CERTIFICATION

UHF-FM Tone and Voice Paging Receiver

UNDER CFR 47, PART 15.109

GRANTEE: SCA, INC.

FCC ID: JCA-CPAV02M FCC ID: JCA-CPAV02H FCC ID: JCA-CPAV02HH

September 13, 1999

Prepared By:

Spectrum Technology, Inc. 209 Dayton Street Edmonds, WA 98020 425 771-4482

CERTIFICATION

TABLE OF CONTENTS

Field Strength of Radiated Emissions Discussion Part 15.109(a)	1 - 2
Antenna Factors and Sample Calculations	3 - 6
Test Equipment List	7

TEST: FIELD STRENGTH OF RADIATED EMISSIONS

Grantee: SCA, Inc. Model: UHF-FM SCEPTAR

Tone and Voice Pager

FCC ID's: JCA-CPAV02M, M band 443 – 453 MHz

JCA-CPAV02H, H band 453 – 463 MHz JCA-CPAV02HH, HH band 463 – 473 MHz

Setup:

The equipment under test (EUT) was configured and operated in accordance with the applicable provisions of ANSI C63.4-1992, Section 6, 12. Measurements were made in accordance with applicable paragraphs of Section 8.2.3, Section 12.1.1.1 Appendix D, Section 12.1.4 and Appendix H3 and H4.

The EUT was placed on a 1 by 1.5 meter table located 40 cm above a 2 meter diameter non-metallic turntable that sits 40 cm above the 15 X 30 meter ground plane at Spectrum's Open Area Test Site. The bi-conical or log-periodic antenna was mounted on a tower spaced at a three meters distance, and arranged for adjustment in height (1-4 meters) and vertical/horizontal polarization to maximize the emissions levels when combined with turntable rotation of the EUT. The dual ridged guide antenna was mounted on a tripod at one-meter height and adjusted for vertical or horizontal antenna orientation. A HP 8562A spectrum analyzer with a HP 8447F, Option H64 amplifier and a HP 83006A pre-amplifier were used for the peak measuring instrumentation.

Discussion:

Preliminary measurements were made and marginally excessive levels were observed near 2 GHz. The samples were returned to and modified by manufacturer. Please refer to the manufacturer statement regarding modification made to reduce harmonics with excessive levels just under 2 GHz.

The balance of this report refers to the final set of preliminary and final measurements made to the modified units. The EUT is an UHF-FM Tone and Voice paging receiver. The receiver was powered with a single new AAA 1.5 Volt battery during measurements.

Two sets of measurements were made for each of the three sample receivers tested covering the 10 MHz wide frequency bands of operation as shown below. The test samples were operated on the following channels during the measurements:

M band 443 - 452	CH 1	443.500	and CH 2	452.500 MHz
H band 453 - 463	CH 1	453.500	and CH 2	462.500 MHz
HH band 463 - 464	CH 1	463.500	and CH 2	472.500 MHz

Preliminary measurements were made as described in Section 8.3.11 and 12.1.4.1 with the receiver operating as described. The receiver was observed while positioned in three mutually orthogonal planes during which it appeared that the horizontal position, with the display facing upward, as the "worst case" position by a small margin. Page 1

During preliminary measurements numerous emissions were detected with the use of an HP 8447F amplifier and placing the receive antenna in immediate proximity of the EUT. Using a HP 83006A amplifier and moving in to less than 50 cm EUT to antenna distance for frequencies from 1 to 2 GHz, no harmonics emissions were observed. The EUT placement on the table is detailed in the photographs of the EUT setup.

The final set of measurements as detailed in Section 8.3.1.2 and 12.1.4.2 were made as specified. RBW and VBW of 100 kHz were used for measurements below 1 GHz. Above 1 GHz peak measurements were made with a RBW and VBW of 1 MHz. The pager position used was based on the preliminary measurements with the display side facing up and the back or FCC ID label side facing down. We also endeavored to maximize emission levels of the EUT as appropriate, with rotation of the table and adjustment of antenna height and polarization.

