Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1088_May11

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1088

Calibration procedure(s)

QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

May 20, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe EX3DV4	SN: 3503	04-Mar-11 (No. EX3-3503_Mar11)	Mar-12
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature \
Calibrated by:	Claudio Leubler	Laboratory Technician	Vah
Approved by:	Katja Pokovic	Technical Manager	Cama

Issued: May 24, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	
Frequency	5200 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	(A.S 1, A.)	KARA

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.01 mW / g
SAR normalized	normalized to 1W	80.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.2 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 mW / g
SAR normalized	normalized to 1W	22.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.9 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	7.91 mW / g
SAR normalized	normalized to 1W	79.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	79.0 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 mW / g
SAR normalized	normalized to 1W	22.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.3 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.8 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.56 mW / g
SAR normalized	normalized to 1W	75.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.5 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 mW / g
SAR normalized	normalized to 1W	21.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.2 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.55 mW / g
SAR normalized	normalized to 1W	75.5 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.4 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 mW / g
SAR normalized	normalized to 1W	20.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.9 mW / g ± 19.5 % (k=2)

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.8 Ω - 9.6 jΩ	
Return Loss	-20.4 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	54.9 Ω - 2.7 jΩ	
Return Loss	-25.4 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	51.5Ω - $8.2 j\Omega$
Return Loss	-21.7 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.3 Ω - 1.5 jΩ	
Return Loss	-24.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns
A CONTRACTOR OF THE SECOND CONTRACTOR OF THE S	PRINTED CONTRACTOR OF THE CONT

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 21, 2009

DASY5 Validation Report for Head TSL

Date: 19.05.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1088

Communication System: CW; Frequency: 5200 MHz, Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: HSL 502 A

Medium parameters used: f = 5200 MHz; $\sigma = 4.54$ mho/m; $\varepsilon_r = 36.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.14$ mho/m; $\varepsilon_r = 35.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.81, 4.81, 4.81); Calibrated: 04.03.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

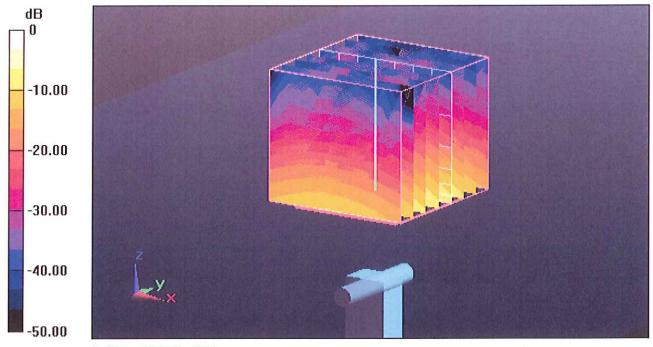
Reference Value = 65.020 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 29.625 W/kg

SAR(1 g) = 8.01 mW/g; SAR(10 g) = 2.29 mW/g

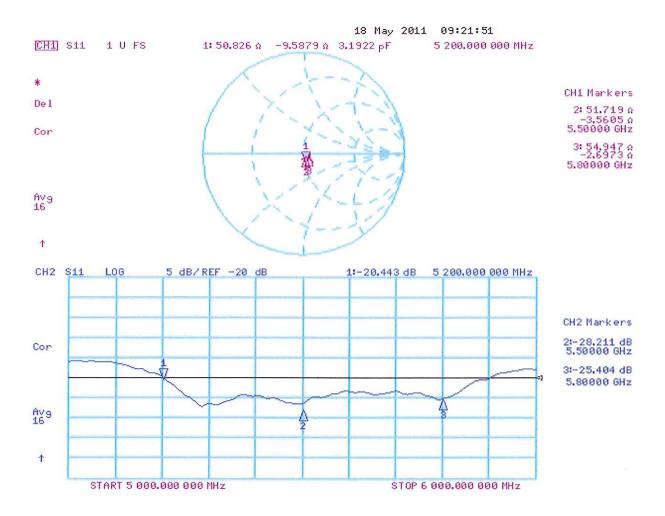
Maximum value of SAR (measured) = 18.318 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.692 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 33.004 W/kg


