

07/06/2021

Lutron Electronics Co., Inc.
7200 Suter Road
Coopersburg, PA 18036

Dear Keith Kennedy,

Enclosed is the Wireless test report for compliance testing of the Lutron Electronics Co., Inc., x96 as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Part 15 Subpart C for Intentional Radiators.

Thank you for using the services of Eurofins Electrical and Electronic Testing NA, Inc. If you have any questions regarding these results or if we can be of further service to you, please feel free to contact me.

Sincerely yours,
EUROFINS ELECTRICAL AND ELECTRONIC TESTING NA, INC.

Joel Huna
Documentation Department

Reference: (Lutron Electronics Co., Inc.)WIR112138A-FCC247 BLE Rev. 2)

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins Electrical and Electronic Testing NA, Inc. While use of the A2LA logo in this report reflects Eurofins Electrical and Electronic Testing NA, Inc. accreditation under these programs, the report must not be used by the client to claim product certification, approval, or endorsement by A2LA, or any agency of the Federal Government. This letter of transmittal is not a part of the attached report.

Eurofins Electrical and Electronic Testing NA, Inc. is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

Electromagnetic Compatibility Criteria Test Report

for the

**Lutron Electronics Co., Inc.
x96**

Tested under
the FCC Certification Rules
contained in
15.247 Subpart C for Intentional Radiators

Report: WIR112138A-FCC247 BLE Rev. 2

07/06/2021

Prepared For:

**Lutron Electronics Co., Inc.
7200 Suter Road
Coopersburg, PA 18036**

Prepared By:
Eurofins Electrical and Electronic Testing NA, Inc.
914 West Patapsco Avenue, Baltimore, MD 21230

Electromagnetic Compatibility Criteria Test Report

for the

Lutron Electronics Co., Inc.
x96

Tested under
the FCC Certification Rules
contained in
15.247 Subpart C for Intentional Radiators

Deepak Giri, Project Engineer
Electromagnetic Compatibility Lab

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.247 under normal use and maintenance.

Steve Pitta,
Director, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
∅	06/01/2021	Initial Issue
1	06/17/2021	Customer Comments.
2	07/06/2021	TCB Review.

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	1
	B. Executive Summary	1
II.	Equipment Configuration	2
	A. Overview.....	2
	B. References.....	3
	C. Test Site	3
	D. Measurement Uncertainty	3
	E. Description of Test Sample.....	4
	F. Equipment Configuration.....	4
	G. Support Equipment	5
	H. Ports and Cabling Information.....	5
	I. Mode of Operation.....	5
	J. Method of Monitoring EUT Operation.....	5
	K. Modifications	5
	a) Modifications to EUT	5
	b) Modifications to Test Standard.....	5
	L. Disposition of EUT	5
III.	Electromagnetic Compatibility Criteria for Intentional Radiators.....	6
	§ 15.203 Antenna Requirement	6
	§ 15.207(a) Conducted Emissions Limits.....	7
	§ 15.247(a)(a) 6 dB and 99% Bandwidth	17
	Duty Cycle.....	20
	§ 15.247(b) Peak Power Output	23
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	27
	§ 15.247(d) 20 dBc Emissions.....	44
	§ 15.247(e) Peak Power Spectral Density	51
	§ 15.247(i) Maximum Permissible Exposure	54
IV.	Test Equipment	55

List of Tables

Table 1: Executive Summary of EMC Part 15.247 Compliance Testing	1
Table 2: EUT Summary Table	2
Table 3: Uncertainty Calculations Summary.....	3
Table 4: Equipment List.....	4
Table 5. Antenna List.....	6
Table 6: Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	7
Table 7. Conducted Emissions, 1 Mbit, 120 VAC, Phase, Test Results	8
Table 8. Conducted Emissions, 1 Mbit, 120 VAC, Neutral, Test Results.....	9
Table 9. Conducted Emissions, 2 Mbit, 120 VAC, Phase, Test Results	10
Table 10. Conducted Emissions, 2 Mbit, 120 VAC, Neutral, Test Results.....	11
Table 11. Conducted Emissions, 1 Mbit, 277 VAC, Phase, Test Results	12
Table 12. Conducted Emissions, 1 Mbit, 277 VAC, Neutral, Test Results.....	13
Table 13. Conducted Emissions, 2 Mbit, 277 VAC, Phase, Test Results	14
Table 14. Conducted Emissions, 2 Mbit, 277 VAC, Neutral, Test Results.....	15
Table 15. 6 dB Occupied Bandwidth, Test Results	17
Table 16. Peak Conducted Output Power, Test Results	24
Table 17: Restricted Bands of Operation	27
Table 18: Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	28
Table 19. Radiated Band Edge Measurements	37
Table 20. Conducted Band Edge Measurements	49
Table 21. Power Spectral Density, Test Results.....	51
Table 22: Test Equipment List	55

List of Figures

Figure 3: References.....	3
Figure 5: Block Diagram of Test Configuration.....	4
Figure 9. Conducted Emissions, 1 Mbit, 120 VAC, Phase Plot	8
Figure 10. Conducted Emissions, 1 Mbit, 120 VAC, Neutral Plot.....	9
Figure 11. Conducted Emissions, 2 Mbit, 120 VAC, Phase Plot	10
Figure 12. Conducted Emissions, 2 Mbit, 120 VAC, Neutral Plot.....	11
Figure 13: Conducted Emissions, BLE 1Mbit CEV Phase Line 277VAC Plot	12
Figure 14: Conducted Emissions, BLE 1Mbit CEV Neutral Line 277VAC Plot.....	13
Figure 15: Conducted Emissions, BLE 2Mbit CEV Phase Line 277VAC	14
Figure 16: Conducted Emissions, BLE 2Mbit CEV Neutral Line 277VAC Plot.....	15
Figure 17. Conducted Emissions, Test Setup	16
Figure 18. Block Diagram, Occupied Bandwidth Test Setup.....	17
Figure 19: 6 dB Occupied Bandwidth, BLE 1Mbit high channel DTS bandwidth	18
Figure 20: 6 dB Occupied Bandwidth, BLE 1Mbit low channel DTS bandwidth	18
Figure 21: 6 dB Occupied Bandwidth, BLE 1Mbit mid channel DTS bandwidth	18
Figure 22: 6 dB Occupied Bandwidth, BLE 2Mbit high channel DTS bandwidth	19
Figure 23: 6 dB Occupied Bandwidth, BLE 2Mbit low channel DTS bandwidth	19
Figure 24: 6 dB Occupied Bandwidth, BLE 2Mbit mid channel DTS bandwidth	19
Figure 25: Duty Cycle BLE 1Mbit low channel.....	20
Figure 26: Duty Cycle BLE 1Mbit mid channel	20
Figure 27: Duty Cycle BLE 1Mbit high channel.....	21
Figure 28: Duty Cycle BLE 2Mbit low channel.....	21

Figure 29: Duty Cycle BLE 2Mbit mid channel	21
Figure 30: Duty Cycle BLE 2Mbit high channel.....	22
Figure 31: Output Power Requirements from §15.247(b).....	23
Figure 32. Power Output Test Setup	23
Figure 34: Conducted Output Power, BLE 1Mbit low channel Peak plot.....	25
Figure 35: Conducted Output Power, BLE 1Mbit mid channel Peak plot	25
Figure 36: Conducted Output Power, BLE 1Mbit high channel Peak plot	25
Figure 37: Conducted Output Power, BLE 2Mbit low channel Peak plot.....	26
Figure 38: Conducted Output Power, BLE 2Mbit mid channel Peak plot	26
Figure 39: Conducted Output Power, BLE 2Mbit high channel Peak plot	26
Figure 42: Radiated Emissions Test Setup	28
Figure 43: Radiated Emissions, BLE 1Mbit Low Channel 30Mhz-1Ghz Plot.....	29
Figure 44: Radiated Emissions, BLE 1Mbit Low Channel 1Ghz-7Ghz Average.....	29
Figure 45: Radiated Emissions, BLE 1Mbit Low Channel 1Ghz-7Ghz Peak.....	30
Figure 46: Radiated Emissions, BLE 1Mbit Low Channel 7Ghz-18Ghz PK and AVG.	30
Figure 47: Radiated Emissions, BLE 1Mbit Low Channel 18Ghz-25Ghz Average.	30
Figure 48: Radiated Emissions, BLE 1Mbit Low Channel 18Ghz-25Ghz Peak.....	31
Figure 49: Radiated Emissions, BLE 1Mbit Mid Channel 30Mhz-1Ghz Radiated cabinet emission.....	31
Figure 50: Radiated Emissions, BLE 1Mbit Mid Channel 1Ghz-7Ghz Average.....	31
Figure 51: Radiated Emissions, BLE 1Mbit Mid Channel 1Ghz-7Ghz Peak.....	32
Figure 52: Radiated Emissions, BLE 1Mbit Mid Channel 7Ghz-18Ghz PK and AVG.....	32
Figure 53: Radiated Emissions, BLE 1Mbit Mid Channel 18Ghz-25Ghz Average.....	32
Figure 54: Radiated Emissions, BLE 1Mbit Mid Channel 18Ghz-25Ghz Peak.....	33
Figure 55: Radiated Emissions, BLE 1Mbit High Channel 30Mhz-1Ghz Radiated cabinet emission.....	33
Figure 56: Radiated Emissions, BLE 1Mbit High Channel 1Ghz-7Ghz Average.....	33
Figure 57: Radiated Emissions, BLE 1Mbit High Channel 1Ghz-7Ghz Peak.	34
Figure 58: Radiated Emissions, BLE 1Mbit High Channel 7Ghz-18Ghz PK and AVG.....	34
Figure 59: Radiated Emissions, BLE 1Mbit High Channel 18Ghz-25Ghz Average.....	34
Figure 60: Radiated Emissions, BLE 1Mbit High Channel 18Ghz-25Ghz Peak.	35
Figure 61: Radiated emission setup 30Mhz-1Ghz.....	35
Figure 62: Radiated emission setup 1-18Ghz.....	36
Figure 63: BLE 1Mbit 30MHz-1GHz low channel restricted emission peak.....	37
Figure 64: BLE 1Mbit 1GHz-25GHz low channel restricted emission average	38
Figure 65: BLE 1Mbit low channel restricted band edge average.....	38
Figure 66: BLE 1Mbit 1GHz-25GHz mid channel restricted emission average	38
Figure 67: BLE 1Mbit 30MHz-1GHz mid channel restricted emission peak	39
Figure 68: BLE 1Mbit 30MHz-1GHz high channel restricted emission peak	39
Figure 69: BLE 1Mbit 1GHz-25GHz high channel restricted emission average	39
Figure 70: BLE 1Mbit high channel restricted band edge average	40
Figure 71: BLE 2Mbit 30MHz-1GHz low channel restricted emission peak.....	40
Figure 72: BLE 2Mbit 1GHz-25GHz low channel restricted emission average	40
Figure 73: BLE 2Mbit low channel restricted band edge average.....	41
Figure 74: BLE 2Mbit low channel restricted band edge average.....	41
Figure 75: BLE 2Mbit 1GHz-25GHz mid channel restricted emission average	41
Figure 76: BLE 2Mbit 30MHz-1GHz mid channel restricted emission peak	42
Figure 77: BLE 2Mbit 30MHz-1GHz high channel restricted emission peak	42
Figure 78: BLE 2Mbit 1GHz-25GHz high channel restricted emission average	42
Figure 79: BLE 2Mbit high channel restricted band edge average	43
Figure 80: Block Diagram, 20 dBc Emissions Test Setup	44
Figure 81: Conducted Spurious Emissions, BLE 1Mbit low channel reference level.....	45
Figure 82: Conducted Spurious Emissions, BLE 1Mbit low channel	45

Figure 83: Conducted Spurious Emissions, BLE 1Mbit mid channel reference level.....	45
Figure 84: Conducted Spurious Emissions, BLE 1Mbit mid channel.....	46
Figure 85: Conducted Spurious Emissions, BLE 1Mbit high channel reference level.....	46
Figure 86: Conducted Spurious Emissions, BLE 1Mbit high channel	46
Figure 87: Conducted Spurious Emissions, BLE 2Mbit low channel reference level.....	47
Figure 88: Conducted Spurious Emissions, BLE 2Mbit low channel, 30 MHz – 25 GHz.....	47
Figure 89: Conducted Spurious Emissions, BLE 2Mbit mid channel reference level.....	47
Figure 90: Conducted Spurious Emissions, BLE 2Mbit mid channel, 30 MHz – 25 GHz	48
Figure 91: Conducted Spurious Emissions, BLE 2Mbit high channel reference level.....	48
Figure 92: Conducted Spurious Emissions, BLE 2Mbit high channel, 30 MHz – 25 GHz.....	48
Figure 93: Conducted Spurious Emissions, BLE 1Mbit low channel band edge	49
Figure 94: Conducted Spurious Emissions, BLE 1Mbit high channel band edge	49
Figure 95: Conducted Spurious Emissions, BLE 2Mbit low channel band edge	50
Figure 96: Conducted Spurious Emissions, BLE 2Mbit high channel band edge	50
Figure 97: Block Diagram, Power Spectral Density Test Setup.....	51
Figure 98: Power Spectral Density, BLE 1Mbit low channel Peak.....	52
Figure 99: Power Spectral Density, BLE 1Mbit mid channel Peak	52
Figure 100: Power Spectral Density, BLE 1Mbit high channel Peak	52
Figure 101: Power Spectral Density, BLE 2Mbit low channel Peak.....	53
Figure 102: Power Spectral Density, BLE 2Mbit mid channel Peak	53
Figure 103: Power Spectral Density, BLE 2Mbit high channel Peak.....	53

Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Lutron Electronics Co., Inc. x96, with the requirements of Part 15, §15.247. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the x96. Lutron Electronics Co., Inc. should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the x96, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.247, in accordance with Lutron Electronics Co., Inc., quote number 3LUT2002R1. All tests were conducted using measurement procedure ANSI C63.10-2013.

