assigned transmitter frequency.

(****) If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Maximum frequency difference between time T2 and T3: Calculation for Channel 6:

The frequency stability is required to be 2.5ppm.

Calculation for Channel 6:

4 div. on scope represent 12.5kHz for narrow band channel.

Therefore, 487.975M times 2.5 ppm times +/- 4 Divisions divided by 12.5kHz equals about +/- 0.4 division. 0.4

Div. correspond to 1.219 kHz

16.4 TEST EQUIPMENT

Detector: HP8471D s/n 2952A

RF signal generator: HP8648C s/n 3537A01741

Modulation Analyzer: HP8901A s/n 2545A04102

Oscilloscope: Tektronix TDS540B s/n B020129

Receiver: HP 8546A s/n 3525A00159

17 FCC RULES AND REGULATIONS PART 2.202: NECESSARY BANDWIDTH AND EMISSION BANDWIDTH

Type of Emission: F3E

Necessary Bandwidth and Emission Bandwidth:

12.5kHz (NB channel) : $B_n = 11K0F3E$

25kHz (WB channel): $B_n = 16K0F3E$

Calculation:

Max modulation(M) in kHz : 3

Max deviation (D) in kHz: 2.5 (NB) and 5 (BB)

Constant factor (K) : 1

$B_n = 2xM+2xDK$

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

18 PRODUCT DESCRIPTION

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

19 PARTS LIST

Please see the following page

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

20 LABEL INFORMATION

Please see the following page

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

21 BLOCK DIAGRAM

Please see the following page

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

22 SCHEMATICS

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

23 OPERATOR'S MANUAL

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

24 TEST PHOTOGRAPHS

Radiated Front View

Radiated Back View

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Conducted Front View

Conducted Back View

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

25 INTERNAL PHOTOGRAPHS

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

26 EXTERNAL PHOTOGRAPHS

360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

27 SAR REPORT

Please see the following page