Measurements were made over the frequency range of 30 - 2000 MHz in great detail in accordance with Section 15.33. No emissions were measurable at three meters during the final detailed radiated emissions measurements from any of the six samples tested

FCC Part 15.109(b) Field Strength of Radiated Spurious Emissions Final Data

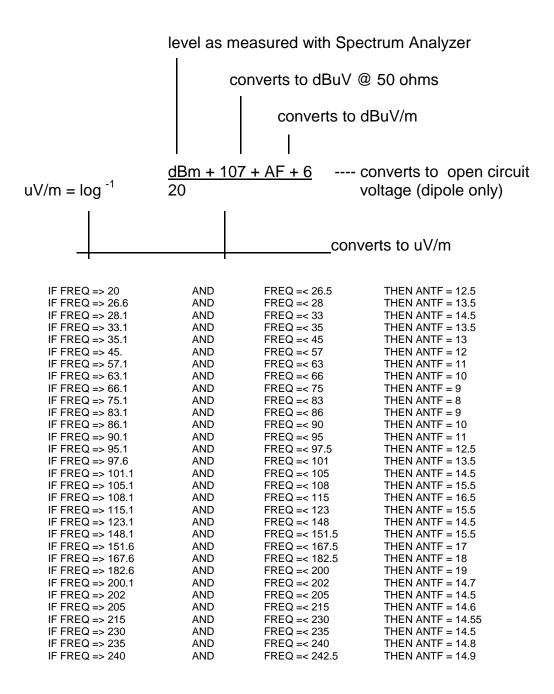
Grantee: SCA, Inc. 8/17/99

FCC ID's: JCA- CPAV02M, JCA- CPAV02H, JCA- CPAV02HH

Radiated Emissions Measurements By Frequency

Freq MHz	Vert dBm	Horz dBm	Ant-F	dBuV/m	uV/m	dB +/- Limit	Limit uV/m @ 3
							Meters

No measurable emissions at three meters


The antenna is a permanently attached pull up whip antenna emission were checked with antenna in both postions. No receiver antenna conducted spurious emissions measurements were made due to attached antenna.

Conclusion:

The SCA, Inc., FCC ID's: JCA- CPAV02M, JCA- CPAV02H, and JCA- CPAV02HH, when operated and measured as discussed above, meet the receiver radiated spurious emissions requirements under Title 47, CFR Part 15.109(a). **This receiver is not subject to the transition provisions of Part 15.37.**

ANTENNA FACTORS FOR EMCO 3104 BICONICAL ANTENNA AND EMCO 3146 LOG PERIODIC ANTENNA INCLUDING CONVERSION TO OPEN CIRCUIT VOLTAGE.