FCC Reference 47 CFR Part 15.247:2005	Description	Compliance
Title 47 of the CFR, Part 15 §15.203	Antenna Requirement	Compliant
Title 47 of the CFR, Part 15 §15.207(a)	Conducted Emission Limits	Compliant
Title 47 of the CFR, Part 15 §15.247(a)(2)	6dB Occupied Bandwidth	Compliant
Title 47 of the CFR, Part 15 §15.247(b)	Peak Power Output	Compliant
Title 47 of the CFR, Part 15 §15.247(c)	20 dBc Emissions	Compliant
Title 47 of the CFR, Part 15 §15.247(d); §15.209; §15.205	Radiated Spurious Emissions Requirements	Compliant
Title 47 of the CFR, Part 15; §15.247(e)	Peak Power Spectral Density	Compliant
Title 47 of the CFR, Part 15 §15.247(i)	RF Human Exposure, SAR Exclusion	Compliant

Table 1: Executive Summary of EMC Part 15.247 Compliance Testing

Equipment Configuration

A. Overview

Eurofins Electrical and Electronic Testing NA, Inc. was contracted by Lutron Electronics Co., Inc. to perform testing on the x96, under Lutron Electronics Co., Inc.'s quote number 3LUT2002R1,

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Lutron Electronics Co., Inc., x96.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	x96
Model(s) Covered:	x96
EUT Specifications:	Primary Power: 120 – 277 VAC
	FCC ID: JPZ0133
	Type of Modulations: GFSK
	Equipment Code: DTS
	Peak RF Output Power: 19.11 dBm
	EUT Frequency Ranges: 2402-2480 MHz
	Transmit Speeds: 1Mbps & 2 Mbps for BLE
	Antenna Type: PIFA on the PCB
	Antenna Gain: 0 dBi
Firmware Version:	N/A
Analysis:	The results obtained relate only to the item(s) tested.
Environmental Test Conditions:	Temperature: 15-35° C
	Relative Humidity: 30-60%
	Barometric Pressure: 860-1060 mbar
Evaluated by:	Deepak Giri
Report Date(s):	07/06/2021

Table 2: EUT Summary Table

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
KDB 558074 v05r02	Guidance For Performing Compliance Measurements On Digital Transmission Systems (DTS) Operating Under Section 15.247

Figure 1: References

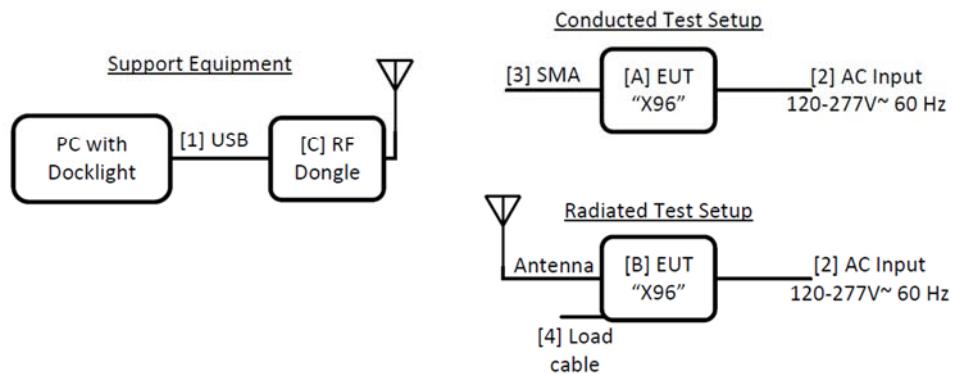
C. Test Site

All testing was performed at Eurofins Electrical and Electronic Testing NA, Inc., 914 West Patapsco Avenue, Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at Eurofins Electrical and Electronic Testing NA, Inc.

D. Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	K	Confidence Level
Radiated Emissions, (30 MHz – 1 GHz)	± 3.20	2	95%
Radiated Emissions, (1 GHz – 6 GHz)	± 2.52	2	95%
Conducted Emission Voltage	± 2.03	2	95%
RF Frequencies	± 4.52 Hz	2	95%
RF Power Conducted Emissions	± 2.32 dB	2	95%
RF Power Conducted Spurious Emissions	± 2.25 dB	2	95%
RF Power Radiated Emissions	± 3.01 dB	2	95%


Table 3: Uncertainty Calculations Summary

E. Description of Test Sample

The x96, Equipment Under Test (EUT), is a load controller with integrated wireless communication and low voltage output. The EUT contains an RF transceiver and an antenna that cannot be changed by the user. The purpose of wireless communication is to receive commands and transmit status back to the control system. The x96 runs on 120V or 277V AC inputs and outputs 21VDC and RS485 control signals. The x96 mounts on a wall using a junction box.

Model tested was HW-X96, and this device is identical in construction to HW-X96-X-J1 and CM-X96-J1.

x96 – Block Diagram of Test Configuration

Figure 2: Block Diagram of Test Configuration

F. Equipment Configuration

The EUT was set up as outlined in **Figure 2**. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

Ref. ID	Slot #	Name / Description	Model Number	Part Number	Serial Number	Rev. #
	Conducted sample	LED Controller	HW-X96			
	Radiated sample	LED Controller	HW-X96			

Table 4: Equipment List

The firmware installed in the EUT during testing was App 1.1.1d0.

G. Support Equipment

Ref. ID	Name/Description	Manufacturer	Model Number	*Customer Supplied Calibration Data
N/A	2.4GHz Dongle	NCD Communications	N/A	N/A

Support Equipment

H. Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Desc. or reason for none	QTY	Length as tested (m)	Max Length (m)	Shielded?	Termination Box ID & Port Name
N/A	Power	18AWG min	1	1	N/A	No	Black-Hot, Silver-Neutral, Green-Ground
N/A	Output	Lutron QS Cable (power and communication)	1	10	15	No	Load

Ports and Cabling

I. Mode of Operation

- a) While powering a load, the device is in radio stand by mode awaiting commands
- b) Transmitting

J. Method of Monitoring EUT Operation

Transmissions can be captured on a spectrum analyzer. The device draws power from the AC input at all times.

K. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

L. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Lutron Electronics Co., Inc. upon completion of testing.

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement: **§ 15.203:** An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Test Results: The EUT as tested is **compliant** with § 15.203 Antenna Requirement. As per 15.203, antenna is permanently attached which satisfies the requirement.

Test Engineer: Deepak Giri

Test Date: 04/26/2021

Gain	Type	Model	Manufacturer
0 dBi	PIFA on the PCB	N/A	N/A

Table 5. Antenna List

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.207(a) Conducted Emissions Limits

Test Requirement(s): **§ 15.207 (a):** For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range (MHz)	§ 15.207(a), Conducted Limit (dB μ V)	
	Quasi-Peak	Average
* 0.15- 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Table 6: Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)

Test Procedure: The EUT was placed on a 0.8 m-high wooden table inside a screen room. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with *ANSI C63.4-2014 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz"*. The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to an EMC/field intensity meter. For the purpose of this testing, the transmitter was turned on. Scans were performed with the transmitter on.

Test Results: The EUT as tested is **compliant** with § 15.207(a) Conducted Emissions Limits.

Test Engineer: Deepak Giri

Test Date: 04/26/2021

Test Data

Line Under Test:		Phase			Limit (dBuV) QP	Pass/Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Pass/Fail AVG	Margin (dB) AVG
Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) QP										
0.1501	47.68	0	10	57.68	65.99	PASS	-8.31	42.13	0	10	52.13	55.99	PASS	-3.86
0.2015	38.96	0	10	48.96	63.55	PASS	-14.59	33.49	0	10	43.49	53.55	PASS	-10.06
0.301	38.3	0	10	48.3	60.22	PASS	-11.92	30.46	0	10	40.46	50.22	PASS	-9.76
0.59	28.25	0	10	38.25	56	PASS	-17.75	19.91	0	10	29.91	46	PASS	-16.09
2.53	27.83	0	10	37.83	56	PASS	-18.17	18.93	0	10	28.93	46	PASS	-17.07
15.25	20.42	0.02	10	30.44	60	PASS	-29.56	13.14	0.02	10	23.16	50	PASS	-26.84

Table 7. Conducted Emissions, 1 Mbit, 120 VAC, Phase, Test Results

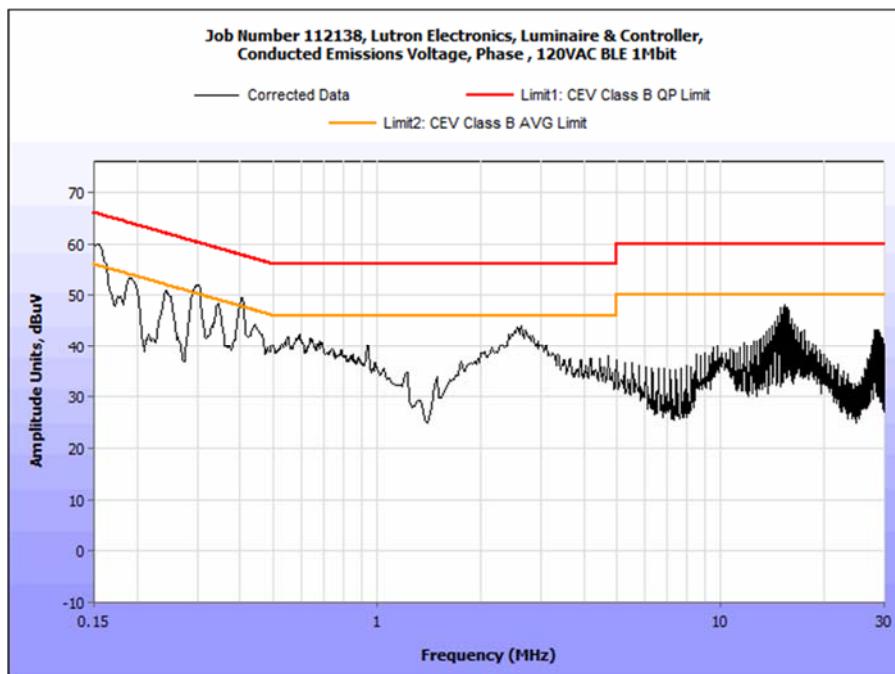
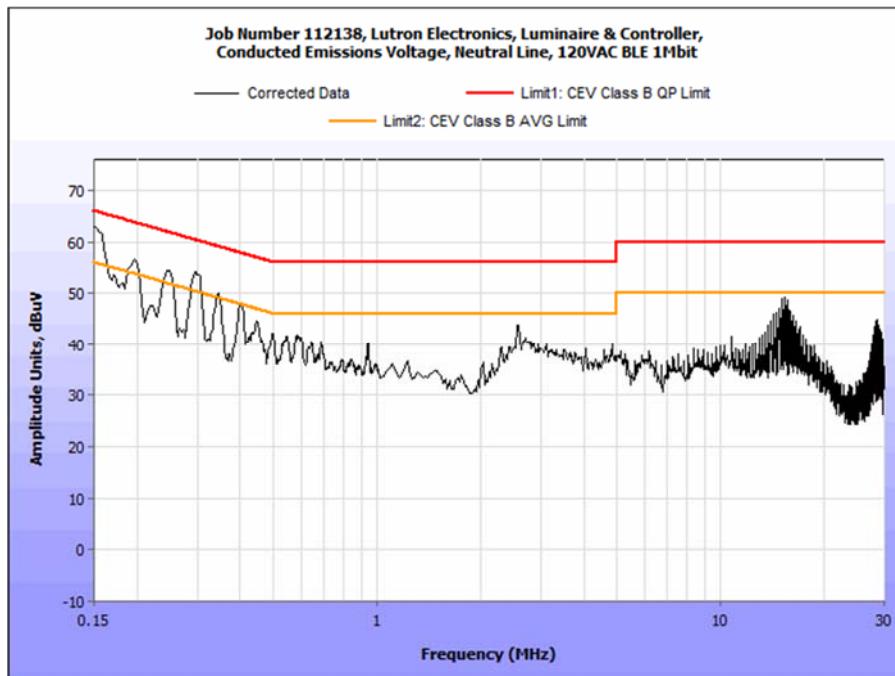
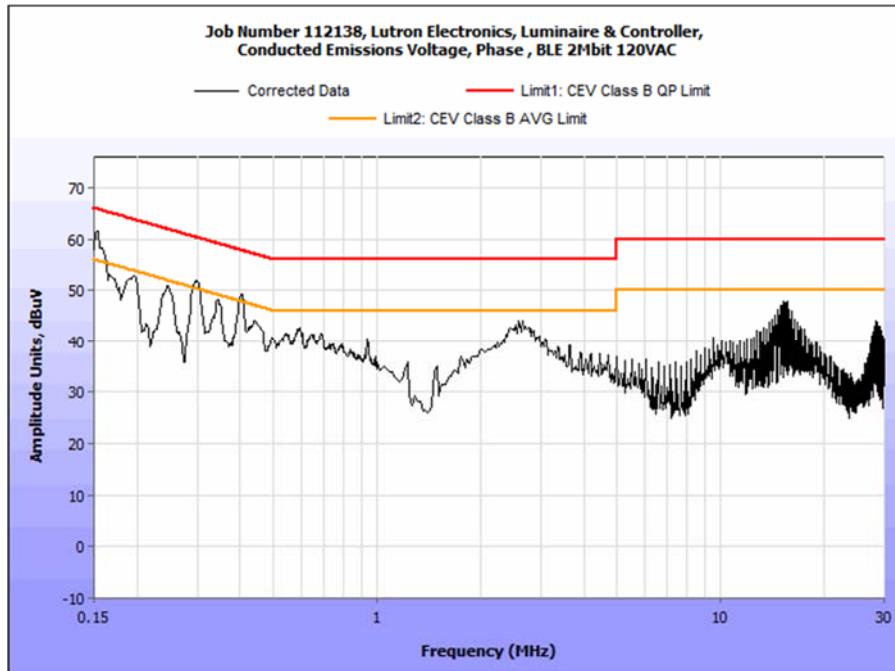




Figure 3. Conducted Emissions, 1 Mbit, 120 VAC, Phase Plot

Line Under Test:		Neutral												
Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Pass/Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Pass/Fail AVG	Margin (dB) AVG
0.1515	50.69	0	10	60.69	65.92	PASS	-5.23	42.74	0	10	52.74	55.92	PASS	-3.18
0.2018	43.37	0	10	53.37	63.54	PASS	-10.17	35.51	0	10	45.51	53.54	PASS	-8.03
0.303	42.05	0	10	52.05	60.16	PASS	-8.11	31.93	0	10	41.93	50.16	PASS	-8.23
0.6062	26.04	0	10	36.04	56	PASS	-19.96	15.67	0	10	25.67	46	PASS	-20.33
2.553	25.49	0	10	35.49	56	PASS	-20.51	19.59	0	10	29.59	46	PASS	-16.41
15.4	20.37	0.02	10	30.39	60	PASS	-29.61	12.59	0.02	10	22.61	50	PASS	-27.39