SAR(1 g) = 7.91 mW/g; SAR(10 g) = 2.23 mW/g

Maximum value of SAR (measured) = 18.971 mW/g

0 dB = 18.970 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.05.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1088

Communication System: CW; Frequency: 5200 MHz, Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: MSL 501

Medium parameters used: f = 5200 MHz; $\sigma = 5.4$ mho/m; $\epsilon_r = 48.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.21$ mho/m; $\epsilon_r = 47.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.38, 4.38, 4.38); Calibrated: 04.03.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

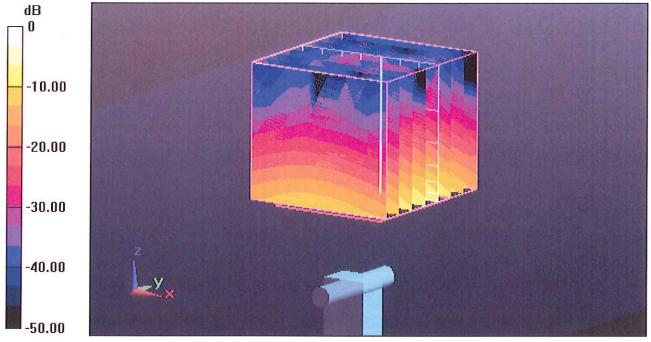
Reference Value = 58.718 V/m; Power Drift = 0.0076 dB

Peak SAR (extrapolated) = 29.266 W/kg

SAR(1 g) = 7.56 mW/g; SAR(10 g) = 2.12 mW/g

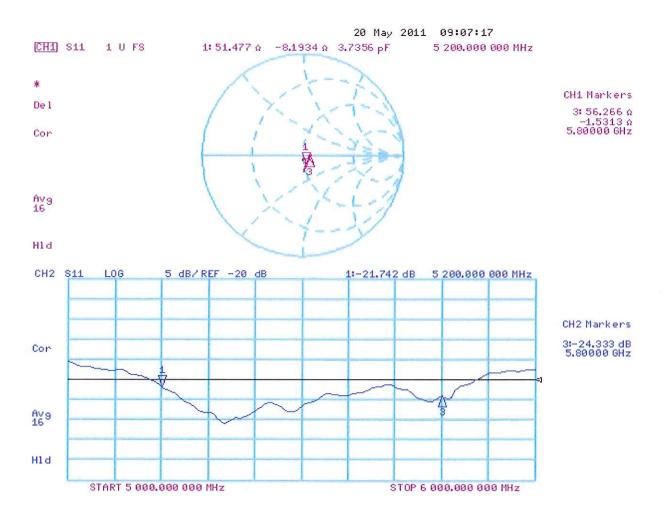
Maximum value of SAR (measured) = 17.287 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.349 V/m; Power Drift = 0.0025 dB

Peak SAR (extrapolated) = 34.817 W/kg


SAR(1 g) = 7.55 mW/g; SAR(10 g) = 2.09 mW/g

Maximum value of SAR (measured) = 18.476 mW/g

0 dB = 18.480 mW/g

Impedance Measurement Plot for Body TSL

MOTOROLA MOBILITY, EME Laboratories

Extension of Dipole Calibration Interval

FCD-1954, Rev.2

Dipole SN:	1088
Date of last external calibration:	5/20/2011
External calibration performed by:	SPEAG

		1st Extension	2nd Extension	
	Original	Internal	Internal	
	Calibration Data:	Verification:	Verification:	Accept / Reject
	5/20/2011	3/22/2012	<date></date>	
Return loss (dB): Verify < -20dB & within 20% of original	-20.4	-20.3	-	Accept
Impedance, Real (Ω): Verify within +/-5 Ω of original	50.8	55.1	-	Accept
Impedance, Imaginary (Ω): Verify within +/-5 Ω of original	-9.6	-8.5	-	Accept

Conclusion:

Based on the requirements of KDB 50824 D02 Dipole SAR Validation Veritification v01, it has been concluded that the dipole identified above has qualified for extension of its calibration interval for one additional year. This review shall be repeated annually, but not to exceed a maximum 3 years from the most recent manufacturer's calibration.