Antenna Factor and Field Strength Formula

IF FREQ => 242.5	AND	FREQ =< 245	THEN ANTF = 15.1
IF FREQ => 245	AND	FREQ =< 247.5	THEN ANTF = 15.5
IF FREQ => 247.5	AND	FREQ =< 250	THEN ANTF = 15.7
IF FREQ => 250	AND	FREQ =< 252	THEN ANTF = 15.9
IF FREQ => 252	AND	FREQ =< 254	THEN ANTF = 16
IF FREQ => 254	AND	FREQ =< 256	THEN ANTF = 16.1
IF FREQ => 256	AND	FREQ =< 258	THEN ANTF = 16.2
IF FREQ => 258	AND	FREQ =< 260	THEN ANTF = 16.3
IF FREQ => 260	AND	FREQ =< 263.5	THEN ANTF = 16.4
IF FREQ => 263.5	AND	FREQ =< 265	THEN ANTF = 16.4
			THEN ANTF = 16.6
IF FREQ => 265	AND	FREQ =< 267.5	
IF FREQ => 267.5	AND	FREQ =< 271	THEN ANTF = 16.7
IF FREQ => 271	AND	FREQ =< 274	THEN ANTF = 16.8
IF FREQ => 274	AND	FREQ =< 276	THEN ANTF = 16.9
IF FREQ => 276	AND	FREQ =< 278	THEN ANTF = 17
IF FREQ => 278	AND	FREQ =< 280	THEN ANTF = 17.1
IF FREQ => 280	AND	FREQ =< 282	THEN ANTF = 17.3
IF FREQ => 282	AND	FREQ =< 284	THEN ANTF = 17.6
IF FREQ => 284	AND	FREQ =< 286	THEN ANTF = 18
IF FREQ => 286	AND	FREQ =< 288	THEN ANTF = 18.2
IF FREQ => 288			THEN ANTF = 18.4
	AND	FREQ =< 295	
IF FREQ => 290	AND	FREQ =< 295	THEN ANTF = 15.8
IF FREQ => 295	AND	FREQ =< 305	THEN ANTF = 18.6
IF FREQ => 305	AND	FREQ =< 310	THEN ANTF = 18.4
IF FREQ => 310	AND	FREQ =< 311	THEN ANTF = 18.3
IF FREQ => 311	AND	FREQ =< 312	THEN ANTF = 18.1
IF FREQ => 312	AND	FREQ =< 313	THEN ANTF = 18
IF FREQ => 313	AND	FREQ =< 340	THEN ANTF = 17.9
IF FREQ => 340	AND	FREQ =< 343	THEN ANTF = 18.1
IF FREQ => 343	AND	FREQ =< 350	THEN ANTF = 18.2
IF FREQ => 350	AND	FREQ =< 357	THEN ANTF = 18.3
IF FREQ => 357	AND	FREQ =< 360	THEN ANTF = 18.5
IF FREQ => 360	AND	FREQ =< 365	THEN ANTF = 18.6
IF FREQ => 365	AND	FREQ =< 375	THEN ANTF = 18.7
IF FREQ => 375	AND	FREQ =< 378	THEN ANTF = 19
IF FREQ => 378	AND	FREQ =< 381	THEN ANTF = 19.1
IF FREQ => 381	AND	FREQ =< 383	THEN ANTF = 19.2
IF FREQ => 383			
	AND	FREQ =< 385	THEN ANTF = 19.3
IF FREQ => 385	AND	FREQ =< 387.5	THEN ANTF = 19.4
IF FREQ => 387.5	AND	FREQ =< 390	THEN ANTF = 19.5
IF FREQ => 390	AND	FREQ =< 392	THEN ANTF = 19.7
IF FREQ => 392	AND	FREQ =< 394	THEN ANTF = 18.8
IF FREQ => 394	AND	FREQ =< 396	THEN ANTF = 19.9
IF FREQ => 396	AND	FREQ =< 398	THEN ANTF = 20
IF FREQ => 398	AND	FREQ =< 402	THEN ANTF = 20.1
IF FREQ => 402	AND	FREQ =< 405	THEN ANTF = 20.2
IF FREQ => 405	AND	FREQ =< 410	THEN ANTF = 20.3
IF FREQ => 410	AND	FREQ =< 415	THEN ANTF = 20.4
IF FREQ => 415	AND	FREQ =< 420	THEN ANTF = 20.6
IF FREQ => 420	AND	FREQ =< 425	THEN ANTF = 20.8
IF FREQ => 425	AND	FREQ =< 430	THEN ANTF = 21
			THEN ANTF = 21.2
IF FREQ => 430	AND	FREQ =< 435	
IF FREQ => 435	AND	FREQ =< 440	THEN ANTF = 21.3
IF FREQ => 440	AND	FREQ =< 445	THEN ANTF = 21.4
IF FREQ => 445	AND	FREQ =< 450	THEN ANTF = 21.5
IF FREQ => 450	AND	FREQ =< 455	THEN ANTF = 21.6
IF FREQ => 455	AND	FREQ =< 460	THEN ANTF = 21.8
IF FREQ => 460	AND	FREQ =< 465	THEN ANTF = 21.9
IF FREQ => 465	AND	FREQ =< 470	THEN ANTF = 22
IF FREQ => 470	AND	FREQ =< 472.5	THEN ANTF = 22.1
IF FREQ => 472.5	AND	FREQ =< 475	THEN ANTF = 22.2
IF FREQ => 475	AND	FREQ =< 477	THEN ANTF = 22.4
IF FREQ => 477	AND	FREQ =< 478	THEN ANTF = 22.5
IF FREQ => 478	AND	FREQ =< 481	THEN ANTF = 22.6