Table 8. Conducted Emissions, 1 Mbit, 120 VAC, Neutral, Test Results

Figure 4. Conducted Emissions, 1 Mbit, 120 VAC, Neutral Plot

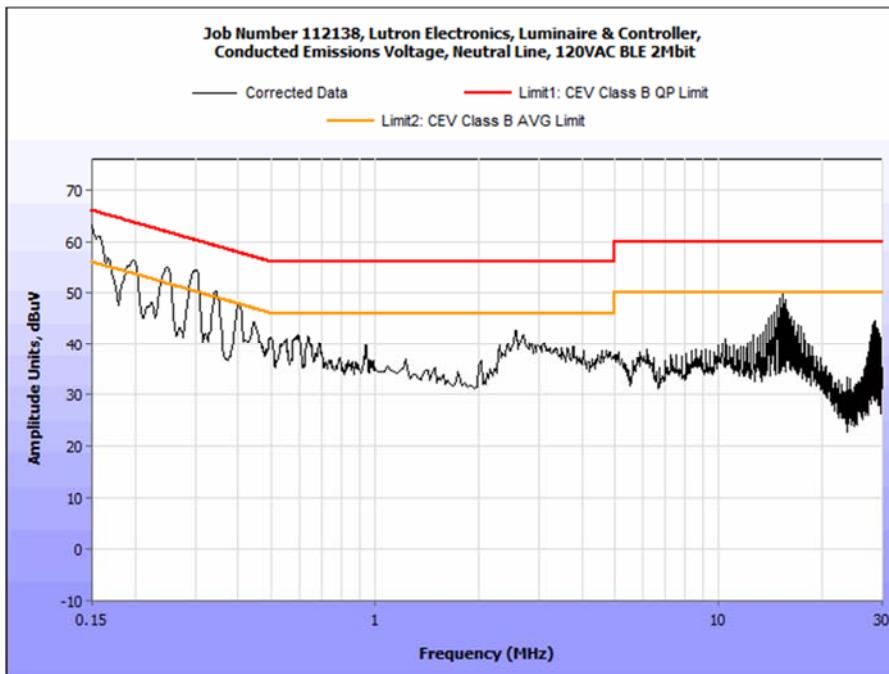

Line Under Test:		Phase			Limit (dBuV) QP	Pass/Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Pass/Fail AVG	Margin (dB) AVG
Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) QP										
0.1541	44	0	10	54	65.78	PASS	-11.78	38.57	0	10	48.57	55.78	PASS	-7.21
0.296	38.8	0	10	48.8	60.35	PASS	-11.55	31.64	0	10	41.64	50.35	PASS	-8.71
0.3	38.55	0	10	48.55	60.24	PASS	-11.69	30.85	0	10	40.85	50.24	PASS	-9.39
0.581	27.73	0	10	37.73	56	PASS	-18.27	18.36	0	10	28.36	46	PASS	-17.64
2.507	28.46	0	10	38.46	56	PASS	-17.54	20.58	0	10	30.58	46	PASS	-15.42
15.25	18.47	0.02	10	28.49	60	PASS	-31.51	11.16	0.02	10	21.18	50	PASS	-28.82

Table 9. Conducted Emissions, 2 Mbit, 120 VAC, Phase, Test Results

Figure 5. Conducted Emissions, 2 Mbit, 120 VAC, Phase Plot

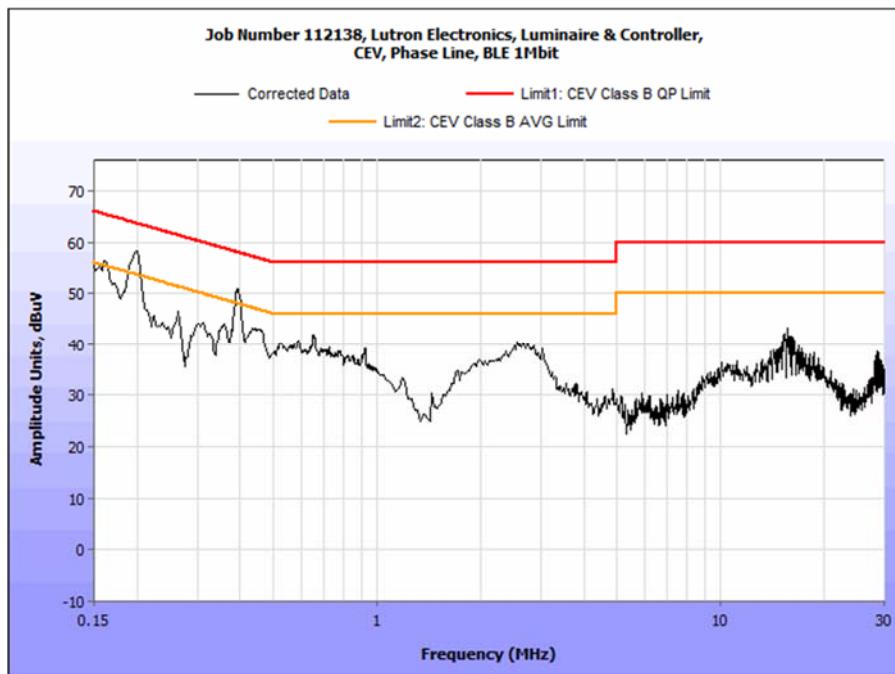

Line Under Test:		Neutral												
Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Pass/Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Pass/Fail AVG	Margin (dB) AVG
*0.1505	49.5	0	10	59.5	65.97	PASS	-6.47	43	0	10	53	55.97	PASS	-2.97
0.2022	43.04	0	10	53.04	63.52	PASS	-10.48	34.71	0	10	44.71	53.52	PASS	-8.81
0.3	42.03	0	10	52.03	60.24	PASS	-8.21	33.8	0	10	43.8	50.24	PASS	-6.44
0.5438	27.12	0	10	37.12	56	PASS	-18.88	20.82	0	10	30.82	46	PASS	-15.18
2.665	26.27	0	10	36.27	56	PASS	-19.73	18.76	0	10	28.76	46	PASS	-17.24
15.35	37.71	0.02	10	47.73	60	PASS	-12.27	34.96	0.02	10	44.98	50	PASS	-5.02

Table 10. Conducted Emissions, 2 Mbit, 120 VAC, Neutral, Test Results

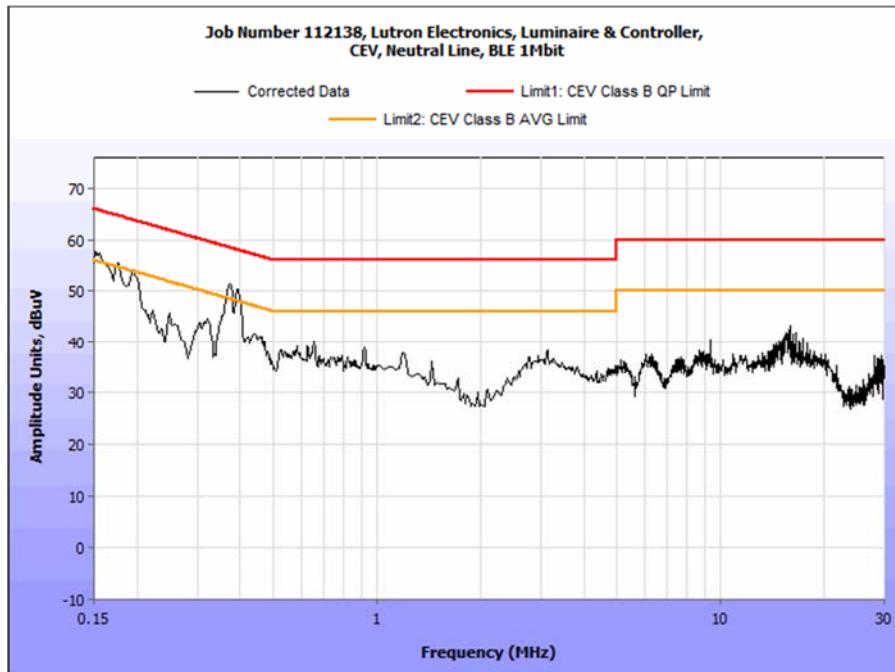

Note 1: * - At this frequency, the measured electric-field strength exhibits a margin of compliance that is less than 3 dB below the specification limit. We recommend that every emission measured, have at least a 3 dB margin to allow for deviations in the emission characteristics that may occur during the production process.

Figure 6. Conducted Emissions, 2 Mbit, 120 VAC, Neutral Plot

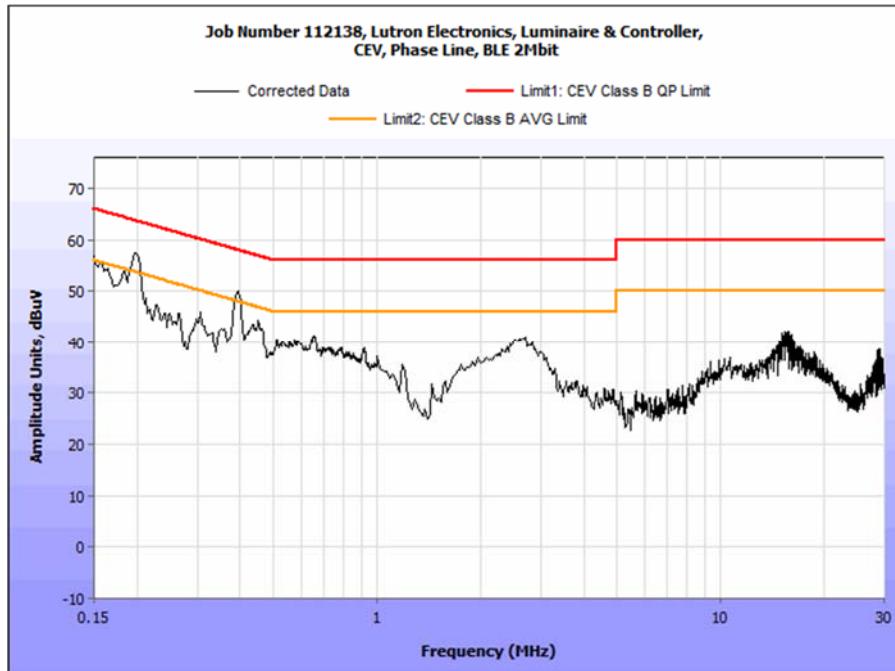

Line Under Test:		Phase			Limit (dBuV) QP	Pass/Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Pass/Fail AVG	Margin (dB) AVG
Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) QP										
0.1984	44.56	0	10	54.56	63.68	PASS	-9.12	31.36	0	10	41.36	53.68	PASS	-12.32
0.202	44.47	0	10	54.47	63.53	PASS	-9.06	31.54	0	10	41.54	53.53	PASS	-11.99
0.395	37.57	0	10	47.57	57.96	PASS	-10.39	28.12	0	10	38.12	47.96	PASS	-9.84
0.6538	27.16	0	10	37.16	56	PASS	-18.84	15.06	0	10	25.06	46	PASS	-20.94
2.868	26.99	0	10	36.99	56	PASS	-19.01	10.89	0	10	20.89	46	PASS	-25.11
15.45	25.06	0.02	10	35.08	60	PASS	-24.92	12.02	0.02	10	22.04	50	PASS	-27.96

Table 11. Conducted Emissions, 1 Mbit, 277 VAC, Phase, Test Results

Figure 7: Conducted Emissions, BLE 1Mbit CEV Phase Line 277VAC Plot

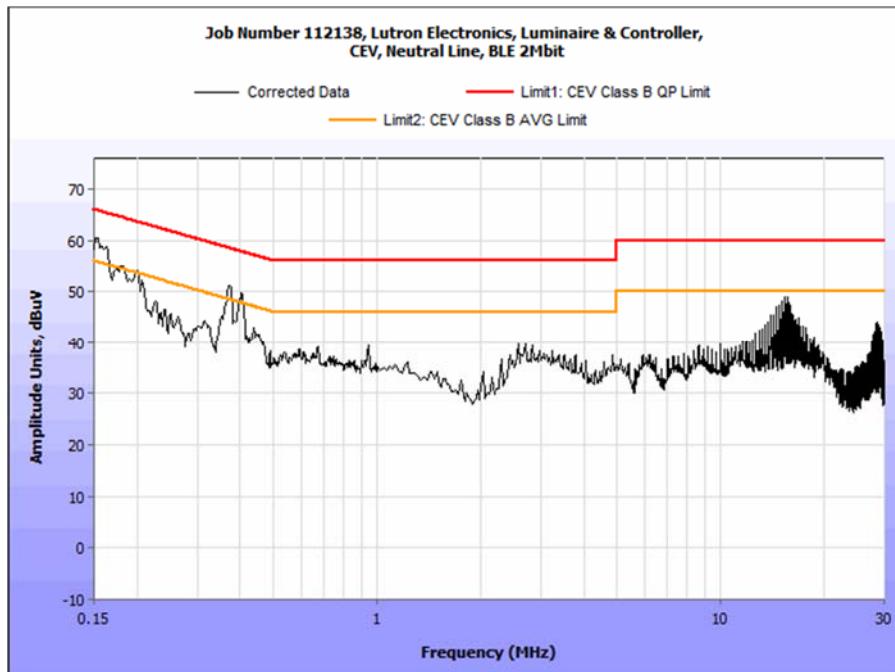

Line Under Test:		Neutral			Limit (dBuV) QP	Pass/Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Pass/Fail AVG	Margin (dB) AVG
Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) QP										
0.1532	40.26	0	10	50.26	65.82	PASS	-15.56	31.19	0	10	41.19	55.82	PASS	-14.63
0.202	39.87	0	10	49.87	63.53	PASS	-13.66	32.81	0	10	42.81	53.53	PASS	-10.72
0.3705	39.01	0	10	49.01	58.49	PASS	-9.48	32.31	0	10	42.31	48.49	PASS	-6.18
0.6538	26.08	0	10	36.08	56	PASS	-19.92	19.95	0	10	29.95	46	PASS	-16.05
8.492	22.45	0	10	32.45	60	PASS	-27.55	17.72	0	10	27.72	50	PASS	-22.28
15.6	25.09	0.02	10	35.11	60	PASS	-24.89	17.01	0.02	10	27.03	50	PASS	-22.97

Table 12. Conducted Emissions, 1 Mbit, 277 VAC, Neutral, Test Results

Figure 8: Conducted Emissions, BLE 1Mbit CEV Neutral Line 277VAC Plot


Line Under Test:		Phase			Limit (dBuV) QP	Pass/Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Pass/Fail AVG	Margin (dB) AVG
Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) QP										
0.1604	44.14	0	10	54.14	65.44	PASS	-11.3	33.47	0	10	43.47	55.44	PASS	-11.97
0.2	45.02	0	10	55.02	63.61	PASS	-8.59	31.55	0	10	41.55	53.61	PASS	-12.06
0.397	36.96	0	10	46.96	57.92	PASS	-10.96	27.19	0	10	37.19	47.92	PASS	-10.73
0.6562	27.45	0	10	37.45	56	PASS	-18.55	15.29	0	10	25.29	46	PASS	-20.71
2.575	25.71	0	10	35.71	56	PASS	-20.29	12.69	0	10	22.69	46	PASS	-23.31
15.35	29.15	0.02	10	39.17	60	PASS	-20.83	17.81	0.02	10	27.83	50	PASS	-22.17

Table 13. Conducted Emissions, 2 Mbit, 277 VAC, Phase, Test Results

Figure 9: Conducted Emissions, BLE 2Mbit CEV Phase Line 277VAC.

