

Page 1 of 54

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Hobbico Inc

ANYLINK2 Model No.: TACJ2005

FCC ID: IYFTTXAL2

Prepared for : Hobbico Inc

Address : 2904 Research Road Champaign, IL USA 61821

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Chan Yuan New Material Port, Keyuan

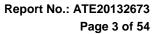
Rd. Science & Industry Park, Nan Shan, Shenzhen,

Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number: ATE20132673

Date of Test : Dec 13-Dec 31, 2013


Date of Report : Dec 31, 2013

Page 2 of 54

TABLE OF CONTENTS

Descrip	otion	Page
Test Re	eport Certification	
_	NERAL INFORMATION	
1.1.	Description of Device (EUT)	
1.2. 1.3.	Special Accessory and Auxiliary Equipment Description of Test Facility	
1.3. 1.4.	Measurement Uncertainty	
	ASURING DEVICE AND TEST EQUIPMENT	
	1: List of Test and Measurement Equipment	
	ERATION OF EUT DURING TESTING	
3.1.	Operating Mode	
3.2.	Configuration and peripherals	
	ST PROCEDURES AND RESULTS	
5. PO	WER LINE CONDUCTED MEASUREMENT	10
5.1.	Power Line Conducted Emission Measurement Limits	10
5.2.	Configuration of EUT on Measurement	
5.3.	Test Procedure	
5.4.	Power Line Conducted Emission Measurement Results	
6. 20D	OB BANDWIDTH MEASUREMENT	11
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(a)(1)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	
6.5.	Test Procedure	
6.6.	Test Result	
	AXIMUM PEAK OUTPUT POWER	
7.1.	Block Diagram of Test Setup	
7.2.	The Requirement For Section 15.247(a)(1)	
7.3. 7.4.	EUT Configuration on Measurement	
7.4. 7.5.	Test Procedure	
7.6.	Test Result	
	ME OF OCCUPANCY (DWELL TIME)	
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.247	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	17
8.6.	Test Result	18
9. CH	IANNEL SEPARATION TEST	22
9.1.	Block Diagram of Test Setup	22
9.2.	The Requirement For Section 15.247(a)1	22
9.3.	EUT Configuration on Measurement	
9.4.	Operating Condition of EUT	22

9.5.	Test Procedure	22
9.6.	Test Result	23
10. QU	JANTITY OF HOPPING CHANNEL TEST	25
10.1.	Block Diagram of Test Setup	
10.2.	The Requirement For Section 15.247	
10.3.	EUT Configuration on Measurement	
10.4.	Operating Condition of EUT	
10.5.	Test Procedure	
10.6.	Test Result	26
11. BA	AND EDGE COMPLIANCE TEST	27
11.1.	Block Diagram of Test Setup	27
11.2.	The Requirement For Section 15.247	
11.3.	EUT Configuration on Measurement	
11.4.	Operating Condition of EUT	27
11.5.	Test Procedure	27
11.6.	Test Result	28
12. RA	ADIATED SPURIOUS EMISSION TEST	36
12.1.	Block Diagram of Test Setup	36
12.2.	The Limit For Section 15.247(d)	
12.3.	Restricted bands of operation	37
12.4.	Configuration of EUT on Measurement	37
12.5.	Operating Condition of EUT	38
12.6.	Test Procedure	
12.7.	The Field Strength of Radiation Emission Measurement Results	38
13. CC	ONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	51
13.1.	Block Diagram of Test Setup	51
13.2.	The Requirement For Section 15.247(d)	51
13.3.	EUT Configuration on Measurement	51
13.4.	Operating Condition of EUT	
13.5.	Test Procedure	
13.6.	Test Result	52
14. AN	NTENNA REQUIREMENT	54
14.1.	The Requirement	54
14.2.	Antenna Construction	5.4
14.4.	Altenna Construction	

Page 4 of 54

District,

Test Report Certification

Applicant&: Hobbico Inc

address 2904 Research Road Champaign, IL USA 61821
Manufacturer&: Shanghai Nine Eagles Electronic Technology Co..Ltd

address No.818, FengRao Road, Malu town, Jiading

Shanghai, China

Product : ANYLINK2

Model No. : TACJ2005

Trade name : TACTIC

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4: 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	Dec 13-Dec 31, 2013
Prepared by :	(Tim.zhang, Engineer)
Approved & Authorized Signer : _	Lemil
	(Sean Liu, Manager)

Page 5 of 54

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

The submitted sample is a Wireless transmitter. The sample is powered by DC 3.7V (Powered by battery).

		2.4G RF transmitter
Frequency Range	:	2.403-2.479GHz
Channel Spacing	:	1MHz
Number of Channels	:	77
Modulation Type	:	GFSK
Type of Antenna	:	Non-removable Antenna
Max antenna gain	:	2.7dBi
Power Supply	:	DC 3.7V(Powered by battery)

Special Accessory and Auxiliary Equipment N/A

1.3. Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Page 6 of 54

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

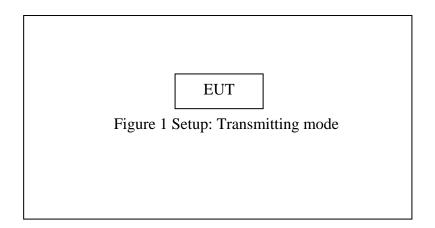
Page 7 of 54

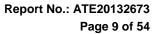
2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 12, 2013	Jan. 11, 2014
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 12, 2013	Jan. 11, 2014
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 12, 2013	Jan. 11, 2014
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 12, 2013	Jan. 11, 2014
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Feb. 06, 2013	Feb. 05, 2014
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Feb. 06, 2013	Feb. 05, 2014
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Feb. 06, 2013	Feb. 05, 2014
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Feb. 06, 2013	Feb. 05, 2014
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 12, 2013	Jan. 11, 2014
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 12, 2013	Jan. 11, 2014
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 12, 2013	Jan. 11, 2014
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 12, 2013	Jan. 11, 2014

Page 8 of 54


3. OPERATION OF EUT DURING TESTING


3.1.Operating Mode

The mode is used: **Transmitting mode**

Low Channel: 2403MHz Middle Channel: 2442MHz High Channel: 2479MHz

3.2. Configuration and peripherals

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	N/A
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
Section 15.247(a)(1)	Channel Separation Test	Compliant
Section 15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.205 Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Remark: "N/A" means "Not applicable".

Page 10 of 54

5. POWER LINE CONDUCTED MEASUREMENT

5.1. Power Line Conducted Emission Measurement Limits

Frequency	Limit d	B(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.2. Configuration of EUT on Measurement

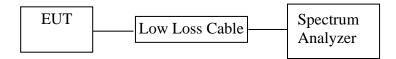
The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.3.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

5.4. Power Line Conducted Emission Measurement Results


Not applicable

Page 11 of 54

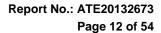
6. 20DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

6.3.EUT Configuration on Measurement


The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

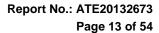
- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2403-2479 MHz. We select 2403MHz, 2442MHz, 2479MHz TX frequency to transmit.

