

SAR Test Report - New Certification

Applicant:

Yaesu Musen Co., LTD.

Tennozu Parkside Building 2-5-8

Higashi-Shinagawa Shinagawa-ku

Tokyo, Japan

FCC ID:

K6650033X30

Product Model Number / HVIN

FTA-850

Maximum Reported 1g SAR

FCC	BODY:	1.36	W/kg
	FACE:	0.76	
Occupational Limit:		8.00	

Maximum Reported 1g SAR

ISED	BODY:	1.36	W/kg
	FACE:	0.76	
Occupational Limit:		8.00	

IC Registration Number

511B-50033X30

Product Name / PMN

FTA-850

FTA-850L

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

IC RSS-102 Issue 5

Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Approved By:

Ben Hewson, President

Celltech Labs Inc.

21-364 Lougheed Rd.

Kelowna, BC, V1X 7R8

Canada

Test Lab Certificate: 2470.01

Industry
Canada

IC Registration 3874A-1

FCC Registration: CA3874

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

Table of Contents

1.0 DOCUMENT CONTROL	4
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 SCOPE OF EVALUATION	6
4.0 NORMATIVE REFERENCES	7
5.0 STATEMENT OF COMPLIANCE	8
6.0 SAR MEASUREMENT SYSTEM	9
7.0 RF CONDUCTED POWER MEASUREMENT	10
TABLE 7.1 CONDUCTED POWER MEASUREMENTS	10
8.0 NUMBER OF TEST CHANNELS (N_c)	11
9.0 ACCESSORIES EVALUATED	12
10.0 SAR MEASUREMENT SUMMARY	13
TABLE 10.1: MEASURED RESULTS - FACE	13
TABLE 10.2: MEASURED RESULTS - BODY	14
11.0 SCALING OF MAXIMUM MEASURED SAR	15
TABLE 11.1 SAR SCALING	15
12.0 SAR EXPOSURE LIMITS	17
TABLE 12.0 EXPOSURE LIMITS.....	17
13.0 DETAILS OF SAR EVALUATION	18
TABLE 13.1 DAY LOG	18
13.2 DUT SETUP AND CONFIGURATION.....	19
13.3 DUT POSITIONING	19
13.4 GENERAL PROCEDURES AND REPORT	20
13.5 FLUID DIELECTRIC AND SYSTEMS PERFORMANCE CHECK.....	21
13.6 SCAN RESOLUTION 100MHz TO 2GHz.....	21
13.7 SCAN RESOLUTION 2GHz TO 3GHz.....	22
13.8 SCAN RESOLUTION 5GHz TO 6GHz.....	22
14.0 MEASUREMENT UNCERTAINTIES	23
TABLE 14.1 MEASUREMENT UNCERTAINTY.....	23
TABLE 14.2 CALCULATION OF DEGREES OF FREEDOM	24
15.0 FLUID DIELECTRIC PARAMETERS	25
TABLE 15.1 FLUID DIELECTRIC PARAMETERS, 150MHz HEAD TSL, 11 SEPTEMBER 2020	25
TABLE 15.2 FLUID DIELECTRIC PARAMETER DEVIATION, 150MHz HEAD TSL, 11 SEPTEMBER 2020	26
TABLE 15.3 FLUID DIELECTRIC PARAMETERS, 150MHz HEAD TSL, 15 SEPTEMBER 2020	27
TABLE 15.4 FLUID DIELECTRIC PARAMETER DEVIATION, 150MHz HEAD TSL, 15 SEPTEMBER 2020	28
16.0 SYSTEM VERIFICATION TEST RESULTS	29
TABLE 16.1 SYSTEM VERIFICATION RESULTS 150MHz HEAD TSL.....	29
17.0 SYSTEM VALIDATION SUMMARY	30
TABLE 17.1 SYSTEM VALIDATION SUMMARY.....	30

18.0 MEASUREMENT SYSTEM SPECIFICATIONS	31
TABLE 18.1 MEASUREMENT SYSTEM SPECIFICATIONS	31
19.0 TEST EQUIPMENT LIST	33
TABLE 19.1 EQUIPMENT LIST AND CALIBRATION	33
20.0 FLUID COMPOSITION	34
TABLE 20.0 FLUID COMPOSITION 150MHz HEAD TSL	34
APPENDIX A – SYSTEM VERIFICATION PLOTS	35
SPC-150H SEP 11 2020	35
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR	36
B1 - BODY, 136MHz	36
F3 – FACE, 127MHz	38
APPENDIX C - SETUP PHOTOS	40
FIGURE C.1 SETUP, FACE CONFIGURATION	40
FIGURE C.2 SETUP, BODY CONFIGURATION	41
APPENDIX D – DUT AND ACCESSORY PHOTOS	42
FIGURE D1.2 DUT PHOTOS, FRONT, LEFT, RIGHT	42
FIGURE D1.2 DUT PHOTOS, TOP, BOTTOM	43
APPENDIX E – PROBE CALIBRATION	44
APPENDIX F – DIPOLE CALIBRATION	45
APPENDIX G - PHANTOM	46

1.0 DOCUMENT CONTROL

Revision History				
Samples Tested By:		Date(s) of Evaluation:	14 Sept - 16 Sep, 2020	
Report Prepared By:		Report Reviewed By:	Irina Stanciu	
Report Revision	Description of Revision		Revised Section	Revised By
0.1	Draft Release		n/a	Art Voss
1.0	Initial Release		n/a	Art Voss
2.0	Revised per TCB Request		Multi	Art Voss

2.0 CLIENT AND DEVICE INFORMATION

Client Information		
Applicant Name	Yaesu Musen Co., LTD.	
Applicant Address	Tennozu Parkside Building	
	2-5-8 Higashi-Shinagawa Shinagawa-ku	
	Tokyo, Japan 140-0002	
DUT Information		
Device Identifier(s):	FCC ID:	K6650033X30
	IC:	511B-50033X30
Product Marketing Name / PMN:	FTA-850, FTA-850L	
Model Number / HVIN:	FTA-850	
FCC Equipment Class:	TNF-Licensed Non-Broadcast Transmitter Held to Face (TNF)	
ISED	Aeronautical (117.975-137MHz)	
Transmit Frequency Range:	118-136.975MHz	
Number of Channels:	Programmable	
Manuf. Max. Rated Output Power:	1.8W (32.55dBm)	
DUT Power Source:	Rechargeable Li-Ion,	
Antenna Type	Standard Detachable Whip; SRA-20A	
Deviation(s) from standard/procedure:	None	
Modification of DUT:	None	

3.0 SCOPE OF EVALUATION

This Certification Report was prepared on behalf of:

Yaesu Musen Co., LTD.

,(the '*Applicant*"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the '*Rules*'). The scope of this investigation was limited to only the equipment, devices and accessories (the '*Equipment*') supplied by the *Applicant*. The tests and measurements performed on this *Equipment* were only those set forth in the applicable *Rules* and/or the Test and Measurement Standards they reference. The *Rules* applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable *Rules* were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the *Equipment* tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

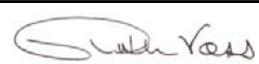
As per FCC 47 CFR Part §2.1091 and §2.1093, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in this report.