Line Under Test:		Neutral			Limit (dBuV) QP	Pass/Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Pass/Fail AVG	Margin (dB) AVG
Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) QP										
0.1545	41.22	0	10	51.22	65.75	PASS	-14.53	31.19	0	10	41.19	55.75	PASS	-14.56
0.2005	40.3	0	10	50.3	63.59	PASS	-13.29	33.07	0	10	43.07	53.59	PASS	-10.52
0.3715	39.01	0	10	49.01	58.47	PASS	-9.46	31.8	0	10	41.8	48.47	PASS	-6.67
0.6775	24.38	0	10	34.38	56	PASS	-21.62	18.07	0	10	28.07	46	PASS	-17.93
9.685	20.32	0	10	30.32	60	PASS	-29.68	15.96	0	10	25.96	50	PASS	-24.04
15.1	37.22	0.02	10	47.24	60	PASS	-12.76	35.68	0.02	10	45.7	50	PASS	-4.3

Table 14. Conducted Emissions, 2 Mbit, 277 VAC, Neutral, Test Results

Figure 10: Conducted Emissions, BLE 2Mbit CEV Neutral Line 277VAC Plot

Test Photographs

Figure 11. Conducted Emissions, Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(2) 6 dB Bandwidth

Test Requirements: § 15.247(a)(2): Operation under the provisions of this section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

Test Procedure: The transmitter was on and transmitting at the highest output power. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW = 100kHz, VBW = 3*RBW. The 6 dB Bandwidth was measured and recorded. The measurements were performed on the low, mid and high channels.

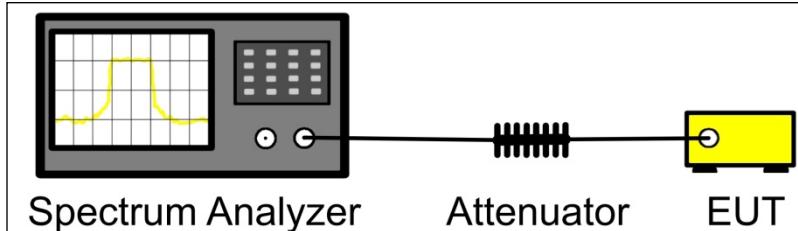


Figure 12. Block Diagram, Occupied Bandwidth Test Setup

Test Results: The EUT as tested is **compliant** with § 15.247(a)(2) 6 dB Bandwidth.

The 6 dB Bandwidth was determined from the plots on the following pages.

Test Engineer: Deepak Giri

Test Date: 04/26/2021

Occupied Bandwidth 1MBit		
Carrier Channel	Frequency (MHz)	Measured 6dB Bandwidth (MHz)
Low	2402	0.723
Mid	2444	0.715
High	2480	0.717
Occupied Bandwidth 2MBit		
Carrier Channel	Frequency (MHz)	Measured 6dB Bandwidth (MHz)
Low	2402	1.38
Mid	2444	1.38
High	2480	1.38

Table 15. 6 dB Occupied Bandwidth, Test Results

Test Data

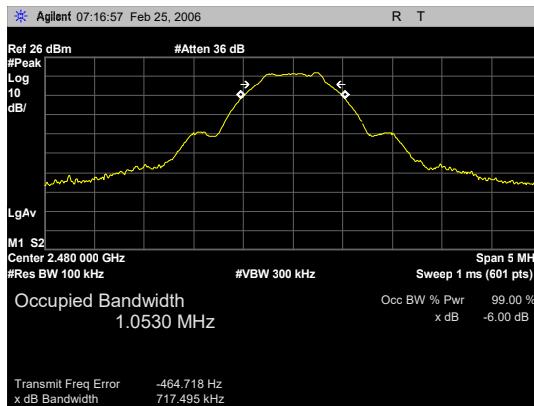


Figure 13: 6 dB Occupied Bandwidth, BLE 1Mbit high channel DTS bandwidth

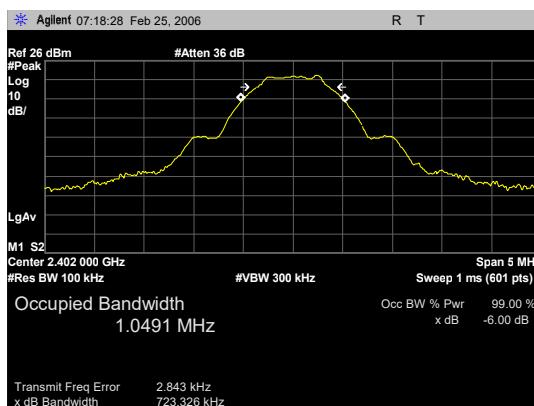


Figure 14: 6 dB Occupied Bandwidth, BLE 1Mbit low channel DTS bandwidth

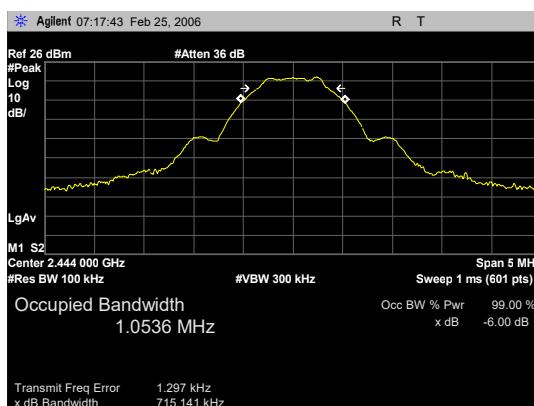


Figure 15: 6 dB Occupied Bandwidth, BLE 1Mbit mid channel DTS bandwidth

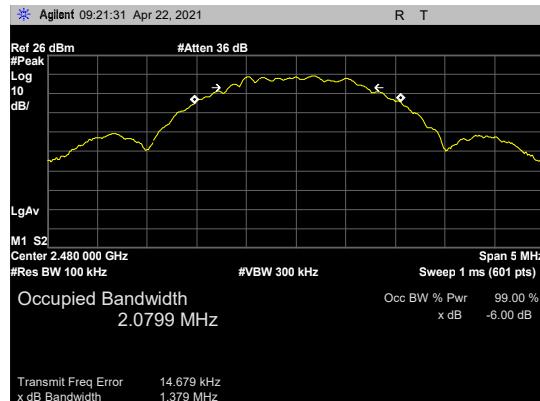


Figure 16: 6 dB Occupied Bandwidth, BLE 2Mbit high channel DTS bandwidth

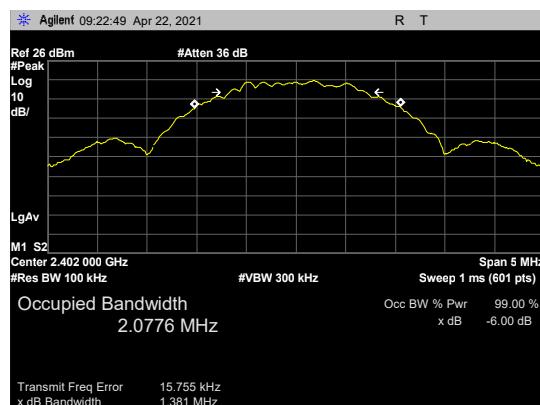


Figure 17: 6 dB Occupied Bandwidth, BLE 2Mbit low channel DTS bandwidth

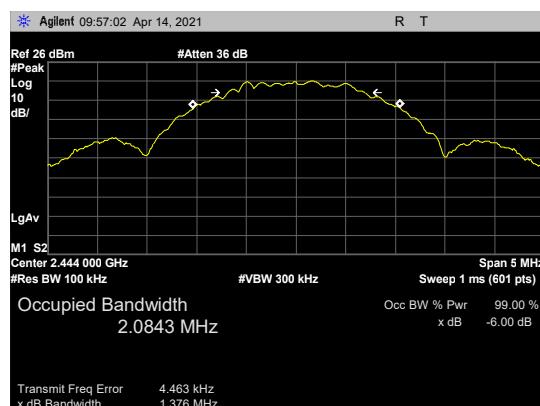


Figure 18: 6 dB Occupied Bandwidth, BLE 2Mbit mid channel DTS bandwidth

Electromagnetic Compatibility Criteria for Intentional Radiators

Duty Cycle

Test Procedure: The EUT was connected to a spectrum analyzer and was ran at the maximum achievable duty cycle for all modes. The duty cycle was measured in accordance with section 11.6 of ANSI C63.10-2013. The unit tested did not have a duty cycle but a duty cycle was used for restricted band measurements and provided by Lutron.

Test Engineer(s): Deepak Giri

Test Date(s): 04/26/2021

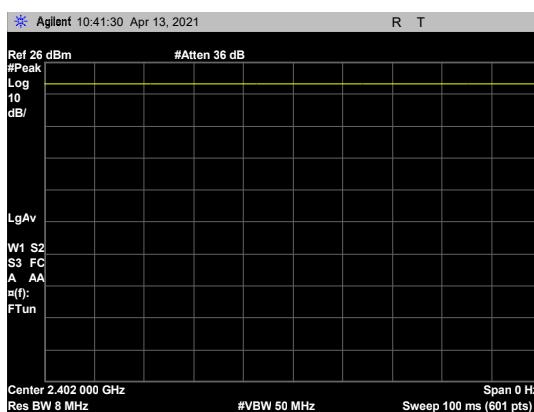


Figure 19: Duty Cycle BLE 1Mbit low channel

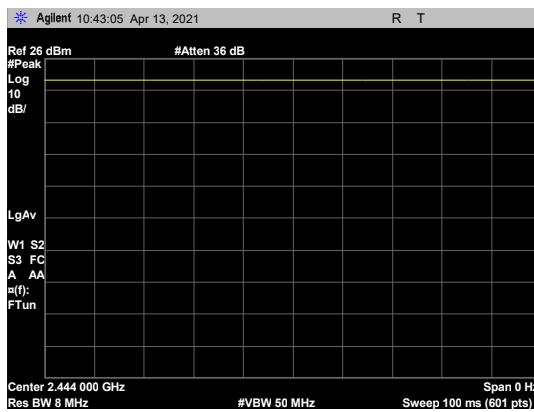


Figure 20: Duty Cycle BLE 1Mbit mid channel

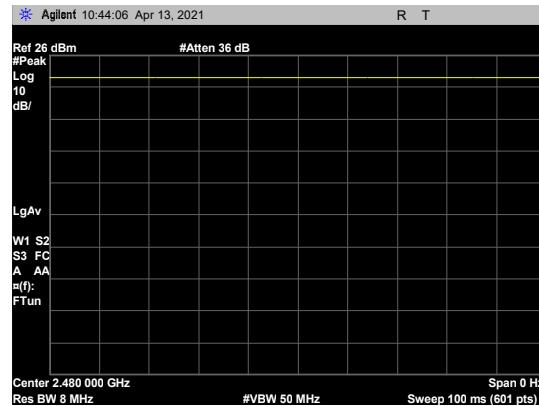


Figure 21: Duty Cycle BLE 1Mbit high channel

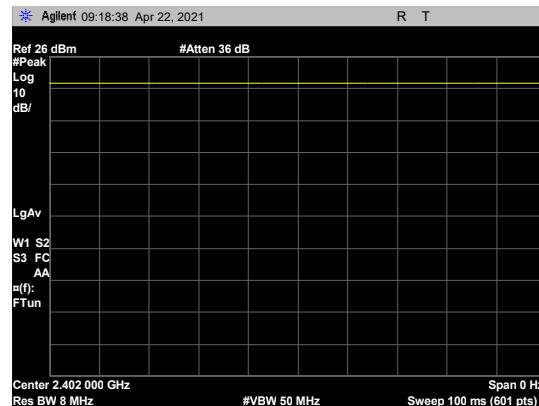


Figure 22: Duty Cycle BLE 2Mbit low channel

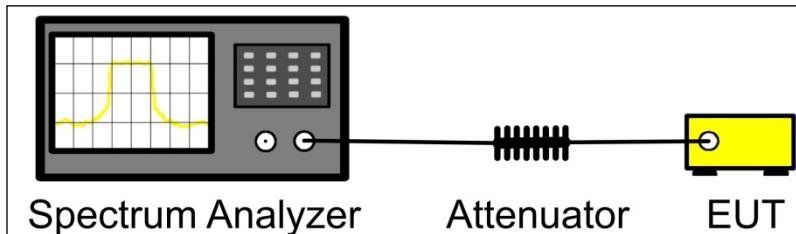


Figure 23: Duty Cycle BLE 2Mbit mid channel

Figure 24: Duty Cycle BLE 2Mbit high channel

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) Peak Power Output


Test Requirements: **§15.247(b):** The maximum peak output power of the intentional radiator shall not exceed the following:

Digital Transmission Systems (MHz)	Output Limit (Watts)
2400–2483.5	1.000

Figure 25: Output Power Requirements from §15.247(b)

§15.247(c): if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in the 9, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Procedure: The EUT was configured to measure the low, mid and high channels of each band at the maximum power level. Measurements were performed in a conducted setup as shown in figure below.

Figure 26. Power Output Test Setup

Test Results: The EUT as tested is **compliant** with § 15.247(b) Peak Power Output.