6.5. Test Procedure

- 1. Set resolution bandwidth (RBW) = 30 kHz.
- 2. Set the video bandwidth (VBW) = 100 kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

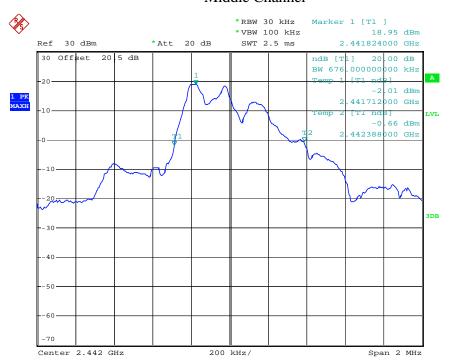


6.6.Test Result

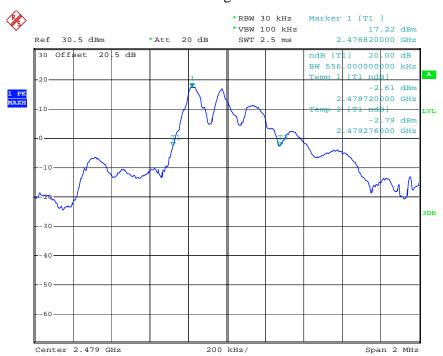

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
1	2403	0.544
40	2442	0.676
77	2479	0.556

The spectrum analyzer plots are attached as below.

Low Channel



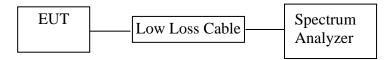
Date: 30.DEC.2013 14:09:08



Middle Channel

Date: 31.DEC.2013 09:04:21

High Channel


Date: 30.DEC.2013 15:24:28

Page 14 of 54

7. MAXIMUM PEAK OUTPUT POWER

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1):) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

7.3.EUT Configuration on Measurement

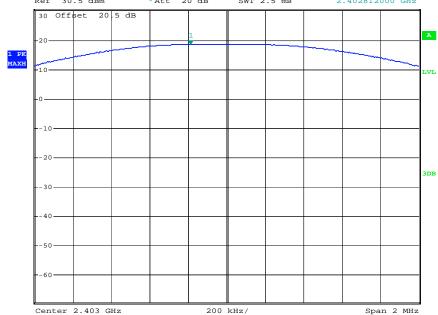
The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

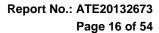
- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2403-2479 MHz. We select 2403MHz, 2442MHz, 2479MHz TX frequency to transmit.

7.5.Test Procedure

- 7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- 7.5.3.Measurement the maximum peak output power.

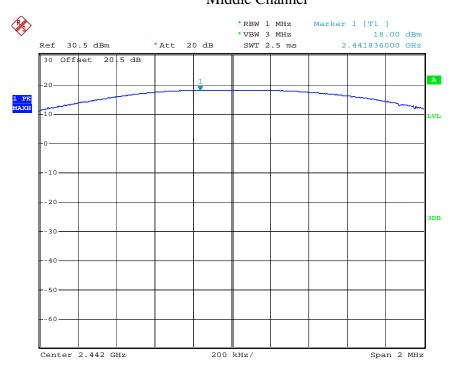

7.6.Test Result

Test mode: Transmitting						
Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (W)	Limits dBm / W		
Low	2403	18.59	0.072	30 dBm / 1 W		
Middle	2442	18.00	0.063	30 dBm / 1 W		
High	2479	16.88	0.049	30 dBm / 1 W		

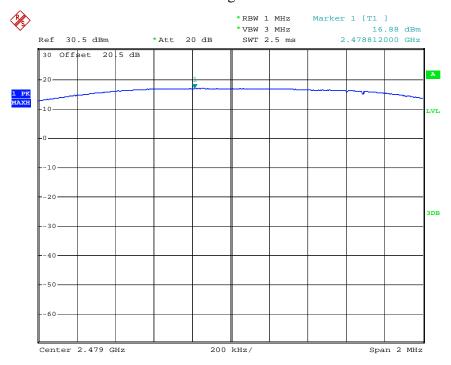

Low Channel

The spectrum analyzer plots are attached as below.

*RBW 1 MHz Marker 1 [T1] *VBW 3 MHz 18.59 dBm Ref 30.5 dBm *Att 20 dB SWT 2.5 ms 2.402812000 GHz



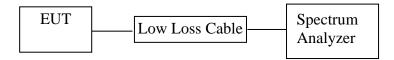
Date: 30.DEC.2013 14:15:35



Middle Channel

Date: 30.DEC.2013 15:09:42

High Channel


Date: 30.DEC.2013 15:16:57

Page 17 of 54

8. TIME OF OCCUPANCY (DWELL TIME)

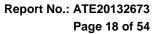
8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

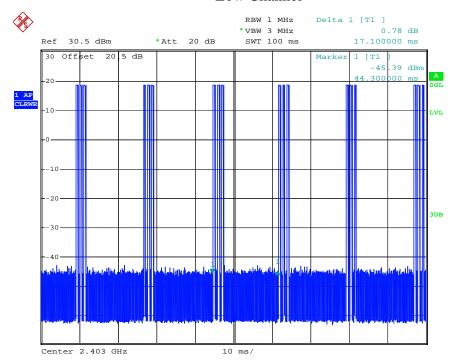

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2403-2479 MHz. We select 2403MHz, 2442MHz, 2479MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 * channel no. (s), the quantity of pulse was get from single sweep.

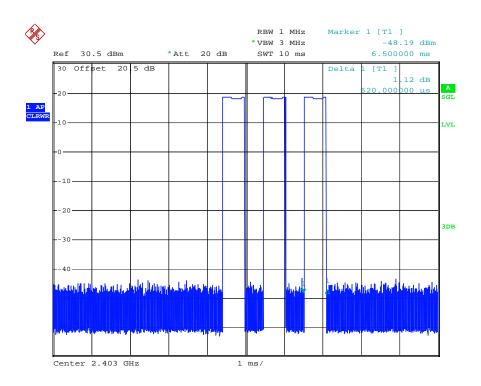
Dwell Time= time slot length * hope rate/ number of hopping channels * 31.6s