First Extension Period:

Approved extension period: 1 Year

Previous due date: 5/20/2012 **NEW DUE DATE:** 5/20/2013

2 years from date of last external calibration

Authorized by: Marge Kaunas

Second Extension Period:

Approved extension period: 1 Year

Previous due date:

NEW DUE DATE:

3 years from date of last external calibration

Authorized by:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1098 Jan12

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1098

Calibration procedure(s)

QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

January 17, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Certificate No.)	Scheduled Calibration
GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
US37292783	05-Oct-11 (No. 217-01451)	Oct-12
SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
SN: 3503	30-Dec-11 (No. EX3-3503_Dec11)	Dec-12
SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
ID#	Check Date (in house)	Scheduled Check
MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
Name	Function	Signature
Dimce Iliev	Laboratory Technician	D. Riev
	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206	GB37480704 05-Oct-11 (No. 217-01451) US37292783 05-Oct-11 (No. 217-01451) SN: 5086 (20g) 29-Mar-11 (No. 217-01368) SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) SN: 3503 30-Dec-11 (No. EX3-3503_Dec11) SN: 601 04-Jul-11 (No. DAE4-601_Jul11) ID # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-11) 100005 04-Aug-99 (in house check Oct-11) US37390585 S4206 18-Oct-01 (in house check Oct-11) Name Function

Issued: January-18-201263

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1098 Jan12

Page 1 of 11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Page A204

Certificate No: D5GHzV2-1098 Jan12

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom V5.0		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)	
Frequency	5200 MHz ± 1 MHz 5800 MHz ± 1 MHz		

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.91 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	79.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.7 mW /g ± 16.5 % (k=2)

Head TSL parameters at 5800 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.22 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.82 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.2 mW / g ± 16.5 % (k=2)

Page A205

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.2 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	73.7 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.8 mW / g ± 17.6 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

-	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.28 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	ADDRESS.	

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	71.1 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	1.97 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	19.7 mW / g ± 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.1 Ω - 6.8 jΩ
Return Loss	- 23.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.1 Ω - 0.6 jΩ
Return Loss	- 23.6 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	51.0 Ω - 5.6 jΩ
Return Loss	- 25.0 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	$58.0 \Omega + 0.6 j\Omega$
Return Loss	- 22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.206 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 24, 2010

DASY5 Validation Report for Head TSL

Date: 17.01.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1098

Communication System: CW; Frequency: 5200 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.6 \text{ mho/m}$; $\varepsilon_r = 36.3$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters

used: f = 5800 MHz; $\sigma = 5.22 \text{ mho/m}$; $\varepsilon_r = 35.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: EX3DV4 - SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.621 V/m; Power Drift = 0.09 dB

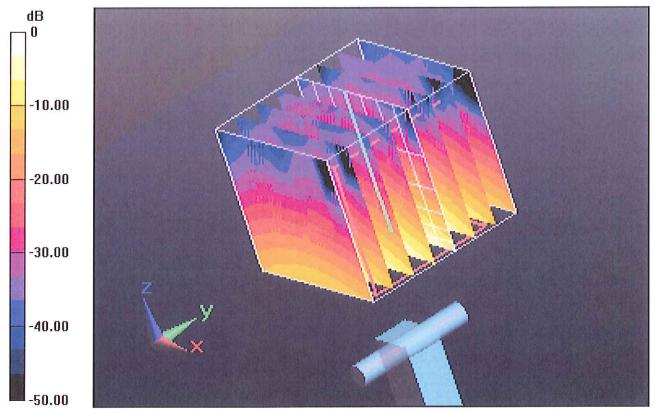
Peak SAR (extrapolated) = 29.5950

SAR(1 g) = 7.91 mW/g; SAR(10 g) = 2.27 mW/g

Maximum value of SAR (measured) = 18.221 mW/g

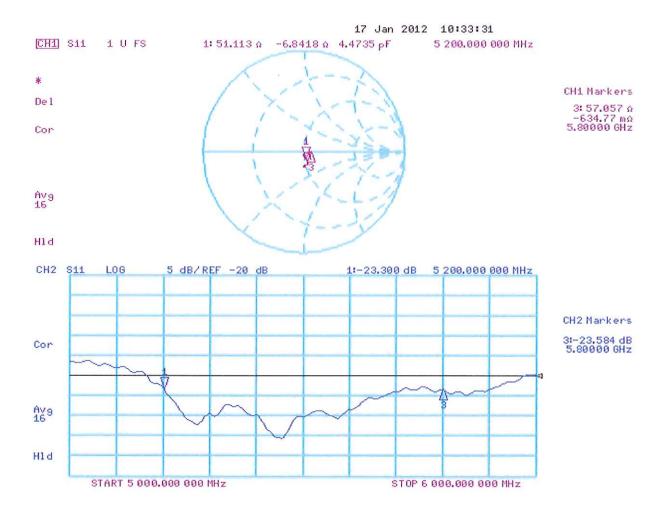
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 60.177 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.0380