Test Engineer: Deepak Giri

Test Date: 04/26/2021

Frequency (MHz)	Mode	Peak Conducted Power measured (dBm)	Conducted Power limit (dBm)	Margin	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin
2402	BLE 1Mbit	19.10	30	-10.90	0	19.10	36	-16.9
2444		18.99	30	-11.01	0	18.99	36	-17.01
2480		18.82	30	-11.18	0	18.82	36	-17.18
2402	BLE 2Mbit	19.11	30	-10.89	0	19.11	36	-16.89
2444		19.02	30	-10.98	0	19.02	36	-16.98
2480		17.67	30	-12.33	0	17.67	36	-18.33

Table 16. Peak Conducted Output Power, Test Results

Note: Power setting was reduced by 2 dB to 17 dBm for BLE 2 Mbps at 2480 MHz.

Test Data

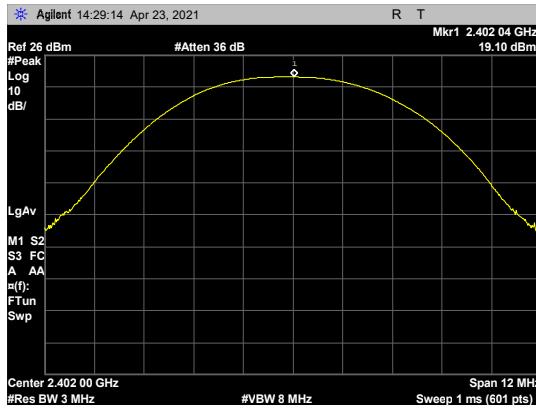


Figure 27: Conducted Output Power, BLE 1Mbit low channel Peak plot

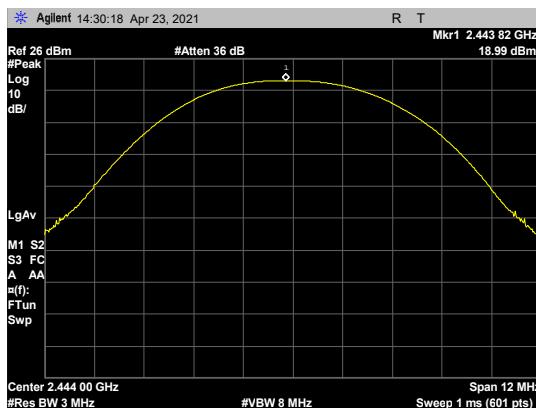


Figure 28: Conducted Output Power, BLE 1Mbit mid channel Peak plot

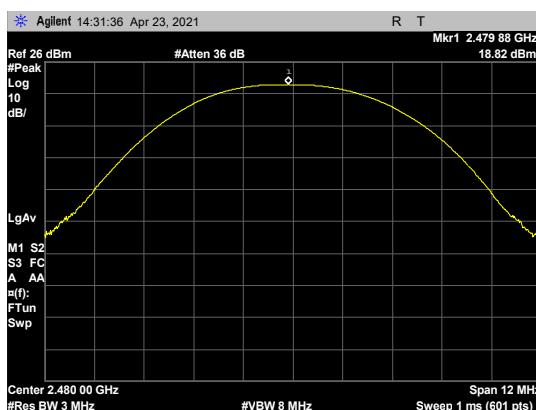


Figure 29: Conducted Output Power, BLE 1Mbit high channel Peak plot

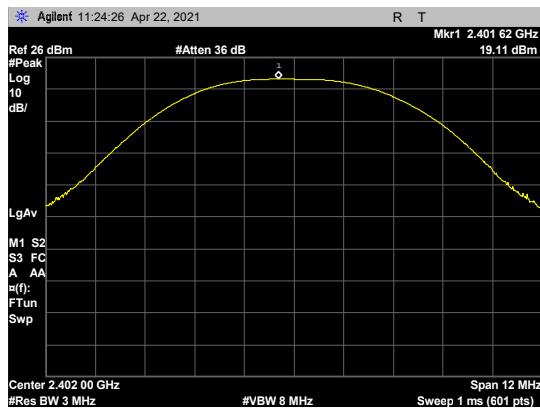


Figure 30: Conducted Output Power, BLE 2Mbit low channel Peak plot

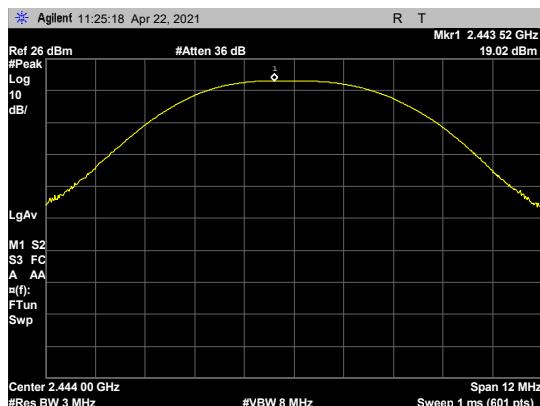


Figure 31: Conducted Output Power, BLE 2Mbit mid channel Peak plot

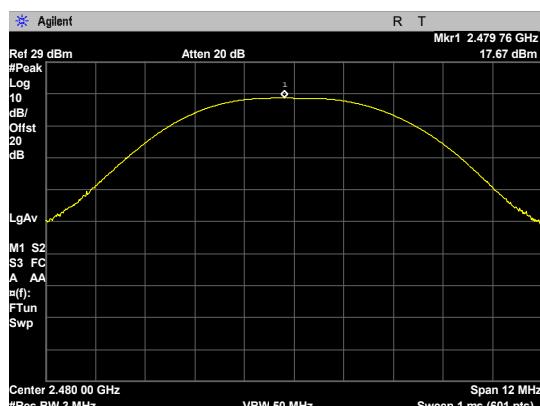


Figure 32: Conducted Output Power, BLE 2Mbit high channel Peak plot

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.209 Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

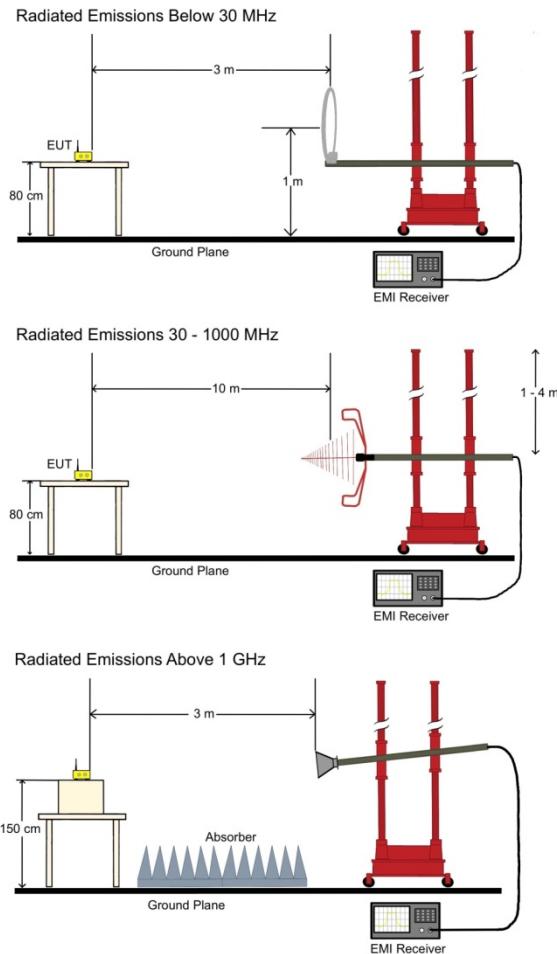
§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090–0.110-----	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505-----	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905-----	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128-----	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775-----	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775-----	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218-----	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825-----	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225-----	123–138	2200–2300	14.47–14.5
8.291–8.294-----	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366-----	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675-----	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475-----	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293-----	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025-----	240–285	3345.8–3358.36.	43–36.5
12.57675–12.57725-----	322–335.4	3600–4400	(²)

Table 17: Restricted Bands of Operation

¹ Until February 1, 1999, this restricted band shall be 0.490 – 0.510 MHz.

² Above 38.6


Test Requirement(s): **§ 15.209 (a):** Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in Table 18:

Frequency (MHz)	§ 15.209(a), Radiated Emission Limits (dB μ V) @ 3m
30 - 88	40.00
88 - 216	43.50
216 - 960	46.00
Above 960	54.00

Table 18: Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

Test Procedures:

The transmitter was turned on. Measurements were performed of the low, mid and high Channels. The EUT was rotated orthogonally through all three axes. Plots shown are corrected for both antenna correction factor and distance and compared to a 3 m limit line. Only noise floor was measured above 18 GHz.

Figure 33: Radiated Emissions Test Setup

Test Results:

The EUT as tested is **compliant** with § 15.209 Radiated Spurious Emissions Requirements and Band Edge. Protocol limited duty cycle (40%) correction were applied to obtain the final Average measurement on emissions associated with fundamental. Radiated cabinet emissions were measured using 50Ohm terminator at EUT antenna terminal. Emissions were measured from 30MHz-25GHz. Pre-amplifier was used in 18-25GHz measurement.

Emission close to the limit line were re-evaluated using appropriate detector and test method.

Plots presented are cumulative results of 3 orthogonal EUT positions.

Test Engineer: Deepak Giri

Test Date: 04/26/2021

Test Data

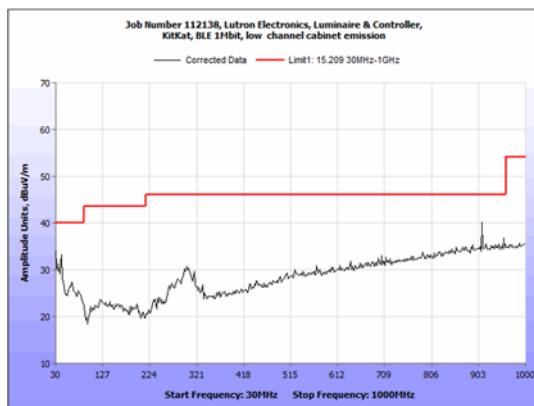


Figure 34: Cabinet Radiated Emissions, BLE 1Mbit Low Channel 30MHz-1GHz Plot

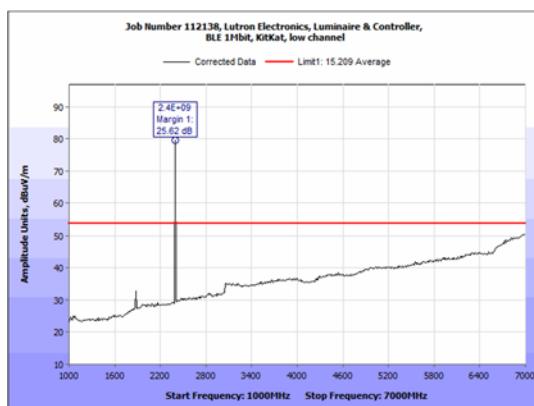


Figure 35: Cabinet Radiated Emissions, BLE 1Mbit Low Channel 1Ghz-7Ghz Average.

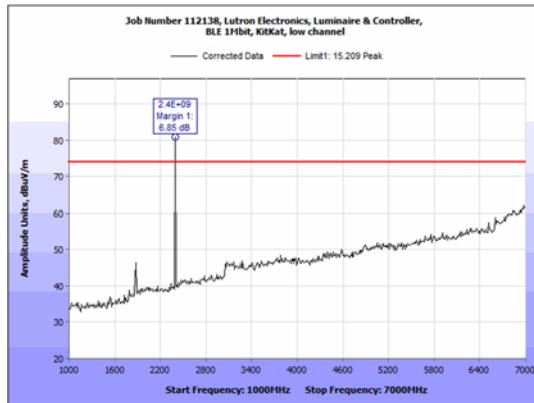


Figure 36: Cabinet Radiated Emissions, BLE 1Mbit Low Channel 1GHz-7GHz Peak.

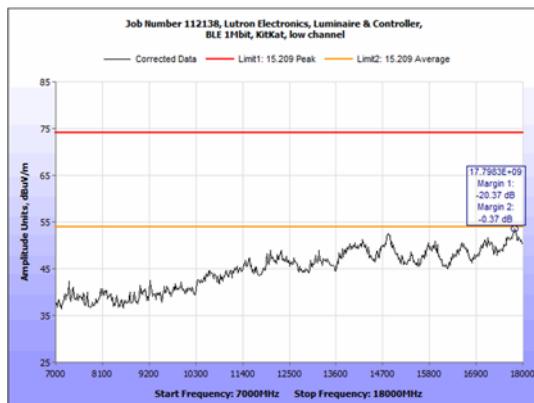


Figure 37: Cabinet Radiated Emissions, BLE 1Mbit Low Channel 7GHz-18GHz PK and AVG.

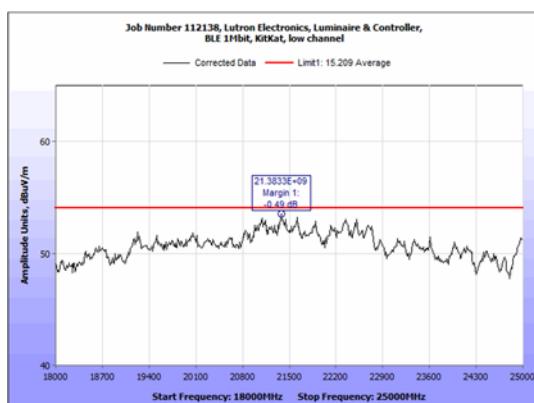


Figure 38: Cabinet Radiated Emissions, BLE 1Mbit Low Channel 18GHz-25GHz Average.

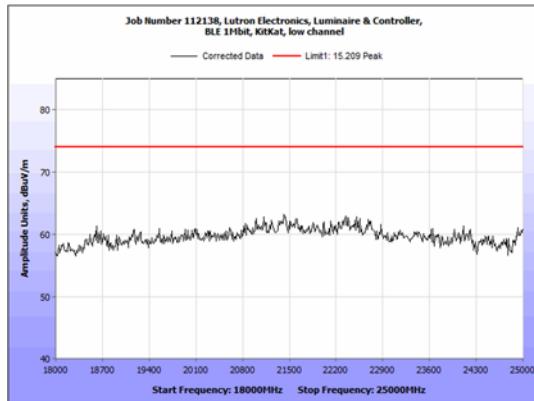


Figure 39: Cabinet Radiated Emissions, BLE 1Mbit Low Channel 18GHz-25GHz Peak.