The FTA-850 and FTA-850L FCC ID:**K6650033X30**, IC ID:**511B-50033X30** are Portable Handheld PTT Radio Transceivers that operates in the 118-136.975 MHz VHF frequency band with transmission channel range from 118MHz to 136.975MHz . The device is intended for Occupational Use. The product operates from a battery pack that accepts Alkaline primary AA batteries. Additionally the device may be powered and operate via AC or DC adapter. Test samples provided by the manufacturer were capable of transmitting at select frequencies and power levels preset by the manufacturer. Test equipment was connected via the antenna port for conducted power analysis. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer and in accordance with the procedures described in IEEE 1528, IEC 62209-2, FCC KDB 865646, 447498, 643646. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

4.0 NORMATIVE REFERENCES

Normative References*	
ANSI / ISO 17025:2005	General Requirements for competence of testing and calibration laboratories
FCC CFR Title 47 Part 2	Code of Federal Regulations
Title 47:	Telecommunication
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices
Health Canada	
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3kHz to 300GHz
Industry Canada Spectrum Management & Telecommunications Policy	
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
IEEE International Committee on Electromagnetic Safety	
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC International Standard	
IEC 62209-2 2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 2
FCC KDB	
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz
FCC KDB	
KDB 447498 D01v06r02	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
FCC KDB	
KDB 643646 D01v01r03	SAR Test Reduction Considerations for Occupational PTT Radios

* When the issue number or issue date is omitted, the latest version is assumed.


5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

Applicant:	Date(s) Evaluated:
Yaesu Musen Co., LTD.	14 Sept - 16 Sept 2020
Product Name / PMN:	Product Model Number / HVIN:
FTA-850, FTA-850L	FTA-850
Host Marketing Name / HMN:	Host Product Model Number / HVIN:
Standard(s) Applied:	FCC 47 CFR §2.1093 Health Canada's Safety Code 6
Measurement Procedures:	FCC KDB 865664, FCC KDB 447498, FCC KDB 247228 Industry Canada RSS-102 Issue 5 IEEE Standard 1528-2013, IEC 62209-2
Use Group:	Limits Applied: <input type="checkbox"/> 1.6W/kg - 1g Volume - Body/Head/Face <input checked="" type="checkbox"/> 8.0W/kg - 1g Volume - Body/Head/Face <input type="checkbox"/> 4.0W/kg - 10g Volume - Extremity
Reason for Issue:	<input checked="" type="checkbox"/> New Certification <input type="checkbox"/> Class II Permissive Change
Reason for Change:	

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Art Voss, P.Eng.
 Technical Manager
 Celltech Labs Inc.
6 October 2020
 Date

6.0 SAR MEASUREMENT SYSTEM**SAR Measurement System**

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY 6 SAR System with SAM Phantom**DASY 6 Measurement Controller**

7.0 RF CONDUCTED POWER MEASUREMENT
Table 7.1 Conducted Power Measurements

Conducted Power Measurements						
Channel	Frequency (MHz)	Measured Power (dBm)	Rated Power (dBm)	Rated Power (W)	Delta (dBm)	SAR Test Channel (Y/N)
	118.000	31.82	32.55	1.80	0.73	Y
	118.025	31.88	32.55	1.80	0.67	N
	122.500	31.92	32.55	1.80	0.63	Y
	126.700	31.91	32.55	1.80	0.64	N
	127.000	31.90	32.55	1.80	0.65	Y
	127.450	31.83	32.55	1.80	0.72	N
	131.500	31.82	32.55	1.80	0.73	Y
	136.000	31.75	32.55	1.80	0.80	N
	136.975	31.71	32.55	1.80	0.84	Y

The rated power and tolerance are stated for typical transmission modes and data rates. Some modes and data rates may produce lower than rated conducted power levels. Power measurements taken across the various channels, modes and data rates did not produce levels in excess of the Rated Power plus Tolerance. SAR was evaluated using the power level setting and duty cycle specified by the manufacturer to be the max output power and produce the most conservative SAR. SAR was evaluated at the maximum average tune up tolerance. See section 2.0 Client and Device Information for details. The reported SAR was not scaled down.

8.0 NUMBER OF TEST CHANNELS (N_C)

Number of Required Test Channels						
Frequency		Number of Channels		Spacing		
f_{LOW} (MHz)	f_{HIGH} (MHz)	f_c (MHz)	KDB 447498 (N_C)	IEC 62209 (N_C)	KDB 447498 (MHz)	IEC 62209 (MHz)
118	137	127.5	5	5	4.8	4.8
KDB 447498: $N_C = \text{RoundUp} \{ [100 (F_{HIGH} - F_{LOW}) / F_c]^{0.5} \times (F_c / 100)^{0.2} \}$						
IEC 62209-1: $N_C = 2 \times \{ \text{RoundUp} [10 (F_{HIGH} - F_{LOW}) / F_c] \} + 1$						
Notes:						
Per FCC KDB 643646 D01v01r03 (A1)(A2) I) When the Head/Body SAR of an antenna tested in A) is: a) ≤ 3.5 W/kg, testing of all other required channels is not necessary for that antenna b) > 3.5 W/kg and ≤ 4.0 W/kg, testing of the required immediately adjacent channel(s) is not necessary; c) > 4.0 W/kg and ≤ 6.0 W/kg, Head/Body SAR should be measured for that antenna on the required immediately adjacent channels; testing of the other required channels still needs consideration d) > 6.0 W/kg, test all required channels for that antenna						

9.0 ACCESSORIES EVALUATED

Manufacturer's Accessory List					
Test Report ID Number	Manufacturer's Part Number	Description	SAR Evaluated	SAR Tested	
Antenna					
SRA-20A	SRA-20A	Antenna	Y	Y	
Battery					
SBR-39Li	SBR-39Li	Li-Ion Battery 7.4VDC, 2200mAh	Y	Y	
SBT-12	SBT-12	Alkaline Battery Case	Y	Y	
Body-Worn Accessories					
Belt Clip	SHB-11	Belt Clip	Y	Y	
BC 2	SHB-110	Quick Release Holder	Y	Y	
Audio Accessories					
Spkr Mic	SSM-10A	Speaker/MIC	Y	Y	
Aud 2	SCU-42	Headset Cable	Y	Y	
-	SSM-BT10	Bluetooth Headset	Y	N	

10.0 SAR MEASUREMENT SUMMARY

Table 10.1: Measured Results - Face

Measured SAR Results (1g) - FACE Configuration (FCC/ISED)															
Date	Plot ID	DUT		Test Frequency (MHz)	Modulation	Accessories				DUT Spacing		Conducted Power (dBm)	Measured SAR (1g)		SAR Drift (dB)
		M/N	Type			Antenna ID	Battery ID	Body ID	Audio ID	DUT (mm)	Antenna (mm)		100% DC (W/kg)	75% DC (W/kg)	
9/16/2020	F1	FTA-850	PTT	118	CW	SRA-20A	SBR-39Li	n/a	n/a	25	35	31.82	0.136	0.102	-0.120
9/16/2020	F2	FTA-850	PTT	122.5	CW	SRA-20A	SBR-39Li	n/a	n/a	25	35	31.92	0.489	0.367	-0.040
9/16/2020	F3	FTA-850	PTT	127	CW	SRA-20A	SBR-39Li	n/a	n/a	25	35	31.9	0.868	0.651	0.010
9/16/2020	F4	FTA-850	PTT	131.5	CW	SRA-20A	SBR-39Li	n/a	n/a	25	35	31.82	0.228	0.171	0.070
9/16/2020	F5	FTA-850	PTT	136.975	CW	SRA-20A	SBR-39Li	n/a	n/a	25	35	31.71	0.100	0.075	-0.050
SAR Limit						Spatial Peak				Head/Body		RF Exposure Category			
FCC 47 CFR 2.1093				Health Canada Safety Code 6			1 Gram Average			8.0 W/kg		Occupational/User Aware			

NOTE: This device is capable of VOX operation. A transmit Duty Cycle (DC) of 75% is applied.