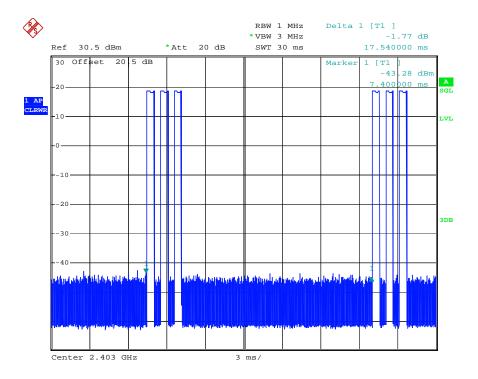


8.6.Test Result

Mode	Channel	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Result
	Low	1.86	0.0417	0.4	Pass
	Middle	1.86	0.0417	0.4	Pass
	High	1.86	0.0417	0.4	Pass
	400ms*77 hopping channels=30.8sec(Time of Occupancy Limit)				
TX	EUT transmitter has a channel hopping rate of 56hops/s/slot				
	56hops/s/77=56/77=0.727hops/sec 0.727*30.8=22.4 0.62 *3=1.86				
	Dwell Time=22.4*1.86=41.664ms				

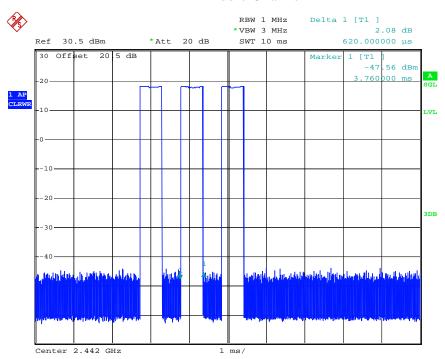
The spectrum analyzer plots are attached as below.


Low Channel

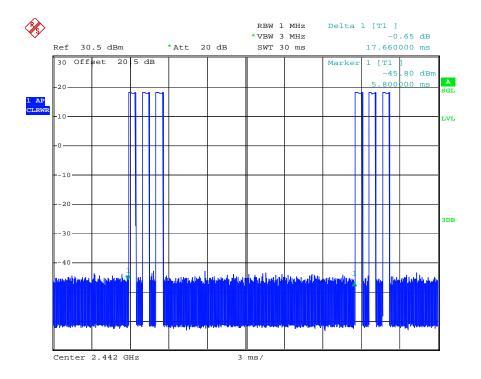

Date: 30.DEC.2013 14:20:14

Page 19 of 54

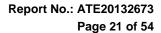
Date: 30.DEC.2013 14:21:38



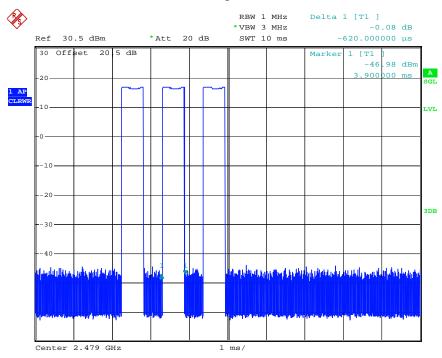
Date: 30.DEC.2013 14:23:12



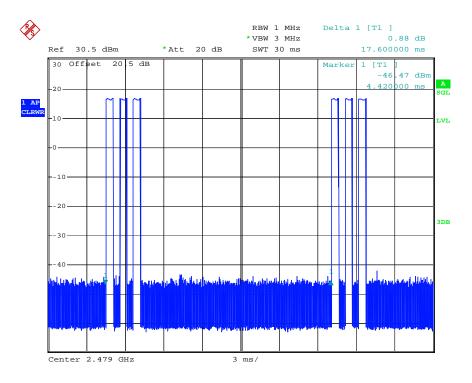
Page 20 of 54


Middle Channel

Date: 30.DEC.2013 15:10:32

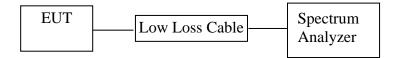


Date: 30.DEC.2013 15:11:25



High Channel

Date: 30.DEC.2013 15:15:18


Date: 30.DEC.2013 15:14:21

Page 22 of 54

9. Channel Separation Test

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(a)1

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

9.3.EUT Configuration on Measurement

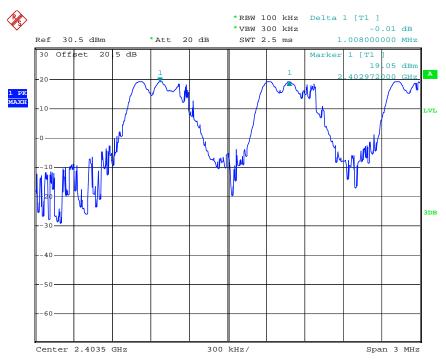
The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

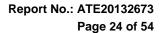
- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2403-2479 MHz. We select 2403MHz, 2442MHz, and 2479MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.Set the EUT in transmitting mode, spectrum Bandwidth was set at 100 kHz, maxhold the channel.
- 9.5.2.Set the adjacent channel of the EUT maxhold another trace
- 9.5.3. Measure the channel separation.

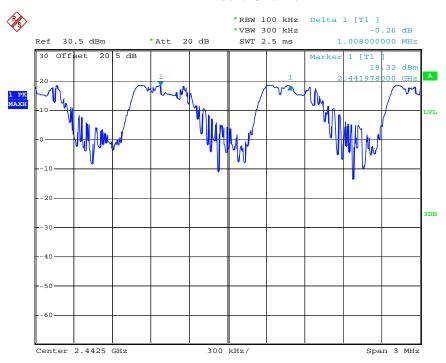


9.6.Test Result

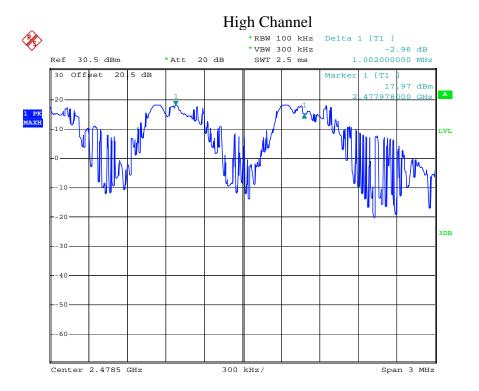

Channel	Channel Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low Channel	2403	1.008	0.544	Pass
Adjacent Channel	2404	1.008	0.544	1 488
Mid Channel	2442	1.008	0.676	Pass
Adjacent Channel	2443	1.008	0.070	rass
High Channel	2479	1.002	0.556	Dogg
Adjacent Channel	2478	1.002	0.556	Pass

The spectrum analyzer plots are attached as below.