SAR(1 g) = 7.82 mW/g; SAR(10 g) = 2.22 mW/g


Maximum value of SAR (measured) = 18.918 mW/g

Page A208

0 dB = 18.920 mW/g = 25.54 dB mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.01.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1098

Communication System: CW; Frequency: 5200 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.46 \text{ mho/m}$; $\varepsilon_r = 49.2$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters

used: f = 5800 MHz; $\sigma = 6.28 \text{ mho/m}$; $\varepsilon_r = 48.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.093 V/m; Power Drift = -0.02 dB

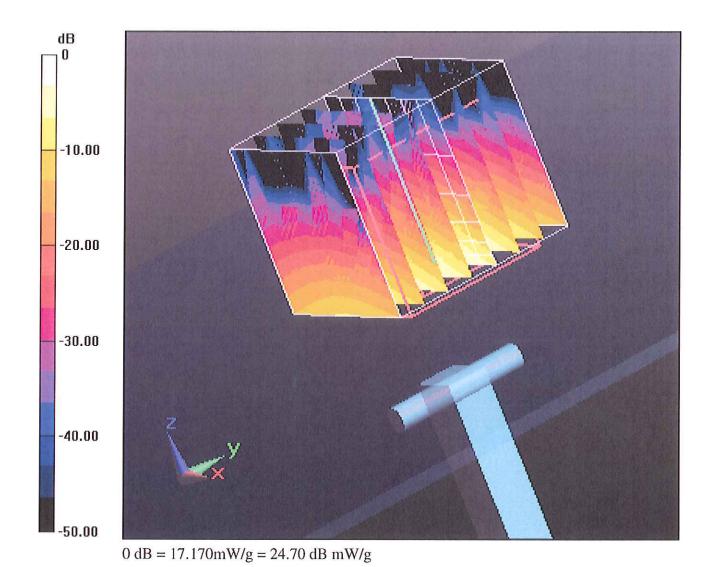
Peak SAR (extrapolated) = 28.8530

SAR(1 g) = 7.36 mW/g; SAR(10 g) = 2.07 mW/g

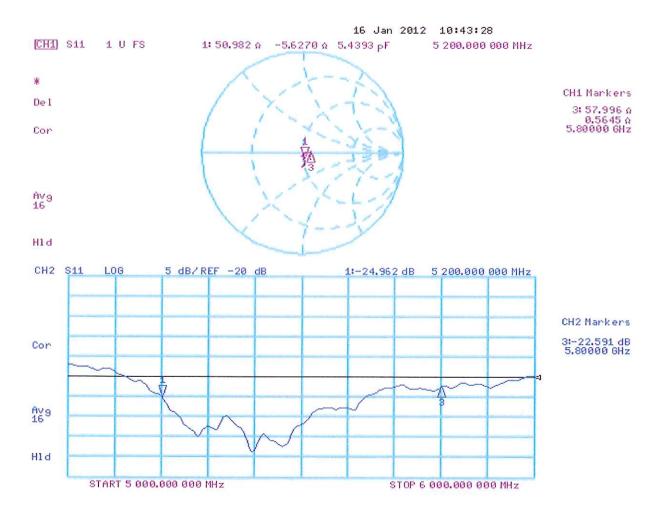
Maximum value of SAR (measured) = 16.771 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 53.483 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 33.0550


SAR(1 g) = 7.1 mW/g; SAR(10 g) = 1.97 mW/g

Maximum value of SAR (measured) = 17.172 mW/g

Page A211

Impedance Measurement Plot for Body TSL

FCC ID: IHDT56NG9

END OF REPORT

Exhibit 11 Page A214