Table 10.2: Measured Results - Body

Measured SAR Results (1g) - BODY Configuration (FCC/ISED)															
Date	Plot ID	DUT		Test Frequency (MHz)	Modulation	Accessories				DUT Spacing		Conducted Power (dBm)	Measured SAR (1g)		SAR Drift (dB)
						Antenna ID	Battery ID	Body ID	Audio ID	DUT (mm)	Antenna (mm)		100% DC (W/kg)	75% DC (W/kg)	
9/14/2020	B1	FTA-850	PTT	118	CW	SRA-20A	SBR-39Li	Belt Clip	Spkr Mic	0	35	31.82	1.530	1.148	0.730
9/14/2020	B2	FTA-850	PTT	122.5	CW	SRA-20A	SBR-39Li	Belt Clip	Spkr Mic	0	35	31.92	1.480	1.110	0.000
9/14/2020	B3	FTA-850	PTT	127	CW	SRA-20A	SBR-39Li	Belt Clip	Spkr Mic	0	35	31.9	0.345	0.259	0.140
9/15/2020	B5	FTA-850	PTT	131.5	CW	SRA-20A	SBR-39Li	Belt Clip	Spkr Mic	0	35	31.82	0.135	0.101	0.130
9/15/2020	B6	FTA-850	PTT	136.975	CW	SRA-20A	SBR-39Li	Belt Clip	Spkr Mic	0	35	31.71	0.072	0.054	0.120
9/15/2020	B7	FTA-850	PTT	118	CW	SRA-20A	SBR-39Li	BC 2	Spkr Mic	0	45	31.82	0.212	0.159	0.280
9/15/2020	B8	FTA-850	PTT	118	CW	SRA-20A	SBR-39Li	Belt Clip	Aud 2	0	35	31.82	1.180	0.885	-0.130
9/16/2020	B12	FTA-850	PTT	118	CW	SRA-20A	SBT-12	Belt Clip	Spkr Mic	0	35	31.82	1.460	1.095	0.160
SAR Limit						Spatial Peak				Head/Body		RF Exposure Category			
FCC 47 CFR 2.1093				Health Canada Safety Code 6			1 Gram Average			8.0 W/kg		Occupational/User Aware			

NOTE: This device is capable of VOX operation. A transmit Duty Cycle (DC) of 75% is applied.

11.0 SCALING OF MAXIMUM MEASURED SAR
Table 11.1 SAR Scaling

Scaling of Maximum Measured SAR (1g)			
Measured Parameters	Configuration		
	Face	Body	Head
Plot ID	F3	B1	
Maximum Measured SAR _M	0.651	1.148	(W/kg)
Frequency	127	118	(MHz)
Power Drift	0.010 (1)	0.730 (1)	(dB)
Conducted Power	31.900	31.820	(dBm)
Fluid Deviation from Target			
Δe	Permitivity	4.51%	6.79%
Δσ	Conductivity	-8.43%	-7.32%

Note(1): Power Drift is Positive, Drift Adjustment not Required.

Fluid Sensitivity Calculation (1g)		IEC 62209-2 Annex F		
Delta SAR = Ce * Δe + Cσ * Δσ		(F.1)		
Ce = (-0.0007854*f ³) + (0.009402*f ²) - (0.02742*f) - 0.2026		(F.2)		
Cσ = (0.009804*f ³) - (0.08661*f ²) + (0.02981*f) + 0.7829		(F.3)		
f	Frequency (GHz)	0.127	0.118	
Ce		-0.206	-0.206	
Cσ		0.785	0.785	
Ce * Δe		-0.009	-0.014	
Cσ * Δσ		-0.066	-0.057	
ΔSAR		-0.076 (3)	-0.071 (3)	(%)

Note(3): Delta SAR is negative, SAR Adjustment for Fluid Sensitivity is not Required.

Manufacturer's Tuneup Tolerance			
Measured Conducted Power	31.900	31.820	(dBm)
Rated Conducted Power	32.550	32.550	(dBm)
ΔP	-0.650	-0.730	(dB)

SAR Adjustment for Fluid Sensitivity			
SAR ₁ = SAR _M * ΔSAR	0.651	1.148	(W/kg)

SAR Adjustment for Tuneup Tolerance			
SAR ₂ = SAR ₁ + [ΔP]	0.756	1.358	(W/kg)

SAR Adjustment for Drift			
SAR ₃ = SAR ₂ + Drift	0.756	1.358	(W/kg)

reported SAR			
FCC = SAR ₂	0.76	1.36	(W/kg)
ISED = SAR ₃	0.76	1.36	(W/kg)

NOTES to Table 11.0

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face and Body SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4. The Plot ID is for identification of the SAR Measurement Plots in Annex A of this report.

NOTE: Some of the scaling factors in Steps 1 through 4 may not apply and are identified by light gray text.

Step 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 9.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per IEC 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

Step 3

Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported or Simultaneous Reported SAR.

Step 4

Per KDB 447498 4.3.2. The SAR, either measured or calculated, of ANY and ALL simultaneous transmitters must be added together and includes all contributors.

Step 5

The Reported SAR is the Maximum Final Adjusted Cumulative SAR from the applicable Steps 1 through 4 and are reported on Page 1 of this report.

12.0 SAR EXPOSURE LIMITS
Table 12.0 Exposure Limits

SAR RF EXPOSURE LIMITS			
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population / Uncontrolled Exposure⁽⁴⁾	Occupational / Controlled Exposure⁽⁵⁾
Spatial Average⁽¹⁾ (averaged over the whole body)		0.08 W/kg	0.4 W/kg
Spatial Peak⁽²⁾ (Head and Trunk averaged over any 1 g of tissue)		1.6 W/kg	8.0 W/kg
Spatial Peak⁽³⁾ (Hands/Wrists/Feet/Ankles averaged over 10 g)		4.0 W/kg	20.0 W/kg
(1) The Spatial Average value of the SAR averaged over the whole body.			
(2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.			
(3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.			
(4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.			
(5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.			