IF FREQ => 481 IF FREQ => 482.5 IF FREQ => 485 IF FREQ => 485 IF FREQ => 515 IF FREQ => 540 IF FREQ => 560 IF FREQ => 560 IF FREQ => 570 IF FREQ => 580 IF FREQ => 610 IF FREQ => 610 IF FREQ => 615 IF FREQ => 625 IF FREQ => 630 IF FREQ => 635 IF FREQ => 635 IF FREQ => 640 IF FREQ => 645 IF FREQ => 655 IF FREQ => 665 IF FREQ => 660 IF FREQ => 665 IF FREQ => 670 IF FREQ => 680 IF FREQ => 680 IF FREQ => 800 IF FREQ => 805 IF FREQ => 800 IF FREQ => 900	AND AND DO	FREQ =< 482.5 FREQ =< 488 FREQ =< 515 FREQ =< 540 FREQ =< 560 FREQ =< 570 FREQ =< 580 FREQ =< 590 FREQ =< 610 FREQ =< 615 FREQ =< 625 FREQ =< 625 FREQ =< 630 FREQ =< 635 FREQ =< 647.5 FREQ =< 650 FREQ =< 650 FREQ =< 655 FREQ =< 665 FREQ =< 665 FREQ =< 665 FREQ =< 660 FREQ =< 665 FREQ =< 660 FREQ =< 660 FREQ =< 660 FREQ =< 660 FREQ =< 670 FREQ =< 680 FREQ =< 680 FREQ =< 680 FREQ =< 720 FREQ =< 700 FREQ =< 800 FREQ =< 900	THEN ANTF = 22.7 THEN ANTF = 22.9 THEN ANTF = 23.1 THEN ANTF = 23.1 THEN ANTF = 23.3 THEN ANTF = 23.6 THEN ANTF = 23.7 THEN ANTF = 23.7 THEN ANTF = 23.9 THEN ANTF = 24.2 THEN ANTF = 24.2 THEN ANTF = 24.2 THEN ANTF = 24.5 THEN ANTF = 24.5 THEN ANTF = 24.5 THEN ANTF = 25.1 THEN ANTF = 25.1 THEN ANTF = 25.1 THEN ANTF = 25.1 THEN ANTF = 25.3 THEN ANTF = 25.3 THEN ANTF = 25.6 THEN ANTF = 25.6 THEN ANTF = 25.7 THEN ANTF = 25.7 THEN ANTF = 26.1 THEN ANTF = 26.1 THEN ANTF = 26.3 THEN ANTF = 26.3 THEN ANTF = 26.7 THEN ANTF = 26.7 THEN ANTF = 26.7 THEN ANTF = 26.7 THEN ANTF = 27.3 THEN ANTF = 27.3 THEN ANTF = 27.5 THEN ANTF = 27.8 THEN ANTF = 28.2 THEN ANTF = 28.4 THEN ANTF = 29.3 THEN ANTF = 29.4 THEN ANTF = 29.7 THEN ANTF = 29.7 THEN ANTF = 30.6 THEN ANTF = 30.6
IF FREQ => 910 IF FREQ => 920 IF FREQ => 930	AND AND AND	FREQ =< 920 FREQ =< 930 FREQ =< 940	THEN ANTF = 29.7 THEN ANTF = 29.9 THEN ANTF = 30
11 1 NEQ -/ 330	AND	1 NEW -< 1000	HILMANII - 31.4

Serial Number 6225

ELECTO-METRICS GAIN AND ANTENNA FACTORS MODEL RGA-60

1 METER CALIBRATION

FREQUENCY	14 FOOT	ANTENNA
MHz	CABLE LOSS	FACTOR
	FSJI-50A	
	. 55. 55	
1000	.84	23.21
1500	1.05	25.70
2000	1.22	27.15
2500	1.38	28.37
3000	1.53	29.93
3500	1.67	31.01
4000	1.80	32.45
4500	1.92	31.98
5000	2.04	33.33
5500	2.15	34.24
6000	2.27	34.48
6500	2.37	35.19
7000	2.48	36.05
7500	2.58	36.77
8000	2.68	37.33
8500	2.78	37.38
9000	2.87	37.14
9500	2.96	37.55
10000	3.06	38.33

TEST EQUIPMENT LIST A SPECTRUM TECHNOLOGY, INC.

Equipment	Manufacturer	Serial I	<u>Number</u>	Cal Date/Due Date		
Spectrum Analyzer	Hewlett-Packard 8562A 08562		60062	9/14/98	9/14/99	
Amplifier 9 kHz-1300 MHz	Hewlett-Packard 8447F 2727A02 OPT H64		02208	9/14/98 9/14/		
RF Signal Gen.	Fluke 6071A	2915016		5/14/99	4/14/00	
Service Monitor	IFR FM/AM 500A	4103				
Oscilloscope	Kikusui C055060	613229	95			
Power Supply	Astron VS35	860126	66			
Voltmeter	Fluke 8020A	N2420	658			
Multimeter	Fluke 25	37103 ²	10			
Wattmeter	Bird 43	56227				
RF Termination	Bird 8135	10004				
Dual Phase LISN 50 ohm/50 uH	STI per MP-4	02		1/8/99	1/9/00	
Dual Phase LISN 50 ohm/50 uH	Compliance Design 8012-5		60R-24-BNC	1/8/99	1/9/00	
Audio Generator	Hewlett-Packard 205-AG		8689			
Thermometer	Fluke 52		3965185			
Test Line	Simulator, Teltone TLS-2		none			
Turn Table, RC	EMCO 1060-2M		8912-1415			
Antenna Mast, RC	Compliance Design, Inc.		M100			
Antennas: Dipole Set Dipole Set Bi-Conical Bi-Conical Log-Periodic BiConiLog Active Loop	EMCO Model: 3121C EMCO Model: 3121C EMCO 3104 EMCO 3104C EMCO 3146 EMCO 3141 EMCO 6502		1335 1336 3763 9401-4635 1754 1125 9107-2645	refer refer 01/24/99 06/10/99 10/10/98	ence only ence only ence only 1/24/00 6/10/00 04/28/00 ence only	