Low Channel

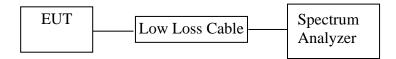


Date: 30.DEC.2013 16:35:25



Middle Channel

Date: 30.DEC.2013 16:46:14


Date: 30.DEC.2013 16:59:16

Page 25 of 54

10.QUANTITY OF HOPPING CHANNEL TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement For Section 15.247

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

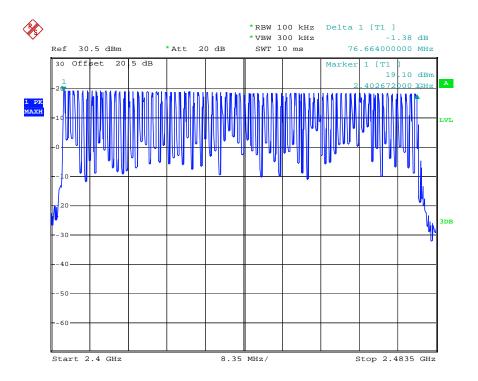
10.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.4. Operating Condition of EUT

- 10.4.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in Hopping modes measure it. The transmit frequency are 2403-2479 MHz.

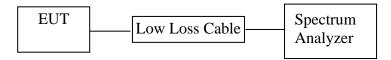
10.5.Test Procedure


- 10.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 10.5.2.Set the EUT in hopping mode from first channel to last.
- 10.5.3.By using the Max-Hold function record the Quantity of the channel.

10.6.Test Result

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	77	≥ 15

The spectrum analyzer plots are attached as below.


Date: 30.DEC.2013 15:55:18

Page 27 of 54

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

11.2. The Requirement For Section 15.247

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2403-2479 MHz. We select 2403MHz, 2479MHz TX frequency to transmit.

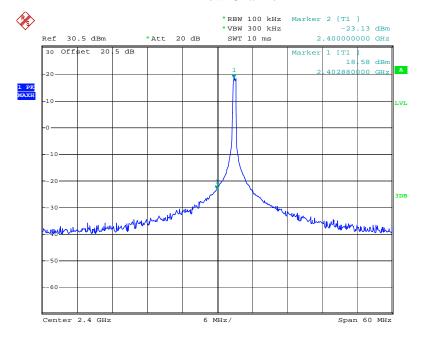
11.5.Test Procedure

Conducted Band Edge:

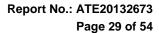
11.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.

Page 28 of 54

11.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

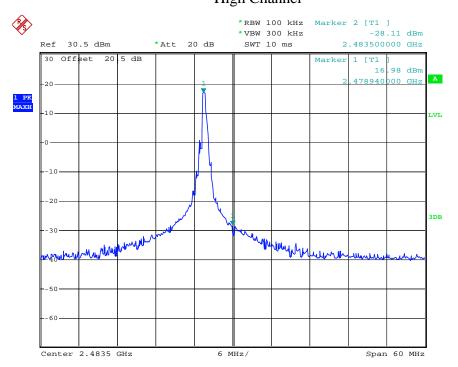

Radiate Band Edge:

- 11.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 11.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 11.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 11.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- 11.5.7.RBW=1MHz, VBW=1MHz
- 11.5.8. The band edges was measured and recorded.


11.6.Test Result

Frequency	Result of Band Edge	Limit of Band Edge
(MHz)	(dBc)	(dBc)
2403	41.71	> 20dBc
2479	45.09	> 20dBc

Low Channel



Date: 30.DEC.2013 14:14:30

High Channel

Date: 30.DEC.2013 15:26:06

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 30 of 54

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

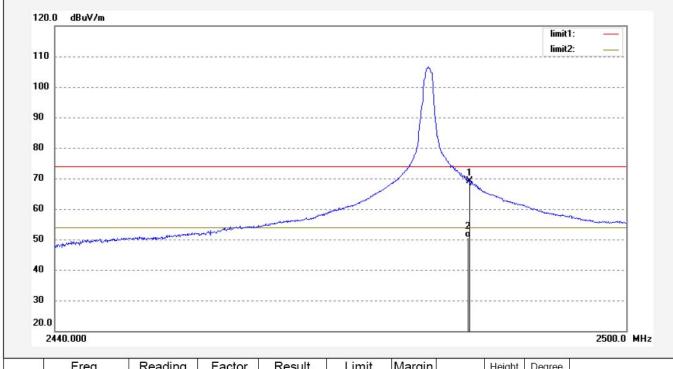
Test mode: Non-hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: alen #3299 Polarization: Horizontal Standard: FCC PK Power Source: DC 3.7V

Test item: Radiation Test Power Source: DC 3.7


 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 11/38/14

 EUT:
 ANYLINKS
 Engineer Signature:

 Mode:
 TX 2479MHz
 Distance: 3m

Mode: TX 2479MHz Model: TACJ2005 Manufacturer: Eagles

Note: Report No:ATE20132673

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.440	75.60	-6.54	69.06	74.00	-4.94	peak			
2	2483.440	57.23	-6.54	50.69	54.00	-3.31	AVG			

Report No.: ATE20132673 Page 31 of 54

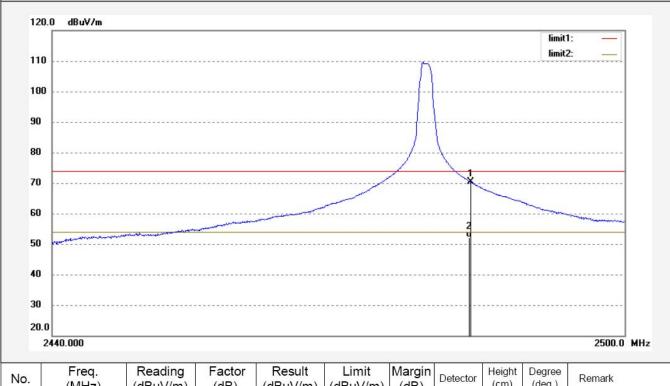
ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3298 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %


EUT: ANYLINKS
Mode: TX 2479MHz
Model: TACJ2005

Manufacturer: Eagles

Note: Report No:ATE20132673

Polarization: Vertical Power Source: DC 3.7V

Date: 13/12/30/ Time: 11/33/36 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.740	76.82	-6.54	70.28	74.00	-3.72	peak			
2	2483.740	58.68	-6.54	52.14	54.00	-1.86	AVG			

ACCURATE TECHNOLOGY CO., LTD.