13.0 DETAILS OF SAR EVALUATION
Table 13.1 Day Log

DAY LOG					Fluid Dielectric	SPC	Test	Task
Date	Ambient Temp (° C)	Fluid Temp (° C)	Relative Humidity (%)	Barometric Pressure (kPa)				
11 Sep 2020	24	21.8	37%	101.3	X	X	X	Fluid Parameters, SPC, Testing Body Config
15 Sep 2020	22	23.2	43%	102.1	X		X	Fluid Parameters, Testing
16 Sep 2020	22	23.4	42%	102.1			X	Testing

*Per IEEE 1528 Test Series was started within 24 hours and completed within 48 hours of Fluid Parameter Measurements

13.2 DUT Setup and Configuration

DUT Setup and Configuration	
Overview	<p>The DUT was evaluated for <i>Face</i> SAR at the maximum conducted output power level, preset by the manufacturer, with a fully charged battery in unmodulated continuous transmit operation (FM mode at 100% duty cycle) with the transmit key continuously depressed. For a Push-To-Talk (PTT) device with a manually operated transmit pushbutton, a 50% duty cycle compensation for the <i>reported SAR</i> was used, as per FCC KDB 447498 (6.1). The manufacturer does offer Audio Accessories to be used with this device. Therefore, Audio Accessories were evaluated during the course of this investigation. Since the nature of the device does not inhibit the ability to transmit while worn on the body; the DUT was tested in <i>Face</i> configuration only.</p> <p>The test procedures outlined in FCC KDB 447498 " General SAR Test Reduction Considerations for " as well as FCC KDB 865664, and IEEE 1528 were used throughout the evaluation of this device.</p>

13.3 DUT Positioning

DUT Positioning	
Positioning	<p>The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.</p>
FACE Configuration	<p>The DUT was securely clamped into the device holder with the surface of the DUT normally held to the user's face facing the phantom. The device holder was adjusted to ensure that the horizontal axis of the DUT was parallel to the bottom of the phantom. A 25mm spacer block was used to set the separation distance between the DUT and the phantom to 25mm. When applicable and unless by design, the antenna</p>
BODY Configuration	<p>Body-Worn and Audio Accessories were affixed to the DUT in the manner in which they are intended to be used. The DUT, with its accessories, were securely clamped into the device holder with the surface of the DUT normally in contact with the body in direct contact with the bottom of the phantom, or 0mm separation from the DUT's accessory to the phantom. Body-Worn Accessory straps, linkages, etc. were positioned in a fashion resembling that for which they were intended to be used. Audio Accessory cables, etc., were positioned in a fashion resembling that for which they were intended to be used.</p>
HEAD Configuration	<p>This device is not intended to be held to the ear and was not tested in the HEAD configuration.</p>
NEAR-BODY Configuration	<p>This device does not support wireless routing and was not tested in the NEAR-BODY configuration ($\leq 5\text{mm}$).</p>
NEAR-BODY Configuration	<p>This device does not support wireless routing and was not tested in the NEAR-BODY configuration ($\leq 5\text{mm}$).</p>

13.4 General Procedures and Report

General Procedures and Reporting	
General Procedures	<p>The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}\text{C}$. The Active TSL temperature was maintained to within $\pm 2.0^{\circ}\text{C}$ throughout the test series. The liquid parameters shall be measured within 24 hours before the start of a test series and if it takes longer than 48 hours, the liquid parameters shall also be measured at the end of the test series.</p> <p>An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the <u>Maximum Distance to Phantom Surface</u> to the fluid surface was performed following the power drift measurement.</p>
Reporting	<p>The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the 100% DC (Duty Cycle) column are the SAR values reported by the SAR Measurement Server with the DUT operating at 100% transmit duty cycle. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.</p> <p>In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY configuration, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are <u>ONLY</u> scaled up, not down. The final results of this scaling is the <u>reported SAR</u> which appears on the Cover Page of this report.</p>

13.5 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check	
Fluid Dielectric Measurement Procedure	<p>The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of $\pm 100\text{MHz}$ for frequencies $> 300\text{MHz}$ and $\pm 50\text{MHz}$ for frequencies $\leq 300\text{MHz}$ with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC KDB 865664 targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are $> 5\%$ in range that the DUT is to be tested. If the adjustments fail to bring the parameters to $\leq 5\%$ but are $< 10\%$, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters $> 10\%$ in the DUT test frequency range are not used.</p>
Systems Performance Check	
<p>The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.</p> <p>A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is $\leq 10\%$ of the measured and normalize SAR of the validation source's Calibration Certificate.</p> <p>The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed $\pm 1^\circ\text{C}$ of the initial fluid analysis.</p>	

13.6 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz	
Maximum distance from the closest measurement point to phantom surface: (Geometric Center of Probe Center)	$4 \pm 1\text{ mm}$
Maximum probe angle normal to phantom surface. (Flat Section ELI Phantom)	$5^\circ \pm 1^\circ$
Area Scan Spatial Resolution $\Delta X, \Delta Y$	15 mm
Zoom Scan Spatial Resolution $\Delta X, \Delta Y$	7.5 mm
Zoom Scan Spatial Resolution ΔZ (Uniform Grid)	5 mm
Zoom Scan Volume X, Y, Z	30 mm
Phantom	ELI
Fluid Depth	$150 \pm 5\text{ mm}$
An Area Scan with an area extending beyond the device was used to locate the candidate maxima within 2dB of the global maxima.	
A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR	

13.7 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz	
Maximum distance from the closest measurement point to phantom surface: (Geometric Center of Probe Center)	4 ± 1 mm
Maximum probe angle normal to phantom surface. (Flat Section ELI Phantom)	5° ± 1°
Area Scan Spatial Resolution ΔX, ΔY	12 mm
Zoom Scan Spatial Resolution ΔX, ΔY	5 mm
Zoom Scan Spatial Resolution ΔZ (Uniform Grid)	5 mm
Zoom Scan Volume X, Y, Z	30 mm
Phantom	ELI
Fluid Depth	150 ± 5 mm
An Area Scan with an area extending beyond the device was used to locate the candidate maxima within 2dB of the global maxima.	
A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR	

13.8 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz	
Maximum distance from the closest measurement point to phantom surface: (Geometric Center of Probe Center)	4 ± 1 mm
Maximum probe angle normal to phantom surface. (Flat Section ELI Phantom)	5° ± 1°
Area Scan Spatial Resolution ΔX, ΔY	10 mm
Zoom Scan Spatial Resolution ΔX, ΔY	4 mm
Zoom Scan Spatial Resolution ΔZ (Uniform Grid)	2 mm
Zoom Scan Volume X, Y, Z	22 mm
Phantom	ELI
Fluid Depth	100 ± 5 mm
An Area Scan with an area extending beyond the device was used to locate the candidate maxima within 2dB of the global maxima.	
A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR	