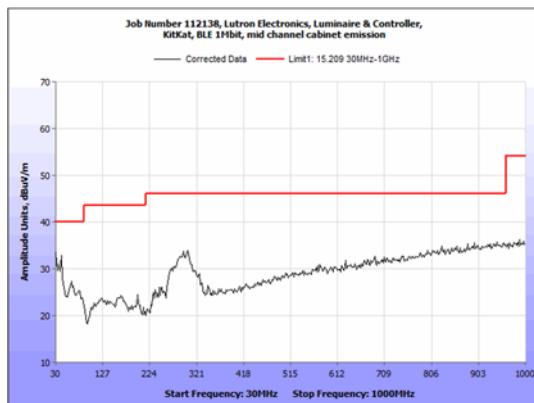


Figure 40: Cabinet Radiated Emissions, BLE 1Mbit Mid Channel 30MHz-1GHz Radiated cabinet emission.

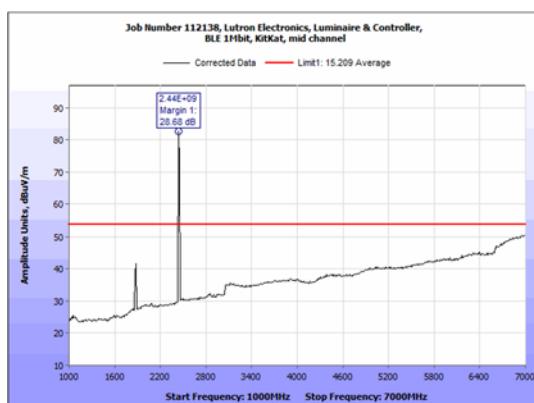


Figure 41: Cabinet Radiated Emissions, BLE 1Mbit Mid Channel 1GHz-7GHz Average.

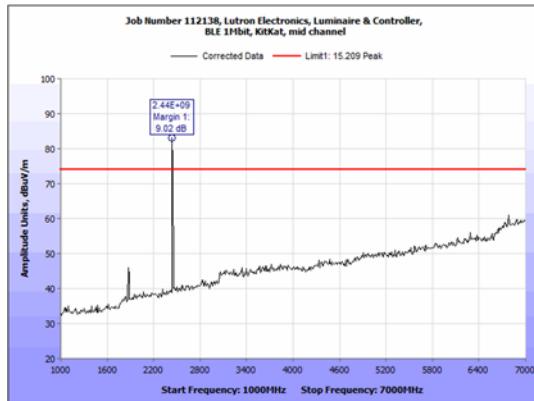


Figure 42: Cabinet Radiated Emissions, BLE 1Mbit Mid Channel 1GHz-7GHz Peak.

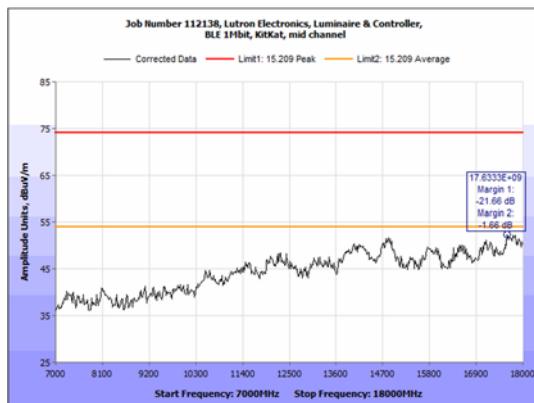


Figure 43: Cabinet Radiated Emissions, BLE 1Mbit Mid Channel 7GHz-18GHz PK and AVG.

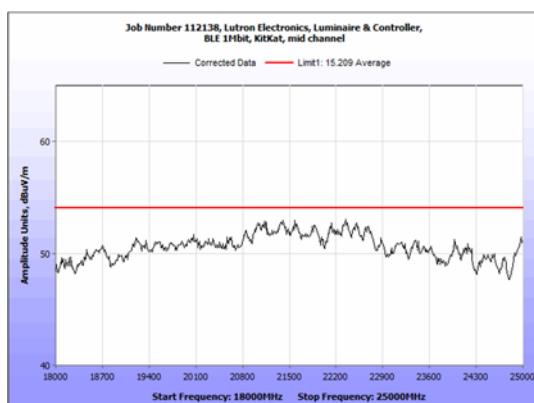


Figure 44: Cabinet Radiated Emissions, BLE 1Mbit Mid Channel 18GHz-25GHz Average.

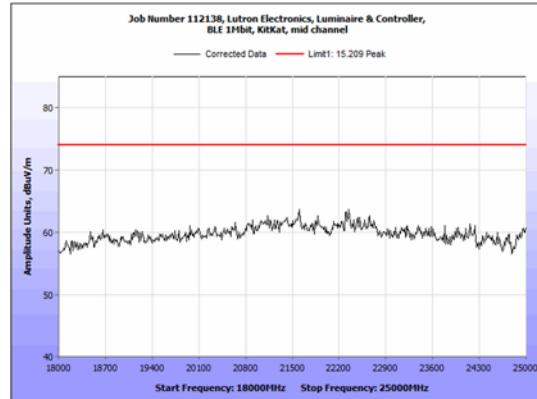


Figure 45: Cabinet Radiated Emissions, BLE 1Mbit Mid Channel 18GHz-25GHz Peak.

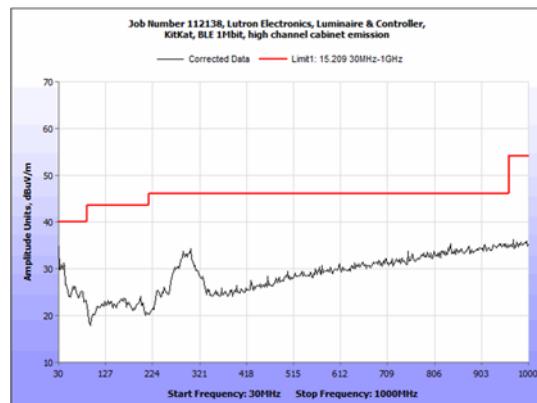


Figure 46: Cabinet Radiated Emissions, BLE 1Mbit High Channel 30MHz-1GHz Radiated cabinet emission.

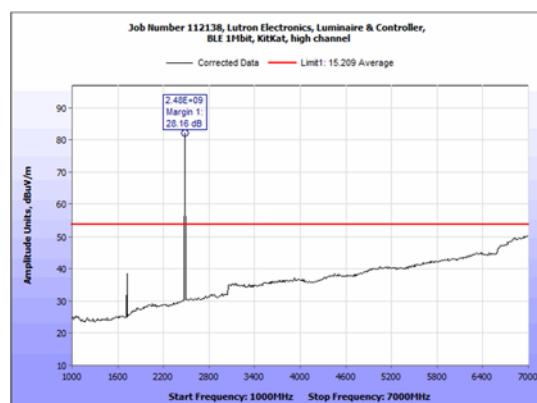


Figure 47: Cabinet Radiated Emissions, BLE 1Mbit High Channel 1GHz-7GHz Average.

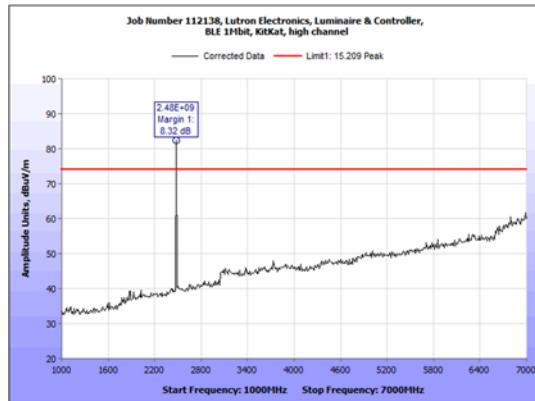


Figure 48: Cabinet Radiated Emissions, BLE 1Mbit High Channel 1GHz-7GHz Peak.

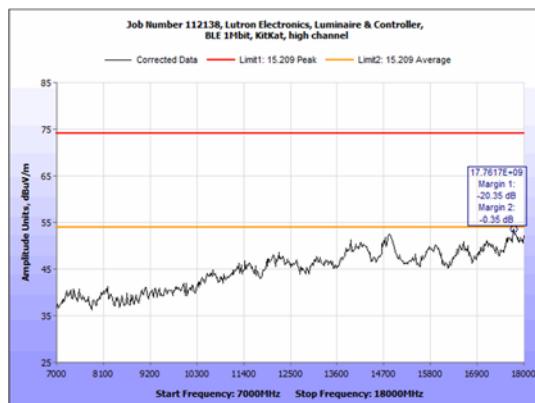


Figure 49: Cabinet Radiated Emissions, BLE 1Mbit High Channel 7GHz-18GHz PK and AVG.

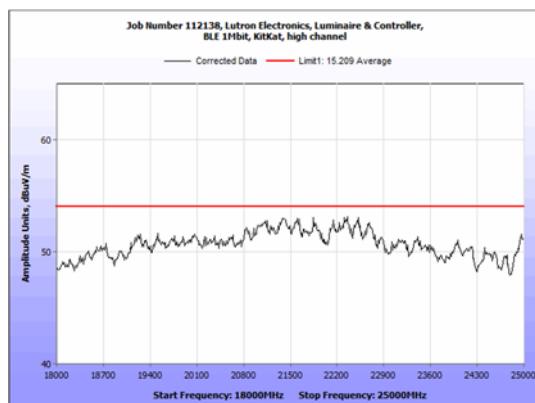


Figure 50: Cabinet Radiated Emissions, BLE 1Mbit High Channel 18GHz-25GHz Average.

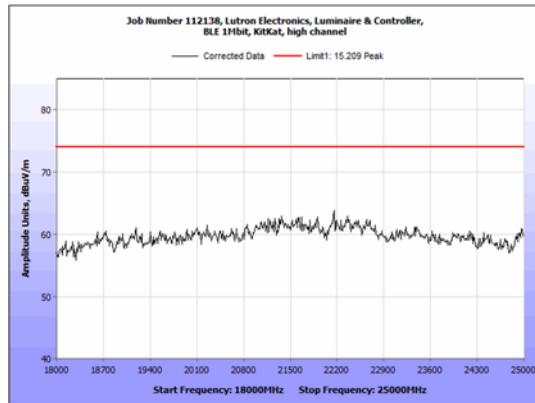
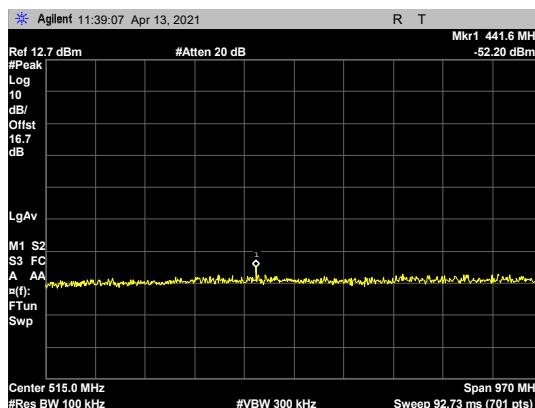


Figure 51: Cabinet Radiated Emissions, BLE 1Mbit High Channel 18GHz-25GHz Peak.

Test Photographs

Figure 52: Cabinet Radiated emission setup 30MHz-1GHz

Figure 53: Cabinet Radiated emission setup 1-18GHz


Radiated Band Edge Measurements

Test Procedures: The transmitter was turned on. Measurements were performed of the low and high Channels. The EUT was rotated orthogonally through all three axes. Plots shown are corrected for both antenna correction factor and distance and compared to a 3 m limit line. Protocol limited duty cycle (40%) correction were applied to obtain the final Average measurement on emissions associated with fundamental. Restricted band emissions were measured using conducted test method defined in 11.12.2, 11.12.2.2, 11.12.2.4 and 11.12.2.5.3. Restricted band edges were measured without in-band notch filter. Out of band restricted emissions were measured using In-band notch filter.

Test Data

Frequency(GHz)	Channel	Measurement Type	EIRP (dBm)	Field Strength(dBuV/m)	DCCF(dB)	Limit(dBuV/m)	Margin	Bands
2.39	1Mbit, low Center: 2402 MHz	AVG	-53.04	42.19	7.96	54	-19.77	restricted band
2.39	2Mbit, low Center: 2402 MHz	AVG	-49.12	46.11	7.96	54	-15.85	restricted band
2.4835	1Mbit, high Center: 2480 MHz	AVG	-40.55	54.68	7.96	54	-7.28	restricted band
2.4835	2Mbit, high Center: 2480 MHz	AVG	-33.56	61.67	7.96	54	-0.29	restricted band
4.8	1Mbit, low Center: 2402 MHz	AVG	-39.89	55.34	7.96	54	-6.62	restricted band
4.88	1Mbit, mid Center: 2444 MHz	AVG	-38.42	56.81	7.96	54	-5.15	restricted band
4.96	1Mbit, high Center: 2480 MHz	AVG	-39.08	56.15	7.96	54	-5.81	restricted band
4.8	2Mbit, low Center: 2402 MHz	AVG	-43.67	51.56	7.96	54	-10.4	restricted band
4.88	2Mbit, mid Center: 2444 MHz	AVG	-41.7	53.53	7.96	54	-8.43	restricted band
4.96	2Mbit, high Center: 2480 MHz	AVG	-45.01	50.22	7.96	54	-11.74	restricted band