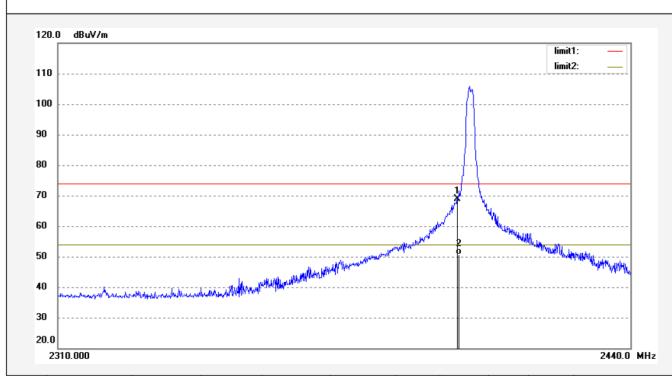
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20132673

Page 32 of 54

Job No.: alen #3291 Standard: FCC PK

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 55 %


EUT: ANYLINKS
Mode: TX 2403MHz
Model: TACJ2005

Manufacturer: Eagles

Note: Report No:ATE20132673

Polarization: Horizontal Power Source: DC 3.7V

Date: 13/12/30/
Time: 11/15/29
Engineer Signature:
Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2400.090	75.69	-6.76	68.93	74.00	-5.07	peak			
2	2400.090	57.32	-6.76	50.56	54.00	-3.44	AVG			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20132673

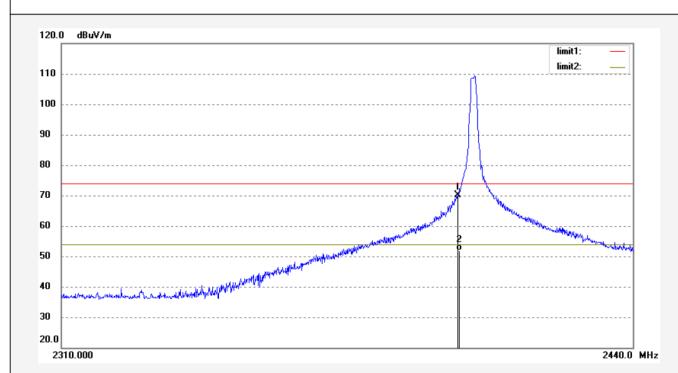
Page 33 of 54

Job No.: alen #3290 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: **ANYLINKS** Mode: TX 2403MHz TACJ2005 Model:


Manufacturer: Eagles

Polarization: Vertical Power Source: DC 3.7V

Date: 13/12/30/ Time: 11/12/11 Engineer Signature:

Distance: 3m

Note: Report No:ATE20132673

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	l	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2399.570	76.96	-6.76	70.20	74.00	-3.80	peak			
2	2399.570	58.57	-6.76	51.81	54.00	-2.19	AVG			

Site: 1# Chamber

Page 34 of 54

Test mode:hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

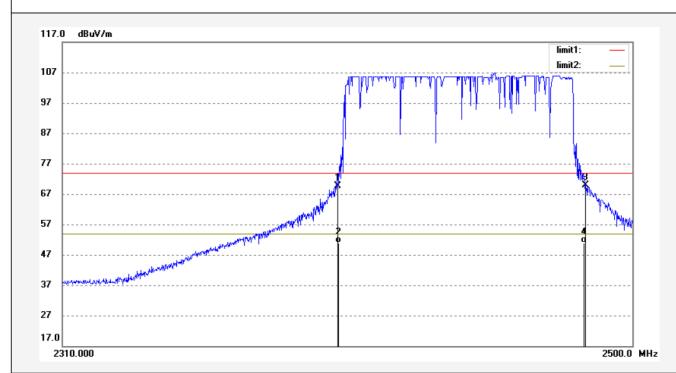
Rd, Tel:+86-0755-26503290 China Fax:+86-0755-26503396

Job No.: alen #3301 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: ANYLINKS


Mode: TX

Model: TACJ2005 Manufacturer: Eagles

Note: Report No:ATE20132673

Polarization: Horizontal Power Source: DC 3.7V

Date: 13/12/31/
Time: 10/57/00
Engineer Signature:
Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2399.870	76.44	-6.76	69.68	74.00	-4.32	peak			
2	2399.870	57.68	-6.76	50.92	54.00	-3.08	AVG			
3	2483.850	76.39	-6.54	69.85	74.00	-4.15	peak			
4	2483.850	57.49	-6.54	50.95	54.00	-3.05	AVG			

ATC[®]

Page 35 of 54

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ACCURATE TECHNOLOGY CO., LTD.

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

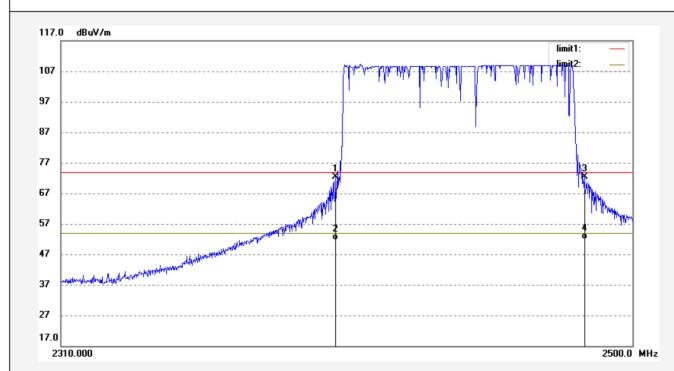
Report No.: ATE20132673

Job No.: alen #3300 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: ANYLINKS


Mode: TX

Model: TACJ2005 Manufacturer: Eagles

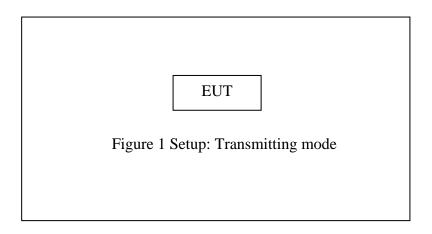
Note: Report No:ATE20132673

Polarization: Vertical
Power Source: DC 3.7V

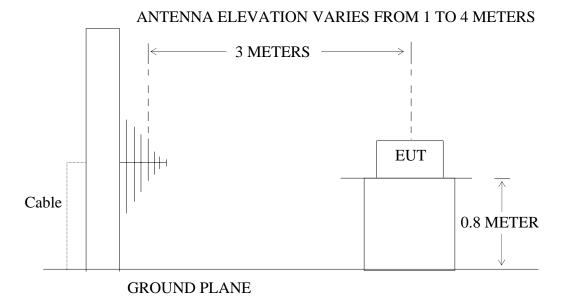
Date: 13/12/31/
Time: 10/50/35
Engineer Signature:
Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2399.680	79.07	-6.76	72.31	74.00	-1.69	peak			
2	2399.680	58.45	-6.76	51.69	54.00	-2.31	AVG			
3	2483.470	78.88	-6.54	72.34	74.00	-1.66	peak			
4	2483.470	58.37	-6.54	51.83	54.00	-2.17	AVG			

ATC


Report No.: ATE20132673

Page 36 of 54


12. RADIATED SPURIOUS EMISSION TEST

12.1.Block Diagram of Test Setup

12.1.1.Block diagram of connection between the EUT and peripherals

12.1.2.Semi-Anechoic Chamber Test Setup Diagram

12.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the

Page 37 of 54

transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

12.3.Restricted bands of operation

12.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

рстп	nticu in any of the freque	ncy bands fisted below.	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{2}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

12.4.Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Page 38 of 54

12.5. Operating Condition of EUT

- 12.5.1. Setup the EUT and simulator as shown as Section 12.1.
- 12.5.2. Turn on the power of all equipment.
- 12.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2403-2479 MHz. We select 2403MHz, 2442MHz, and 2479MHz TX frequency to transmit.