14.0 MEASUREMENT UNCERTAINTIES
Table 14.1 Measurement Uncertainty

UNCERTAINTY BUDGET FOR DEVICE EVALUATION (IEEE 1528-2013 Table 9)									
Source of Uncertainty	IEEE 1528 Section	Toler ±%	Prob Dist	Div	c _i	c _r	Stand Unct ±%	Stand Unct ±%	V _i or V _{eff}
Measurement System									
EX3DV4 Probe Calibration** (k=1)	E.2.1	6.7	N	1	1	1	6.7	6.7	∞
Axial Isotropy** (k=1)	E.2.2	0.6	R	√3	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy** (k=1)	E.2.2	3.2	R	√3	0.7	0.7	1.3	1.3	∞
Boundary Effect*	E.2.3	1.0	R	√3	1	1	0.6	0.6	∞
Linearity** (k=1)	E.2.4	0.5	R	√3	1	1	0.3	0.3	∞
System Detection Limits*	E.2.4	1.0	R	√3	1	1	0.6	0.6	∞
Modulation Response** (k=1)	E.2.5	8.3	R	√3	1	1	4.8	4.8	∞
Readout Electronics*	E.2.6	0.3	N	1	1	1	0.3	0.3	∞
Response Time*	E.2.7	0.8	R	√3	1	1	0.5	0.5	∞
Integration Time*	E.2.8	2.6	R	√3	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	0.0	R	√3	1	1	0.0	0.0	10
RF Ambient Conditions - Reflection	E.6.1	0.0	R	√3	1	1	0.0	0.0	10
Probe Positioner Mechanical Tolerance*	E.6.2	0.0	R	√3	1	1	0.0	0.0	∞
Probe Positioning w rt Phantom Shell*	E.6.3	0.4	R	√3	1	1	0.2	0.2	∞
Post-processing*	E.5	2.0	R	√3	1	1	1.2	1.2	∞
Test Sample Related									
Test Sample Positioning	E.4.2	2.2	N	1	1	1	2.2	2.2	5
Device Holder Uncertainty*	E.4.1	3.6	N	1	1	1	3.6	3.6	∞
SAR Drift Measurement ⁽²⁾	E.2.9	0.0	R	√3	1	1	0.0	0.0	∞
SAR Power Scaling ⁽³⁾	E.6.5	0.0	R	√3	1	1	0.0	0.0	∞
Phantom and Tissue Parameters									
Phantom Uncertainty*	E.3.1	6.1	R	√3	1	1	3.5	3.5	∞
SAR Correction Uncertainty	E.3.2	1.9	N	1	1	0.84	1.9	1.6	∞
Liquid Conductivity (measurement)	E.3.3	5.0	N	1	0.78	0.71	3.9	3.6	10
Liquid Permittivity (measurement)	E.3.3	5.0	N	1	0.23	0.26	1.2	1.3	10
Liquid Conductivity (Temperature)	E.3.2	0.4	R	√3	0.78	0.71	0.2	0.2	10
Liquid Permittivity (Temperature)	E.3.2	0.2	R	√3	0.23	0.26	0.0	0.0	10
Effective Degrees of Freedom⁽¹⁾								V_{eff} = 1161	
Combined Standard Uncertainty				RSS			11.1	11.0	
Expanded Uncertainty (95% Confidence Interval)				k=2			22.3	22.0	
Measurement Uncertainty Table in accordance with IEEE Standard 1528-2013									

(1) The Effective Degrees of Freedom is > 30

Therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

(2) The SAR Value is compensated for Drift

(3) SAR Power Scaling not Required

* Provided by SPEAG for DASY

** Standard Uncertainty Calibration Data Provided by SPEAG for EX3DEV4 Probe

Table 14.2 Calculation of Degrees of Freedom

Calculation of the Degrees and Effective Degrees of Freedom	
$v_i = n - 1$	$v_{\text{eff}} = \frac{u_c^4}{m} \sum_{i=1}^{c^4 u_i^4} v_i$

15.0 FLUID DIELECTRIC PARAMETERS
Table 15.1 Fluid Dielectric Parameters, 150MHz Head TSL, 11 September 2020

For fluid parameters outside the +/- 5% tolerance, SAR was adjusted in accordance with the Fluid Sensitivity requirements of IEC 62209. See Section 11.0.

Aprel Laboratory				
Test Result for UIM Dielectric Parameter				
Fri 11/Sep/2020 13:12:10				
Freq	Frequency(GHz)	FCC_eHF	FCC_sH	Test_e
FCC_eHF	FCC_sH	OET 65 Supplement C (June 2001) Limits for Head Epsilon	OET 65 Supplement C (June 2001) Limits for Head Sigma	Test_e
FCC_eHF	FCC_sH	Epsilon of UIM	Sigma of UIM	Test_s

Freq	FCC_eHF	FCC_sH	Test_e	Test_s
0.1000	54.63	0.72	56.02	0.69
0.1100	54.17	0.73	51.89	0.69
0.1200	53.70	0.74	52.02	0.69
0.1300	53.23	0.75	51.71	0.69
0.1400	52.77	0.75	49.81	0.69
0.1500	52.30	0.76	49.90	0.69
0.1600	51.83	0.77	48.95	0.71
0.1700	51.37	0.77	47.66	0.71
0.1800	50.90	0.78	47.94	0.73
0.1900	50.43	0.79	47.60	0.74
0.2000	49.97	0.80	48.14	0.74

Table 15.2 Fluid Dielectric Parameter Deviation, 150MHz Head TSL, 11 September 2020

FLUID DIELECTRIC PARAMETERS							
Date:	11 Sep 2020	Fluid Temp:	21.7	Frequency:	150MHz	Tissue:	Head
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
100.0000		56.0200	0.6900	54.6300	0.72	2.54%	-4.17%
110.0000		51.8900	0.6900	54.1700	0.73	-4.21%	-5.48%
118.0000	*	51.9940	0.6900	53.7940	0.74	-3.35%	-6.50%
120.0000		52.0200	0.6900	53.7000	0.74	-3.13%	-6.76%
122.5000	*	51.9425	0.6900	53.5825	0.74	-3.06%	-7.07%
127.0000	*	51.8030	0.6900	53.3710	0.75	-2.94%	-7.63%
130.0000		51.7100	0.6900	53.2300	0.75	-2.86%	-8.00%
131.5000	*	51.4250	0.6900	53.1610	0.75	-3.27%	-8.00%
136.9750	*	50.3848	0.6900	52.9092	0.75	-4.77%	-8.00%
140.0000		49.8100	0.6900	52.7700	0.75	-5.61%	-8.00%
150.0000		49.9000	0.6900	52.3000	0.76	-4.59%	-9.21%
160.0000		48.9500	0.7100	51.8300	0.77	-5.56%	-7.79%
170.0000		47.6600	0.7100	51.3700	0.77	-7.22%	-7.79%
180.0000		47.9400	0.7300	50.9000	0.78	-5.82%	-6.41%
190.0000		47.6000	0.7400	50.4300	0.79	-5.61%	-6.33%
200.0000		48.1400	0.7400	49.9700	0.80	-3.66%	-7.50%

*Channel Frequency Tested

Table 15.3 Fluid Dielectric Parameters, 150MHz Head TSL, 15 September 2020

For fluid parameters outside the +/- 5% tolerance, SAR was adjusted in accordance with the Fluid Sensitivity requirements of IEC 62209. See Section 11.0.