Table 19. Radiated Band Edge Measurements

Figure 54: BLE 1Mbit 30MHz-1GHz low channel restricted emission peak

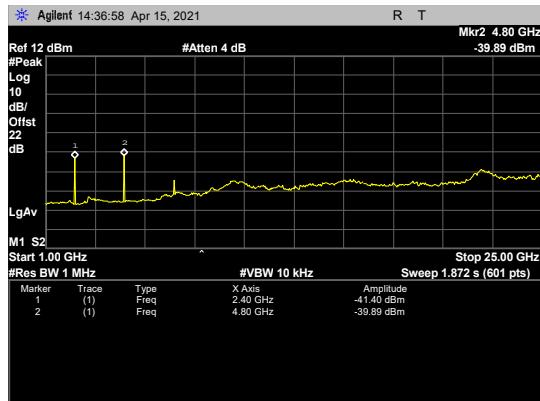


Figure 55: BLE 1Mbit 1GHz-25GHz low channel restricted emission average

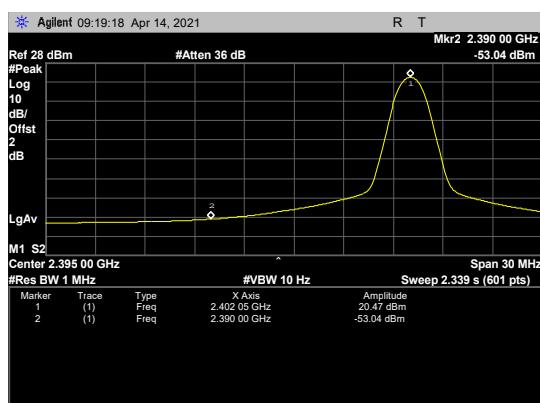


Figure 56: BLE 1Mbit low channel restricted band edge average

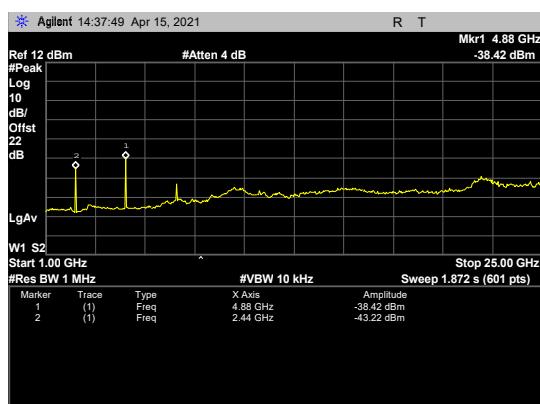


Figure 57: BLE 1Mbit 1GHz-25GHz mid channel restricted emission average

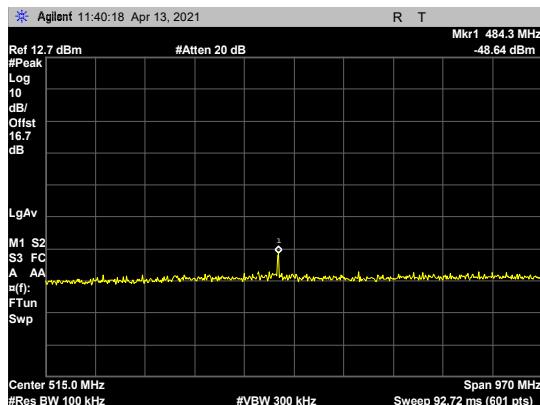


Figure 58: BLE 1Mbit 30MHz-1GHz mid channel restricted emission peak

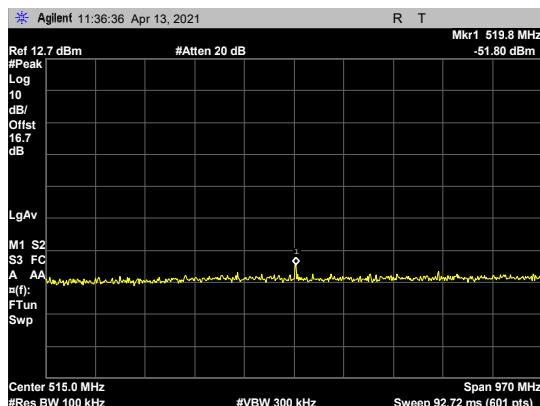


Figure 59: BLE 1Mbit 30MHz-1GHz high channel restricted emission peak

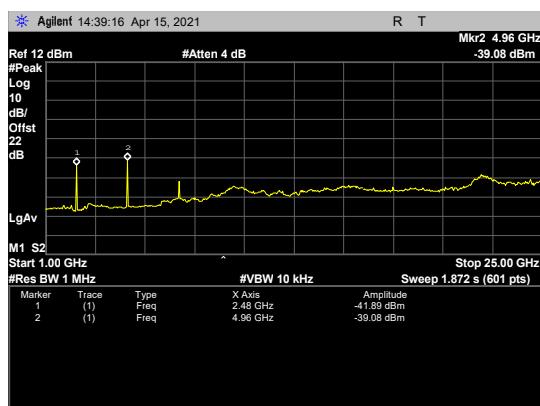


Figure 60: BLE 1Mbit 1GHz-25GHz high channel restricted emission average

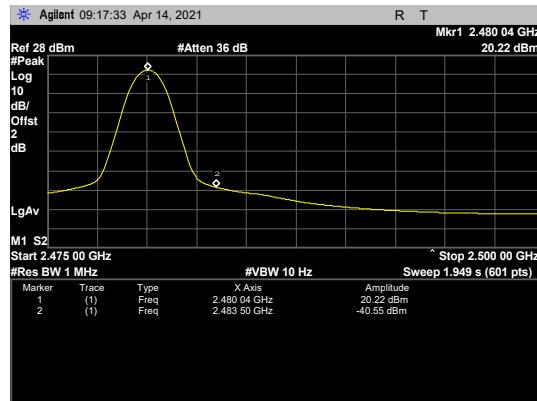


Figure 61: BLE 1Mbit high channel restricted band edge average

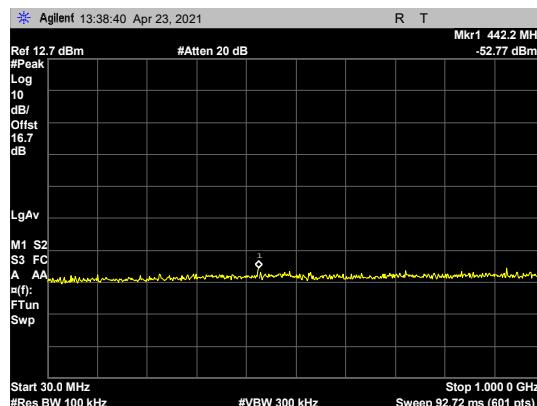


Figure 62: BLE 2Mbit 30MHz-1GHz low channel restricted emission peak

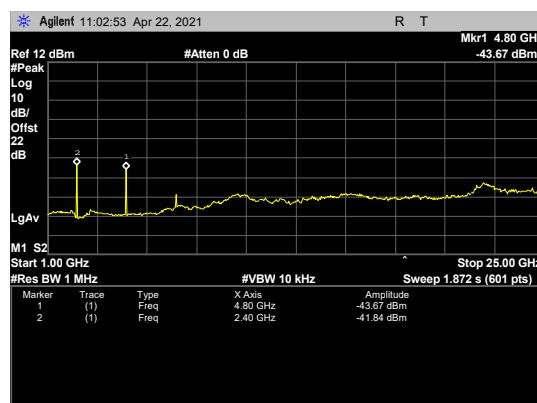


Figure 63: BLE 2Mbit 1GHz-25GHz low channel restricted emission average

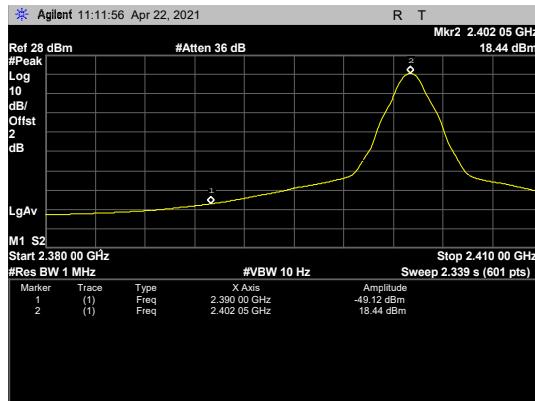


Figure 64: BLE 2Mbit low channel restricted band edge average

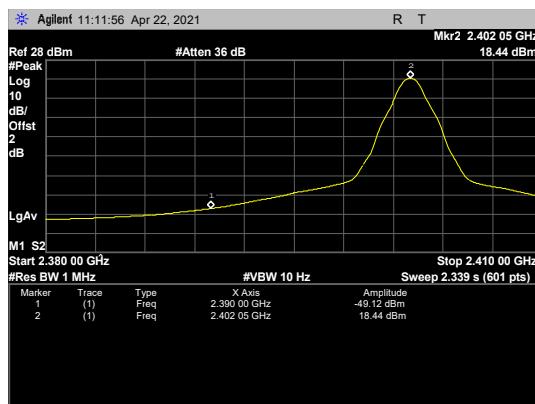


Figure 65: BLE 2Mbit low channel restricted band edge average

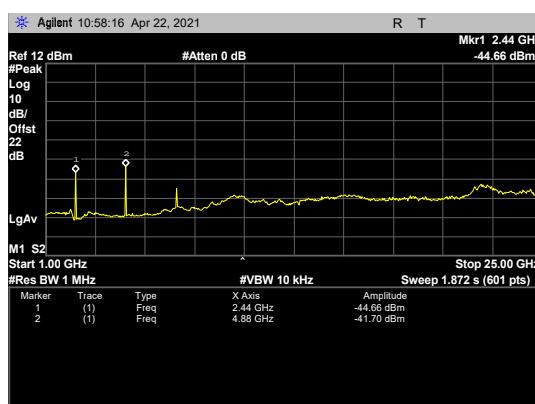


Figure 66: BLE 2Mbit 1GHz-25GHz mid channel restricted emission average

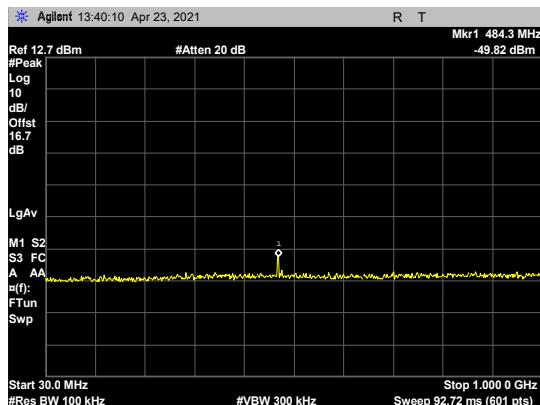


Figure 67: BLE 2Mbit 30MHz-1GHz mid channel restricted emission peak

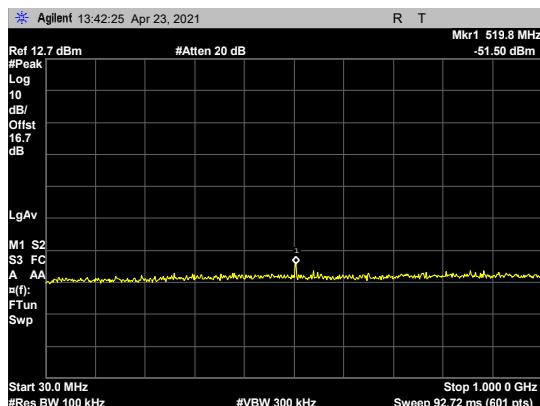


Figure 68: BLE 2Mbit 30MHz-1GHz high channel restricted emission peak

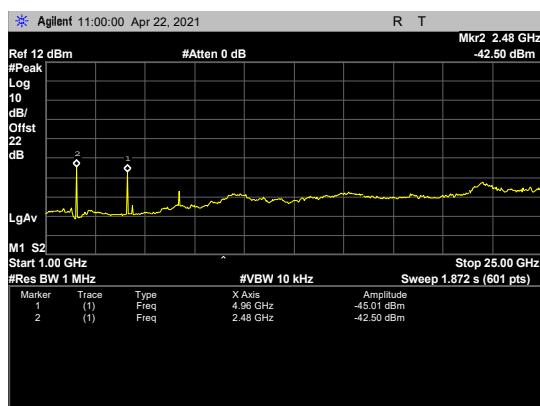


Figure 69: BLE 2Mbit 1GHz-25GHz high channel restricted emission average

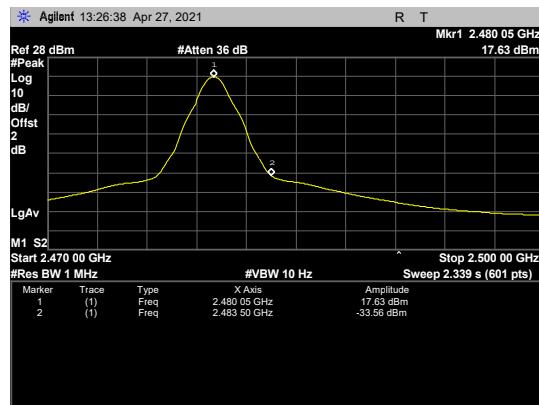
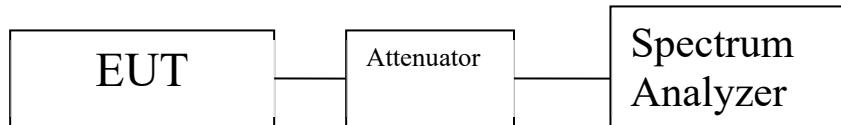


Figure 70: BLE 2Mbit high channel restricted band edge average


Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) 20 dBc Emissions

Test Requirement: **15.247(d)** In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure: For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Conducted measurements were performed. The plots were corrected for cable loss.

Figure 71: Block Diagram, 20 dBc Emissions Test Setup

Test Results: The EUT was tested is **compliant** with § 15.247(d) 20 dBc Emissions.