12.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9kHz in below 30MHz, and set at 120kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9kHz to 25GHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector. The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

12.7. The Field Strength of Radiation Emission Measurement Results

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.
- 4. The EUT is tested radiation emission at each test channel in three axes. The worst emissions are reported in all test mode and channels.
 - 5. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Engineer Signature:

Distance: 3m

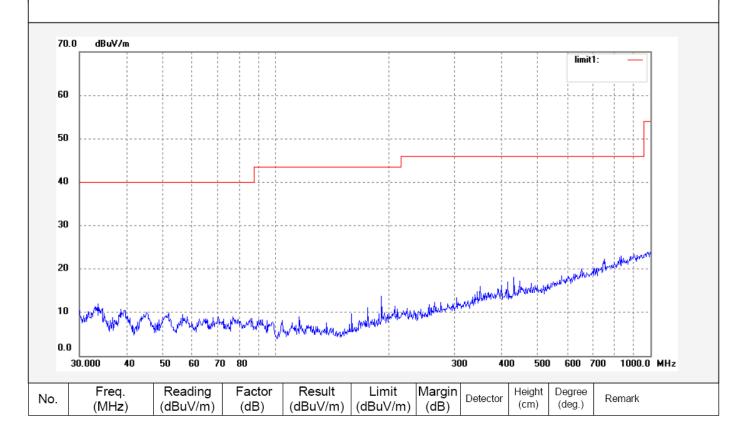
Page 39 of 54

Below 1G

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: alen #3082 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V


Test item: Radiation Test Date: 13/12/14/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/45/49

EUT: ANYLINKS

Mode: TX 2403MHz

Model: TAC 12005

Model: TACJ2005 Manufacturer: Eagles

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20132673

Page 40 of 54

Job No.: alen #3081

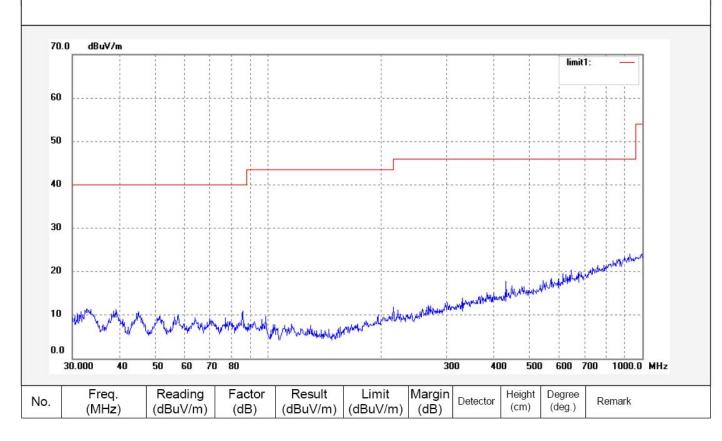
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: ANYLINKS

Mode: TX 2403MHz


Model: TACJ2005

Manufacturer: Eagles

Polarization: Vertical Power Source: DC 3.7V

Date: 13/12/14/ Time: 9/45/06

Engineer Signature: Distance: 3m

Page 41 of 54

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

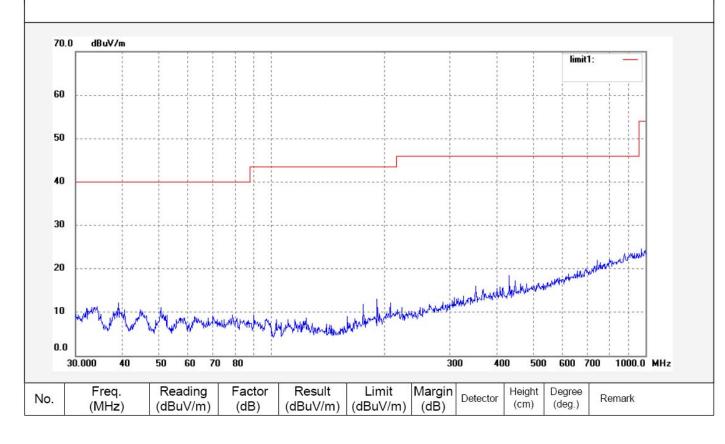
Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3083

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %


EUT: **ANYLINKS** Mode: TX 2442MHz Model: TACJ2005 Manufacturer: Eagles

Polarization: Horizontal Power Source: DC 3.7V

Date: 13/12/14/ Time: 9/46/26

Engineer Signature: Distance: 3m

Report No:ATE20132673 Note:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

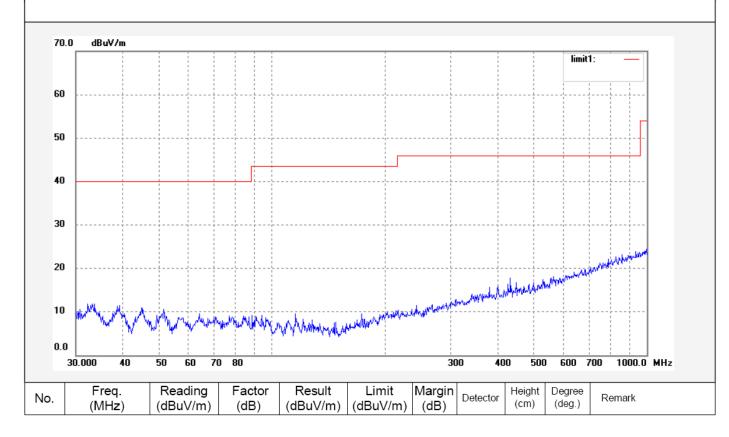
Report No.: ATE20132673

Page 42 of 54

Job No.: alen #3084

Standard: FCC Class B 3M Radiated

Test item: Radiation Test


Temp.(C)/Hum.(%) 25 C / 55 %

EUT: ANYLINKS
Mode: TX 2442MHz
Model: TACJ2005
Manufacturer: Eagles

Polarization: Vertical Power Source: DC 3.7V

Date: 13/12/14/ Time: 9/47/20 Engineer Signature:

Distance: 3m

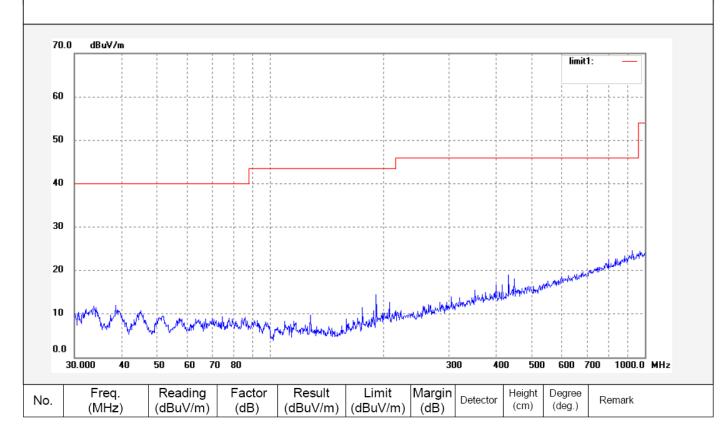
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20132673