Aprel Laboratory Test Result for UIM Dielectric Parameter Tue 15/Sep/2020 09:38:06								
Freq	Frequency(GHz)							
FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon								
FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma								
Test_e	Epsilon of UIM							
Test_s	Sigma of UIM							
Freq	FCC_eHFCC	sHFCC	Test_e	Test_s				
0.1000	54.63	0.72	54.18	0.69				
0.1100	54.17	0.73	57.14	0.69				
0.1200	53.70	0.74	57.52	0.69				
0.1300	53.23	0.75	55.03	0.69				
0.1400	52.77	0.75	54.53	0.69				
0.1500	52.30	0.76	52.87	0.69				
0.1600	51.83	0.77	52.81	0.70				
0.1700	51.37	0.77	51.73	0.70				
0.1800	50.90	0.78	50.61	0.72				
0.1900	50.43	0.79	48.81	0.72				
0.2000	49.97	0.80	47.76	0.73				

Table 15.4 Fluid Dielectric Parameter Deviation, 150MHz Head TSL, 15 September 2020

FLUID DIELECTRIC PARAMETERS							
Date:	15 Sep 2020	Fluid Temp:	23.2	Frequency:	150MHz	Tissue:	Head
Freq (MHz)	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	
100.0000		54.1800	0.6840	54.6300	0.72	-0.82%	-5.00%
110.0000		57.1400	0.6840	54.1700	0.73	5.48%	-6.30%
118.0000	*	57.4440	0.6840	53.7940	0.74	6.79%	-7.32%
120.0000		57.5200	0.6840	53.7000	0.74	7.11%	-7.57%
122.5000	*	56.8975	0.6840	53.5825	0.74	6.19%	-7.88%
127.0000	*	55.7770	0.6840	53.3710	0.75	4.51%	-8.43%
130.0000		55.0300	0.6840	53.2300	0.75	3.38%	-8.80%
131.5000	*	54.9550	0.6849	53.1610	0.75	3.37%	-8.68%
136.9750	*	54.6813	0.6882	52.9092	0.75	3.35%	-8.24%
140.0000		54.5300	0.6900	52.7700	0.75	3.34%	-8.00%
150.0000		52.8700	0.6840	52.3000	0.76	1.09%	-10.00%
160.0000		52.8100	0.7000	51.8300	0.77	1.89%	-9.09%
170.0000		51.7300	0.7000	51.3700	0.77	0.70%	-9.09%
180.0000		50.6100	0.7200	50.9000	0.78	-0.57%	-7.69%
190.0000		48.8100	0.7200	50.4300	0.79	-3.21%	-8.86%
200.0000		47.7600	0.7300	49.9700	0.80	-4.42%	-8.75%

*Channel Frequency Tested

16.0 SYSTEM VERIFICATION TEST RESULTS
Table 16.1 System Verification Results 150MHz Head TSL

System Verification Test Results					
Date	Frequency (MHz)	Validation Source			
		P/N		S/N	
11 Sep 2020	150	CLA-150			4007
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)
Head	21.8	24	37%	1000	0
Fluid Parameters					
Permittivity			Conductivity		
Measured	Target	Deviation	Measured	Target	Deviation
52.87	52.30	1.09%	0.68	0.76	-10.00%
Measured SAR					
1 gram			10 gram		
Measured	Target	Deviation	Measured	Target	Deviation
3.60	3.89	-7.46%	2.39	2.57	-7.00%
Measured SAR Normalized to 1.0W					
1 gram			10 gram		
Normalized	Target	Deviation	Normalized	Target	Deviation
3.60	3.87	-6.98%	2.39	2.56	-6.64%
Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.					
The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.					
The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.					
The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.					

17.0 SYSTEM VALIDATION SUMMARY

Table 17.1 System Validation Summary

Frequency (MHz)	Validation Date	Probe Model	Probe S/N	Validation Source	Source S/N	Tissue	Tissue Dielectrics		Validation Results		
							Permitivity	Conductivity	Sensitivity	Linearity	Isotropy
30	31-May-19	EX3DV4	3600	CLA-30	1005	Head	52.40	0.75	Pass	Pass	Pass
150	20-May-20	EX3DV4	3600	CLA-150	4007	Head	52.59	0.76	Pass	Pass	Pass
450	12-Aug-20	EX3DV4	3600	D450V3	1068	Head	43.64	0.84	Pass	Pass	Pass
750	20-Jun-19	EX3DV4	3600	D750V3	1061	Head	44.27	0.83	Pass	Pass	Pass
835	17-Aug-20	EX3DV4	3600	D835V2	4d075	Head	40.60	0.87	Pass	Pass	Pass
900	20-Aug-20	EX3DV4	3600	D900V2	045	Head	39.09	0.94	Pass	Pass	Pass
1640	5-Jul-18	EX3DV4	3600	1620-S-2	207-00102	Head	39.87	1.27	Pass	Pass	Pass
1800	18-Jun-19	EX3DV4	3600	D1800V2	247	Head	54.77	1.53	Pass	Pass	Pass
2450	27-May-20	EX3DV4	3600	D2450V2	825	Head	37.21	1.95	Pass	Pass	Pass
5250	29-May-20	EX3DV4	3600	D5GHzV2	1031	Head	34.44	5.07	Pass	Pass	Pass
5750	28-May-20	EX3DV4	3600	D5GHzV2	1031	Head	35.16	5.56	Pass	Pass	Pass

18.0 MEASUREMENT SYSTEM SPECIFICATIONS
Table 18.1 Measurement System Specifications

Measurement System Specification	
Specifications	
Positioner	Stäubli Unimation Corp. Robot Model: TX90XL
Repeatability	+/- 0.035 mm
No. of axis	6.0
Data Acquisition Electronic (DAE) System	
Cell Controller	
Processor	Intel(R) Core(TM) i7-7700
Clock Speed	3.60 GHz
Operating System	Windows 10 Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY6, V 6.10.0.12 / DASY52 V10.3(1513)
	Postprocessing Software: SEMCAD X, V14.6.13(7474)
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	EX3DV4
Serial No.	3600
Construction	Triangular core fiber optic detection system
Frequency	4 MHz -10GHz
Linearity	±0.2 dB (30 MHz to 10 GHz)
Phantom	
Type	ELI Elliptical Planar Phantom
Shell Material	Fiberglass
Thickness	2mm +/- .2mm
Volume	> 30 Liter

Measurement System Specification	
Probe Specification	
Construction:	Symmetrical design with triangular core; Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, glycol)
Calibration:	In air from 10 MHz to 2.5 GHz In head simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)
Frequency:	10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)
Directivity:	\pm 0.2 dB in head tissue (rotation around probe axis) \pm 0.4 dB in head tissue (rotation normal to probe axis)
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB
Surface Detect:	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions:	Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone
Phantom Specification	
The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.	
Device Positioner Specification	
The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65 $^{\circ}$. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.	