Test Engineer: Deepak Giri

Test Date: 04/26/2021

Test Data

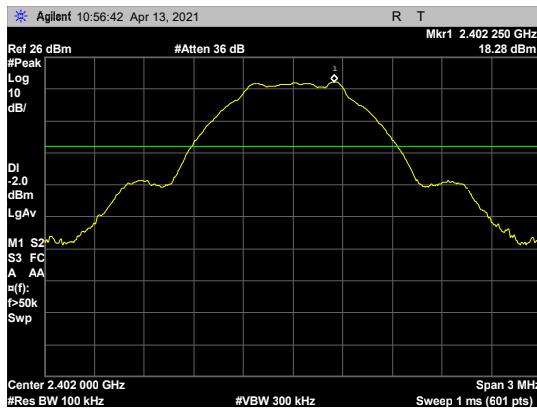


Figure 72: Conducted Spurious Emissions, BLE 1Mbit low channel reference level

Figure 73: Conducted Spurious Emissions, BLE 1Mbit low channel

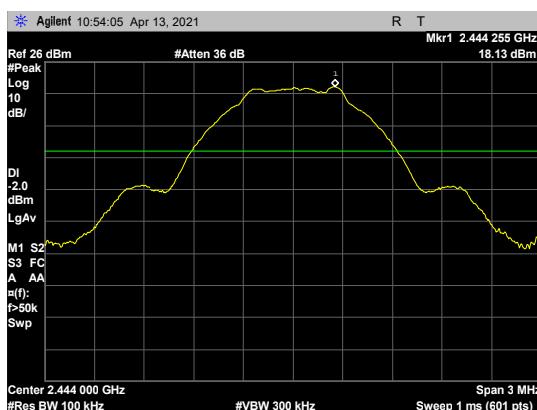


Figure 74: Conducted Spurious Emissions, BLE 1Mbit mid channel reference level



Figure 75: Conducted Spurious Emissions, BLE 1Mbit mid channel

Figure 76: Conducted Spurious Emissions, BLE 1Mbit high channel reference level

Figure 77: Conducted Spurious Emissions, BLE 1Mbit high channel

Figure 78: Conducted Spurious Emissions, BLE 2Mbit low channel reference level

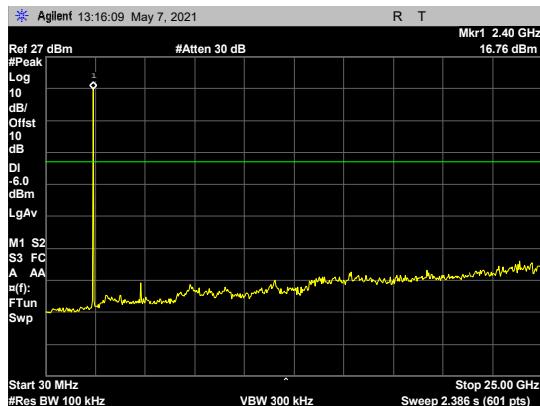


Figure 79: Conducted Spurious Emissions, BLE 2Mbit low channel, 30 MHz – 25 GHz

Figure 80: Conducted Spurious Emissions, BLE 2Mbit mid channel reference level

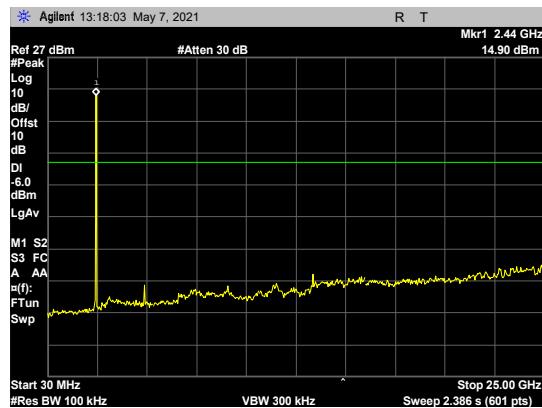
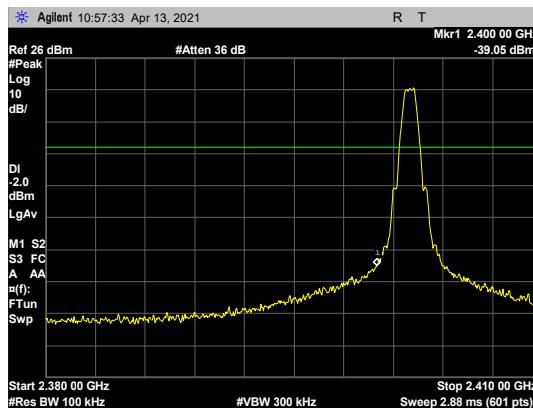
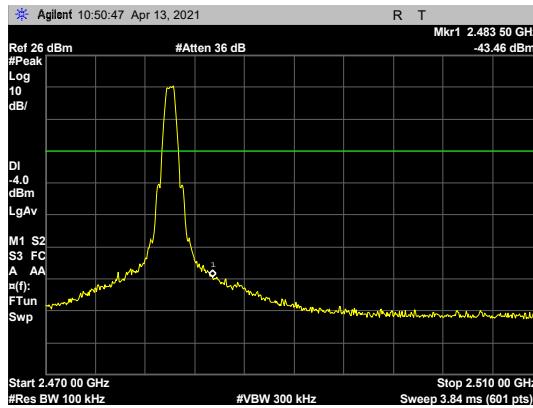
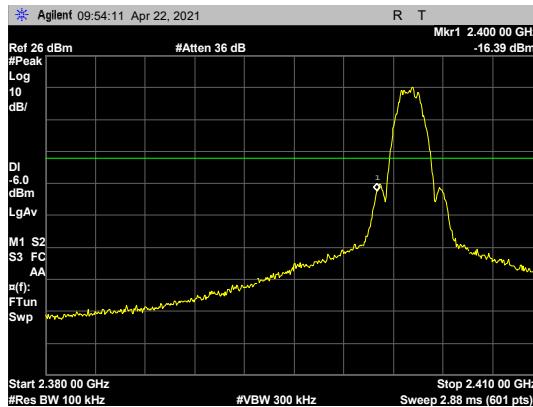


Figure 81: Conducted Spurious Emissions, BLE 2Mbit mid channel, 30 MHz – 25 GHz


Figure 82: Conducted Spurious Emissions, BLE 2Mbit high channel reference level


Figure 83: Conducted Spurious Emissions, BLE 2Mbit high channel, 30 MHz – 25 GHz

Band Edge:


Table 20. Conducted Band Edge Measurements

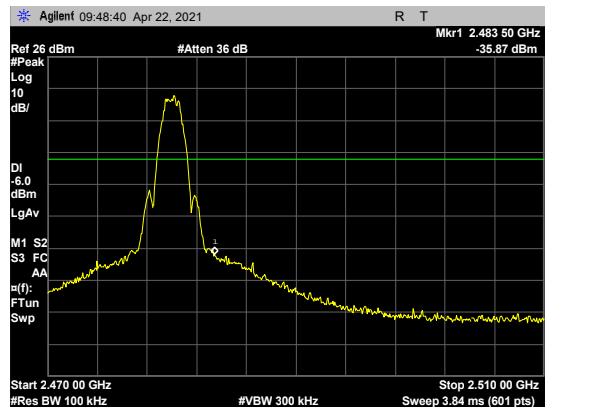
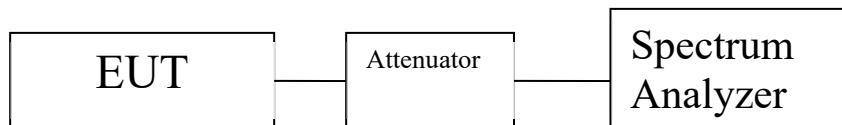

Figure 84: Conducted Spurious Emissions, BLE 1Mbit low channel band edge

Figure 85: Conducted Spurious Emissions, BLE 1Mbit high channel band edge

Figure 86: Conducted Spurious Emissions, BLE 2Mbit low channel band edge


Figure 87: Conducted Spurious Emissions, BLE 2Mbit high channel band edge

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(e) Peak Power Spectral Density

Test Requirements: **§15.247(e):** For digitally modulated systems, the peak conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure: The power level was set to the maximum level throughout each of the 100 sweeps of power averaging. The RBW was set to 100 kHz and a VBW set to 300 kHz or greater. The spectrum analyzer was set to an auto sweep time and a peak detector was used. Measurements were carried out at the low, mid and high channels.

Figure 88: Block Diagram, Power Spectral Density Test Setup

Test Results: The EUT was tested is **compliant** with § 15.247(e) Peak Power Spectral Density.

The peak was determined from plots on the following page(s).

Test Engineer: Deepak Giri

Test Date: 04/26/2021

Carrier Channel	Data Rate	Frequency (MHz)	Conducted PSD (dBm)	Antenna Gain (dBi)	Limit (dBm)	Margin (dB)
Low	1MBit	2402	3.31	0	8	-4.69
Mid	1Mbit	2444	3.28	0	8	-4.72
High	1Mbit	2480	3.16	0	8	-4.84
<hr/>						
Low	2MBit	2402	-0.63	0	8	-8.63
Mid	2MBit	2444	-0.76	0	8	-8.76
High	2MBit	2480	-2.1	0	8	-10.1

Table 21. Power Spectral Density, Test Results

Note: Power setting was reduced by 2 dB to 17 dBm for BLE 2 Mbps at 2480 MHz.

Test Data

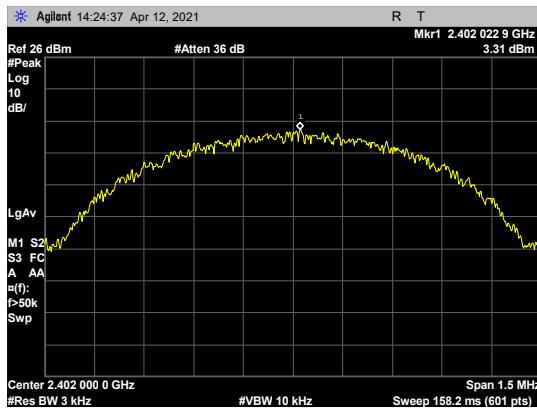


Figure 89: Power Spectral Density, BLE 1Mbit low channel Peak

Figure 90: Power Spectral Density, BLE 1Mbit mid channel Peak

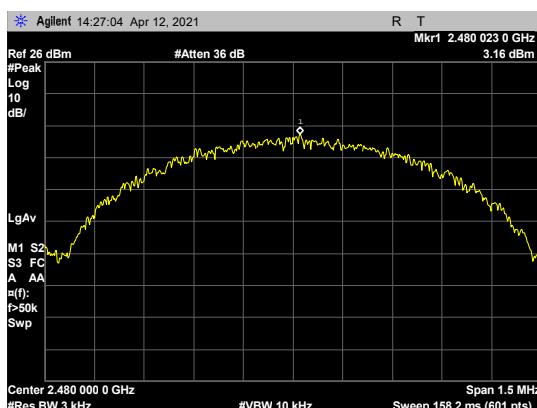


Figure 91: Power Spectral Density, BLE 1Mbit high channel Peak

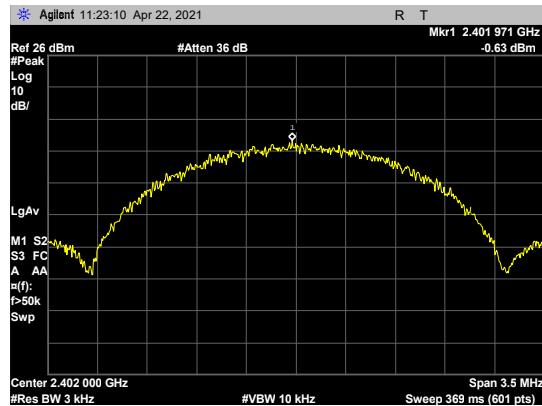


Figure 92: Power Spectral Density, BLE 2Mbit low channel Peak

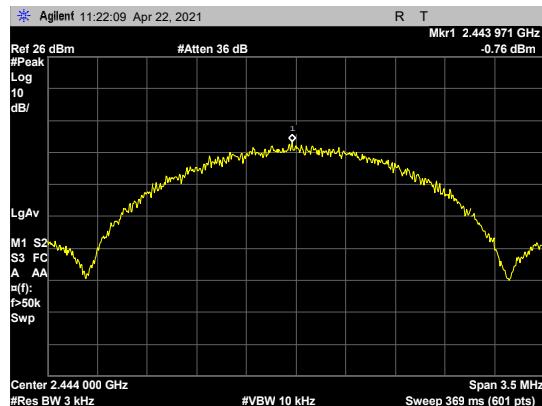


Figure 93: Power Spectral Density, BLE 2Mbit mid channel Peak

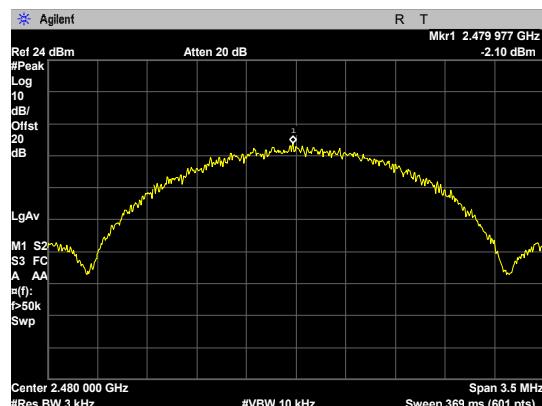


Figure 94: Power Spectral Density, BLE 2Mbit high channel Peak

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(i) RF Human Exposure

RF Exposure

Requirements:

§1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

RF Radiation

Exposure Limit:

§2.1093: As specified in this section, a portable device is defined as a transmitting device designed to be used so that the radiated structure(s) of the device is within 20 centimeters of the body of the user. Calculations below are in accordance with KDB 447498 D01 General RF Exposure Guidance v06, Section 4.3 General SAR test exclusion guidance. The SAR test exclusion thresholds are 3.0 for 1-g SAR and 7.5 for 10-g extremity SAR.

Test Results:

The EUT was tested is **compliant** with § 15.247(i) Maximum Permissible Exposure.

Test Engineer: Deepak Giri

Test Date: 04/26/2021

Test Data

Frequency (MHz)	Con. Pwr. (dBm)	Con. Pwr. (mW)	Ant. Gain (dBi)	Ant. Gain numeric	Pwr. Density (mW/cm ²)	Limit (mW/cm ²)	Margin	Distance (cm)	Result	BLE-Type
2402	19.11	81.470	0	1	0.0162	1	0.9838	20	Pass	BLE-2Mbit

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Asset	Equipment	Manufacturer	Model	Calibration Date	Calibration Due Date
1T4794	LISN	Com-Power	LI-150A	11/11/2019	05/11/2021
1T4795	LISN	Com-Power	LI-150A	11/11/2019	05/11/2021
1T4612	Spectrum Analyzer	Agilent Technologies	E4407B	03/04/2020	09/04/2021
1T7479	Transient Limiter	Com-Power	LIT-153A	func verify	func verify
1T8834	Conducted Comb Generator	Com-Power	CGC-255E	11/13/2019	05/13/2021
1T9583	Thermo/Hygrometer	Control Company	9337T07	05/09/2019	05/09/2021
1T4409	EMI Receiver	Rohde & Schwarz	ESIB7	1/21/2021	1/21/2022
1T8744	Spectrum Analyzer (PSA)	Agilent Technologies	E4440A	12/14/2020	12/14/2022
1T4753	Antenna - Bilog	Sunol Sciences	JB6	12/21/2020	6/21/2022
1T4576	Antenna, Active Horn	Com-Power	AHA-118	12/8/2020	6/8/2022
1T4744	Antenna, Horn	ETS-Lindgren	3116	3/4/2021	9/4/2022
1T4752	Pre-Amplifier	Miteq	JS44-18004000-35-8P	Func Verify	
1T8743	Preamplifier	A.H. Systems, Inc.	PAM-0118P	Func Verify	

Table 22: Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

End of Report