Page 43 of 54

Job No.: alen #3086

Standard: FCC Class B 3M Radiated


Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: ANYLINKS Mode: TX 2479MHz Model: TACJ2005 Manufacturer: Eagles Polarization: Horizontal

Power Source: DC 3.7V

Date: 13/12/14/
Time: 9/49/12
Engineer Signature:
Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20132673

Page 44 of 54

Job No.: alen #3085

Standard: FCC Class B 3M Radiated

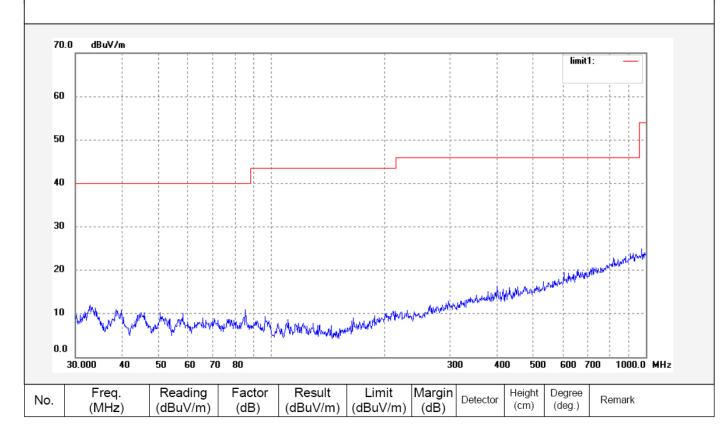
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: ANYLINKS

Mode: TX 2479MHz

Model: TACJ2005


Manufacturer: Eagles

Polarization: Vertical

Power Source: DC 3.7V Date: 13/12/14/

Time: 9/48/03 Engineer Signature:

Distance: 3m

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

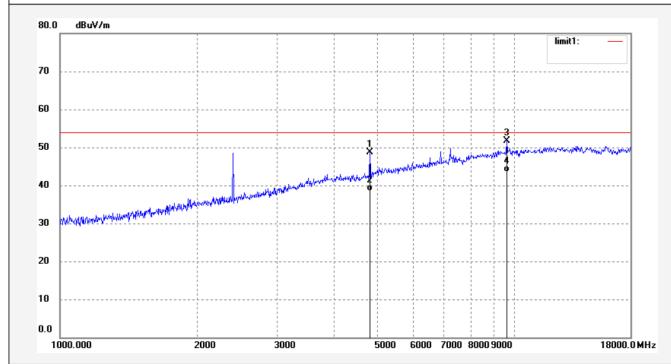
Page 45 of 54

Above 1G

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Horizontal Power Source: DC 3.7V


Date: 13/12/30/
Time: 11/23/59
Engineer Signature:
Distance: 3m

Job No.: alen #3293 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: ANYLINKS
Mode: TX 2403MHz
Model: TACJ2005
Manufacturer: Eagles

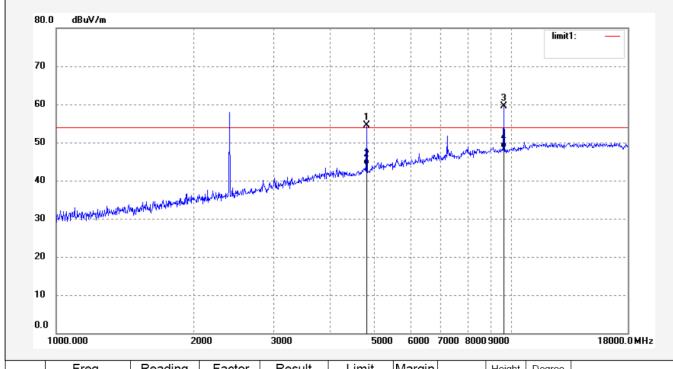
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	4804.110	50.26	-1.59	48.67	74.00	-25.33	peak			
2	4804.110	40.17	-1.59	38.58	54.00	-15.42	AVG			
3	9613.430	46.70	4.92	51.62	74.00	-22.38	peak			
4	9613.430	38.54	4.92	43.46	54.00	-10.54	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20132673

Page 46 of 54

Job No.: alen #3292 Polarization: Vertical


Standard: FCC Class B 3M Radiated Power Source: DC 3.7V
Test item: Radiation Test Date: 13/12/30/

 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 11/22/30

 EUT:
 ANYLINKS
 Engineer Signature:

 Mode:
 TX 2403MHz
 Distance: 3m

Model: TACJ2005 Manufacturer: Eagles

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	4804.110	56.01	-1.59	54.42	74.00	-19.58	peak			
2	4804.110	45.75	-1.59	44.16	54.00	-9.84	AVG			
3	9613.430	54.66	4.92	59.58	74.00	-14.42	peak			
4	9613.430	43.52	4.92	48.44	54.00	-5.56	AVG			

Page 47 of 54

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3294

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: ANYLINKS
Mode: TX 2442MHz
Model: TACJ2005

Manufacturer: Eagles

Note: Report No:ATE20132673

Polarization: Horizontal

Power Source: DC 3.7V

Date: 13/12/30/ Time: 11/25/35 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	4888.151	51.47	-1.33	50.14	74.00	-23.86	peak			
2	4888.151	39.89	-1.33	38.56	54.00	-15.44	AVG			
3	9781.602	46.97	5.08	52.05	74.00	-21.95	peak			
4	9781.602	37.35	5.08	42.43	54.00	-11.57	AVG			

Page 48 of 54

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3295

Standard: FCC Class B 3M Radiated

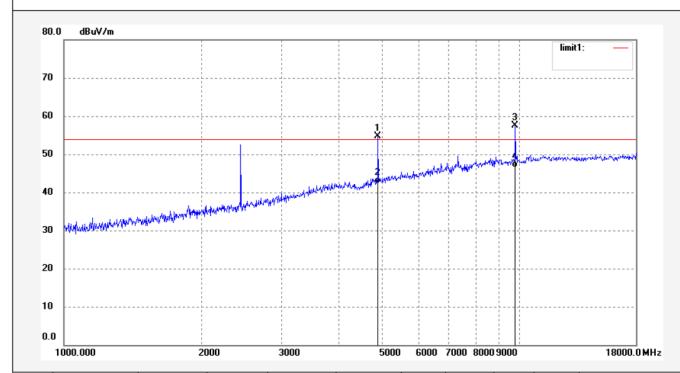
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: ANYLINKS