19.0 TEST EQUIPMENT LIST
Table 19.1 Equipment List and Calibration

Test Equipment List				
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE
Schmid & Partner DASY 6 System	-	-	-	-
-DASY Measurement Server	00158	1078	CNR	CNR
-Robot	00046	599396-01	CNR	CNR
-DAE4	00019	353	17-Mar-20	17-Mar-23
-EX3DV4 E-Field Probe	00213	3600	25-Mar-20	25-Mar-23
-CLA 30 Validation Dipole	00300	1005	18-Mar-20	18-Mar-23
-CLA150 Validation Dipole	00251	4007	18-Mar-20	18-Mar-23
-D450V3 Validation Dipole	00221	1068	23-Apr-18	23-Apr-21
-D750V3 Validation Dipole	00238	1061	21-Mar-19	21-Mar-22
-D835V2 Validation Dipole	00217	4D075	20-Apr-18	20-Apr-21
-D900V2 Validation Dipole	00020	54	16-Mar-20	16-Mar-23
ALS-D01620-S-2	00299	207-00102	7-Nov-17	7-Nov-20
-D2450V2 Validation Dipole**	00219	825	24-Apr-18	24-Apr-21
-D5GHzV2 Validation Dipole	00126	1031	26-Apr-18	26-Apr-21
ELI Phantom	00247	1234	CNR	CNR
SAM Phantom	00154	1033	CNR	CNR
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
Gigatronics 8652A Power Meter	00007	1835801	26-Mar-19	26-Mar-22
Gigatronics 80701A Power Sensor	00186	1837002	COU	COU
Gigatronics 80334A Power Sensor	00237	1837001	26-Mar-19	26-Mar-22
HP 8753ET Network Analyzer	00134	US39170292	29-Dec-17	29-Dec-20
Rohde & Schwarz SMR20 Signal Generator	00006	100104	11-Aug-20	11-Aug-23
Amplifier Research 10W1000C Power Amplifier	00041	27887	CNR	CNR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Narda Directional Coupler 3020A	00064	-	CNR	CNR
Traceable VWR Thermometer	00334	192385455	6-Aug-19	6-Aug-21
Kangaroo VWR Humidity/Termometer	00334	192385455	5-Aug-19	6-Aug-22
Digital Multi Meter DMR-1800	00250	TE182	23-Jun-20	23-Jun-23
Bipolar Power Supply 6299A	00086	1144A02155	CNR	CNR
DC-18G 10W 30db Attenuator	00102	-	COU	COU
R&S FSP40 Spectrum Analyzer	00241	100500	15-May-18	15-May-21
RF Cable-SMA	00311	-	CNR	CNR
HP Calibration Kit	00145	-	CNR	CNR
Rental Equipment				

CNR = Calibration Not Required

COU = Calibrate on Use

*Verified and Extended

**Per KDB 865664 3.2.2; Supporting documentation is included in the report for validation dipoles exceeding the recommended annual calibration cycle.

Note: Per KDB 865664, Dipoles are evaluated annually for return loss and impedance. The dipole's SAR target can only be assessed by the SAR equipment manufacturer and remains the target until the dipole is recalibrated by the manufacturer. The dipole's SAR is evaluated and compared to this target during each and every System Verification which is performed prior to and/or during each DUT SAR evaluation. The results of these verifications are shown in Section 16.0

20.0 FLUID COMPOSITION
Table 20.0 Fluid Composition 150MHz HEAD TSL

Tissue Simulating Liquid (TSL) Composition				2450MHz Body
Component by Percent Weight				
Water	Glycol	Salt⁽¹⁾	HEC⁽²⁾	Bacteriacide⁽³⁾
69.98	30.0	0.02	0.0	0.0

(1) Non-Iodinized

(2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g

(3) Dow Chemical Dowicil 75 Antimicrobial Preservative

APPENDIX A – SYSTEM VERIFICATION PLOTS

Date/Time: 9/11/2020 1:42:14 PM

Test Laboratory: Celltech Labs

SPC-150H Sep 11 2020
DUT: CLA-150; Type: CLA-150; Serial: 4007

Communication System: UID 0, CW (0); Communication System Band: FullSpan (0.0 - 6000.0 MHz); Frequency: 150 MHz; Communication System PAR: 0 dB; PMF: 1

 Medium parameters used: $f = 150$ MHz; $\sigma = 0.69$ S/m; $\epsilon_r = 49.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

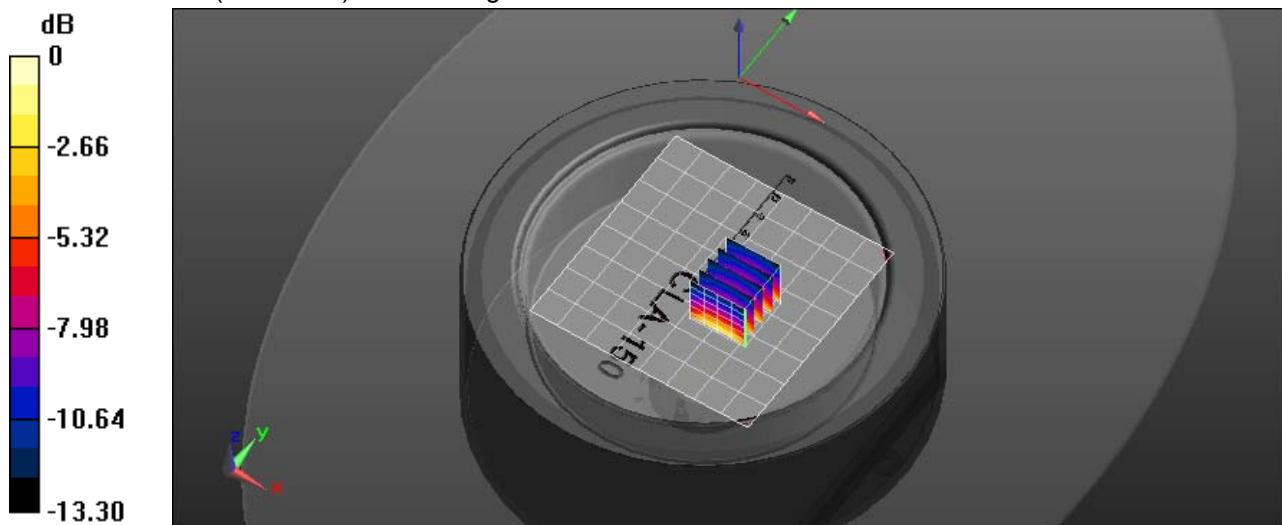
DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(9.59, 9.59, 9.59) @ 150 MHz; Calibrated: 3/25/2020
 - Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 16.0, 31.0$
- Electronics: DAE4 Sn353; Calibrated: 3/17/2020
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

SPC/SPC 150H Input=1.0W, Target=3.90W/kg/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 3.66 W/kg

SPC/SPC 150H Input=1.0W, Target=3.90W/kg/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 73.03 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 5.56 W/kg

SAR(1 g) = 3.6 W/kg; SAR(10 g) = 2.39 W/kg

Ratio of SAR at M2 to SAR at M1 = 67.6%

Maximum value of SAR (measured) = 3.87 W/kg

APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR

Date/Time: 9/14/2020 2:14:43 PM

Test Laboratory: Celltech Labs

B1 - Body, 136MHz
DUT: YAESU Type: PTT; Serial: FTA-850

Communication System: UID 0, CW (0); Communication System Band: FullSpan (0.0 - 6000.0 MHz); Frequency: 136 MHz; Communication System PAR: 0 dB; PMF: 1
 Medium parameters used (interpolated): $f = 136$ MHz; $\sigma = 0.69$ S/m; $\epsilon_r = 50.57$; $\rho = 1000$ kg/m³
 Phantom section: Flat Section
 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(9.59, 9.59, 9.59) @ 136 MHz; Calibrated: 3/25/2020
 - Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), $z = -1.5, 31.0, 151.0$
- Electronics: DAE4 Sn353; Calibrated: 3/17/2020
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

150H TSL/B1 -YAESU- 118MHz, BC/Area Scan (7x27x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.72 W/kg

150H TSL/B1 -YAESU- 118MHz, BC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

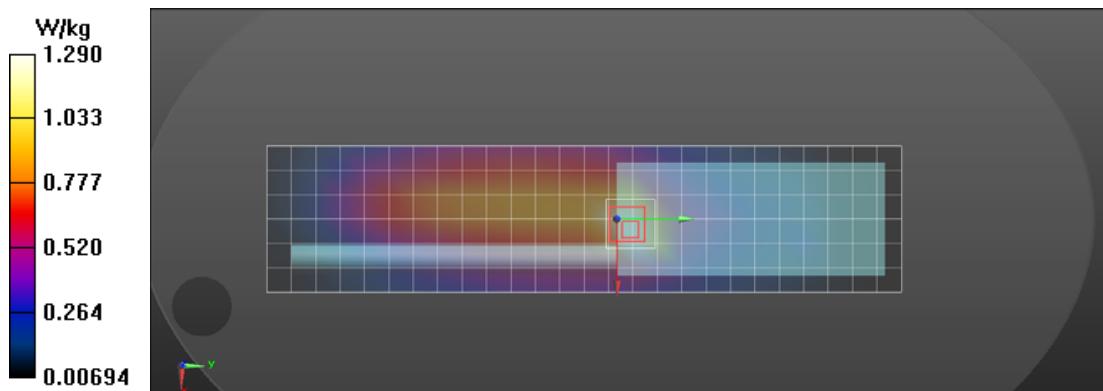
Reference Value = 39.78 V/m; Power Drift = 0.73 dB

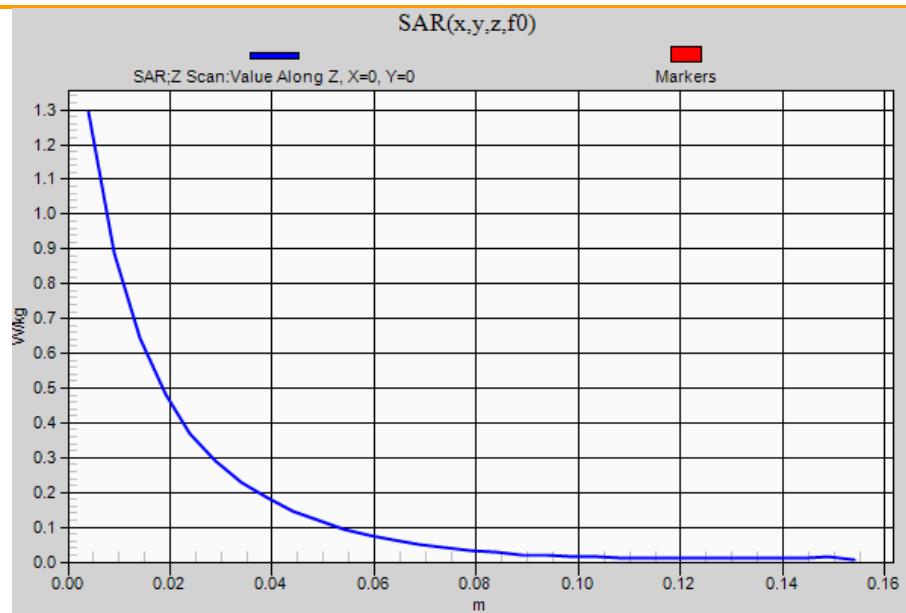
Peak SAR (extrapolated) = 3.19 W/kg

SAR(1 g) = 1.53 W/kg; SAR(10 g) = 0.919 W/kg

Smallest distance from peaks to all points 3 dB below = 11.7 mm

Ratio of SAR at M2 to SAR at M1 = 54.3%


Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 1.64 W/kg

150H TSL/B1 -YAESU- 118MHz, BC/Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.29 W/kg

Date/Time: 9/16/2020 1:23:58 PM

Test Laboratory: Celltech Labs

F3 – Face, 127MHz
DUT: YAESU; Type: PTT; Serial: FTA-850

Communication System: UID 0, CW (0); Communication System Band: FullSpan (0.0 - 6000.0 MHz); Frequency: 127 MHz; Communication System PAR: 0 dB; PMF: 1

 Medium parameters used (interpolated): $f = 127$ MHz; $\sigma = 0.69$ S/m; $\epsilon_r = 55.777$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(9.59, 9.59, 9.59) @ 127 MHz; Calibrated: 3/25/2020
 - Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), $z = -1.5, 31.0, 151.0$
- Electronics: DAE4 Sn353; Calibrated: 3/17/2020
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

150H TSL 2/F3 -YAESU- 127MHz/Area Scan 2 (7x27x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.897 W/kg

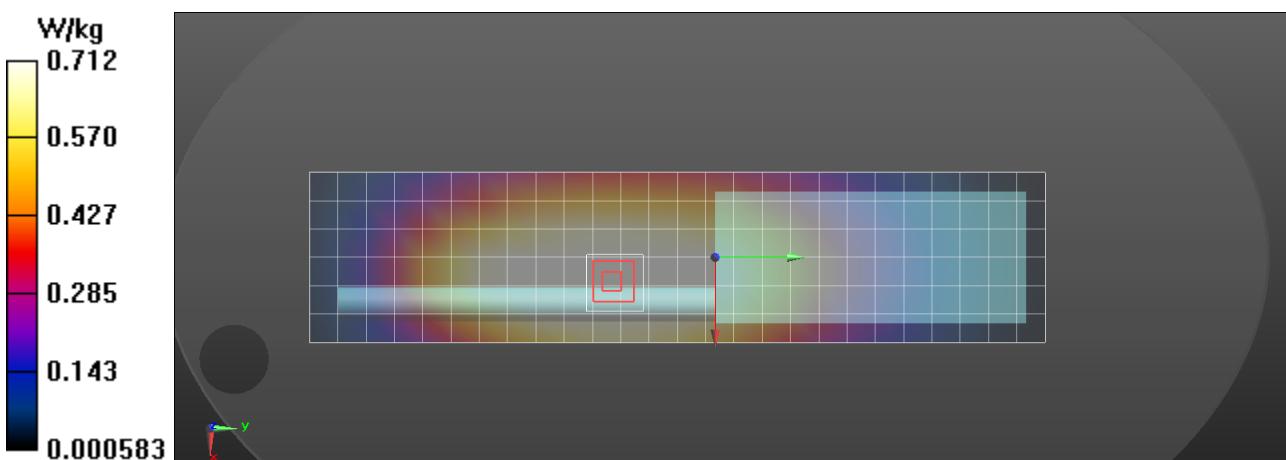
150H TSL 2/F3 -YAESU- 127MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 32.09 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.868 W/kg; SAR(10 g) = 0.692 W/kg

Ratio of SAR at M2 to SAR at M1 = 80.5%


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.901 W/kg

150H TSL 2/F3 -YAESU- 127MHz/Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.712 W/kg