Mode: TX 2442MHz

Model: TACJ2005


Manufacturer: Eagles

Note: Report No:ATE20132673

Polarization: Vertical

Power Source: DC 3.7V

Date: 13/12/30/ Time: 11/26/44 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	4888.151	55.95	-1.33	54.62	74.00	-19.38	peak			
2	4888.151	43.57	-1.33	42.24	54.00	-11.76	AVG			
3	9781.602	52.48	5.08	57.56	74.00	-16.44	peak			
4	9781.602	41.49	5.08	46.57	54.00	-7.43	AVG			

ATC[®]

Job No.: alen #3297

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290

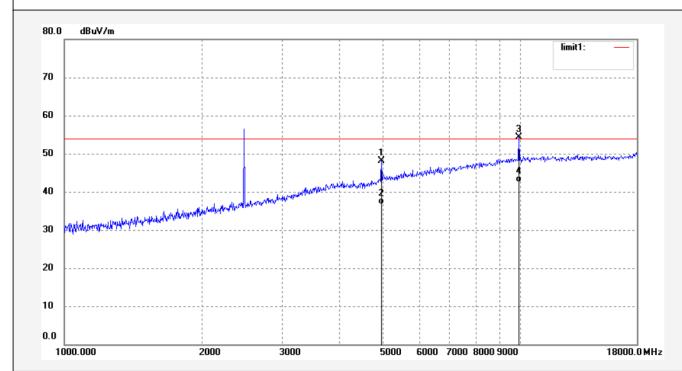
Fax:+86-0755-26503396

Report No.: ATE20132673

Page 49 of 54

Polarization: Horizontal Power Source: DC 3.7V

Date: 13/12/30/ Time: 11/29/35 Engineer Signature: Distance: 3m


Standard: FCC Class B 3M Radiated
Test item: Radiation Test

EUT: ANYLINKS
Mode: TX 2479MHz
Model: TACJ2005

Manufacturer: Eagles

Note: Report No:ATE20132673

Temp.(C)/Hum.(%) 25 C / 55 %

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	4959.307	49.20	-1.12	48.08	74.00	-25.92	peak			
2	4959.307	37.85	-1.12	36.73	54.00	-17.27	AVG			
3	9923.991	49.15	5.24	54.39	74.00	-19.61	peak			
4	9923.991	37.24	5.24	42.48	54.00	-11.52	AVG			

Page 50 of 54

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

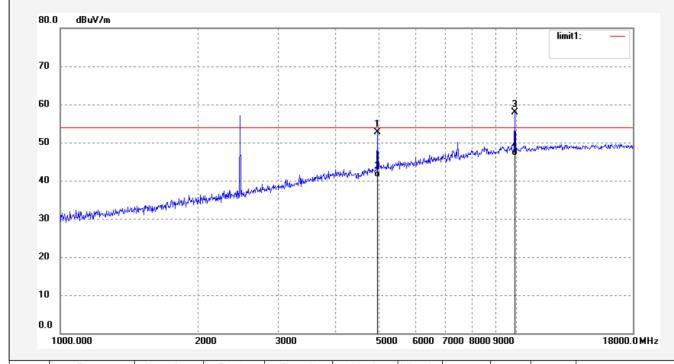
Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3296

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %


EUT: **ANYLINKS** Mode: TX 2479MHz Model: TACJ2005 Manufacturer: Eagles

Power Source: DC 3.7V Date: 13/12/30/

> Time: 11/28/16 Engineer Signature:

Polarization: Vertical

Distance: 3m

	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
,	1	4959.307	53.85	-1.12	52.73	74.00	-21.27	peak			
2	2	4959.307	42.12	-1.12	41.00	54.00	-13.00	AVG			
(3	9923.991	52.67	5.24	57.91	74.00	-16.09	peak			
4	1	9923.991	41.27	5.24	46.51	54.00	-7.49	AVG			

Page 51 of 54

13. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

13.1.Block Diagram of Test Setup

13.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

13.3.EUT Configuration on Measurement

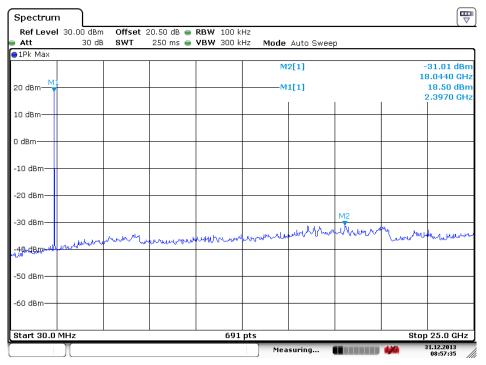
The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

13.4. Operating Condition of EUT

- 13.4.1. Setup the EUT and simulator as shown as Section 13.1.
- 13.4.2. Turn on the power of all equipment.
- 13.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2403-2479 MHz. We select 2403MHz, 2442MHz, and 2479MHz TX frequency to transmit.

Report No.: ATE20132673 Page 52 of 54

13.5.Test Procedure

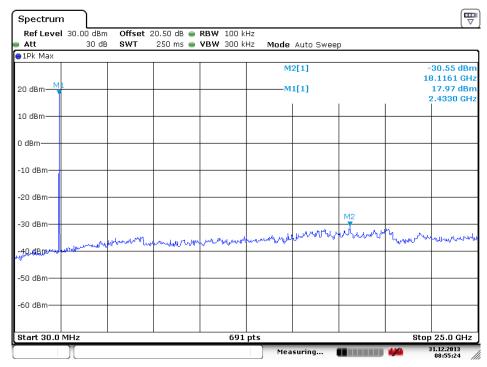

- 13.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 13.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz (From 30MHz to 25GHz).
- 13.5.3. The Conducted Spurious Emission was measured and recorded.

13.6.Test Result

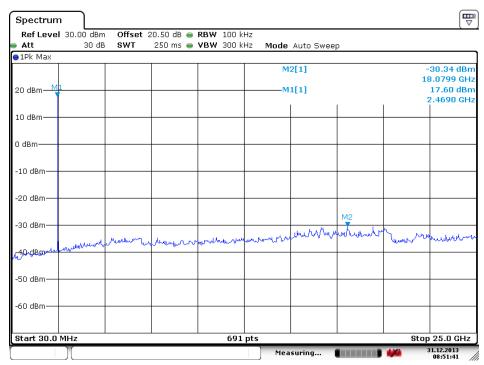
Pass.

The spectrum analyzer plots are attached as below.

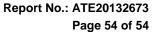
Low Channel



Date: 31.DEC.2013 08:57:35


Page 53 of 54

Middle Channel



Date: 31.DEC.2013 08:55:24

High Channel

Date: 31.DEC.2013 08:51:41


14.ANTENNA REQUIREMENT

14.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2. Antenna Construction

Device is equipped with Integral antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

