

FCC ID: IHDT56HH1 DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Networks & Enterprise EME Test Laboratory 8000 West Sunrise Blvd

8000 West Sunrise Blvd Fort Lauderdale, FL. 33322 **Date of Report:** June 6, 2007

Report Revision: O

Report ID: i425_Rev O_070606_SR4944

Responsible Engineer: Stephen C. Whalen (EME Principle Staff Engineer)

Date/s Tested:5/11/2007-5/25/2007Manufacturer/Location:Motorola – PlantationSector/Group/Div.:iDEN MD Subscriber

Date submitted for test: 5/7/07

DUT Description: TDMA: 236:310 WiDEN (76.1%), 81:120, 2:6, 1:12, and 1:6; 64 QAM,

16QAM, and QPSK Modulations; 0.6 W Pulse Avg, MOTOtalk:

114:120 8FSK; 0.85 W nominal (GPS capable)

Test TX mode(s): 1:3, 1:6, 114:120, 236:310, 81:120

Max. Power output: 640 mW pulsed average (iDEN/WiDEN); 0.891 W (MOTOtalk)

Nominal Power: 0.6 W Pulse Average Conducted Power (iDEN/WiDEN); 0.85 W (MOTOtalk)

Tx Frequency Bands: 806-825, 896-902 MHz (iDEN/WiDEN); 902-928 MHz (MOTOtalk)

Signaling type: TDMA: iDEN; WiDEN, MOTOtalk - (FHSS 8FSK)

Model(s) Tested: H98XAH6JR2AN / NWF1277A
Model(s) Certified: H98XAH6JR2AN / NWF1277A

Serial Number(s): 364VHE3W18

Classification: General Population/Uncontrolled

Rule Part(s): 15 & 90

Approved Accessories:

Antenna(s):

8571750L01 (806-928MHz internal 1/4 wave antenna, -1.76Bd, 806-825MHz; -1.76dBd, 896-902MHz; -1.81dBd, 902-928MHz)

Battery(ies):

SNN5784A (BK60 Slim Li-Ion Battery), NNTN7136A (i425 Slim Battery Door)

Audio/Data cable accessory(ies):

NNTN5330B (PTT Headset, Earbud), NNTN5004B (PTT headset, Over-the-Ear), NNTN5005B (PTT headset, Over-the-Head), NNTN5006B (PTT headset, Flexible Earwrap), NNTN5211B (2-Wire Surveillance Headset), NNTN6312A (3-Wire Surveillance Headset), NNTN6531A (Data cable), SKN6371C (Data cable)

Max. Calc.: 1-g Avg. SAR: 1.41 W/kg (Body); 10-g Avg. SAR: 1.04 W/kg (Body) Max. Calc.: 1-g Avg. SAR: 1.16 W/kg (Face); 10-g Avg. SAR: 0.82 W/kg (Face) Max. Calc.: 1-g Avg. SAR: 1.35 W/kg (Head); 10-g Avg. SAR: 0.99 W/kg (Head)

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the test report guidelines of the TIA TSB-150 December 2004

The results and statements contained in this report pertain only to the device(s) evaluated

Signature on file
Deanna Zakharia N&E EME Lab Senior Resource Manager,
Laboratory Director,

Approval Date: 6/6/2007

Certification Date: 6/6/2007

Certification No.: L1070605P

Page 1 of 29

Part	1 of 2
1.0	Introduction and Overview
2.0	Referenced Standards and Guidelines
	2.1 SAR Limits
3.0	Description of Device Under Test (DUT)
4.0	Description of Test System
	4.1 Description of Robotics/Probes/Readout Electronics
	4.2 Description of Phantom(s) 6
	4.2.1 Flat Phantom6
	4.2.2 SAM Phantom
	4.3 Description of Equivalent Tissues
5.0	Additional Test Equipment
6.0	SAR Measurement System Verification
	6.1 Equivalent Tissue Test results
	6.2 System Check Test results
7.0	DUT Test Strategy and Methodology
	7.1 DUT Configuration(s)
	7.2 Device Positioning Procedures
	7.2.1 Body
	7.2.2 Head
	7.2.3 Face
8.0	Environmental Test Conditions
9.0	Test Results Summary
	9.1 Highest SAR results calculation methodology
10.0	Conclusion
4 DDI	ENDLORG
	ENDICES
A	Measurement Uncertainty
В	Probe Calibration Certificates
Part :	2 of 2
C	Dipole Calibration Certificates
D	Test System Verification Scans 9
E	DUT Scans (Shortened Scans and Highest SAR configurations)
F	DUT Supplementary Data (e.g. Power Slump)26
G	DUT Test Position Photos
Н	DUT Photos
I	DUT Antenna Separation Distances and Offered Accessory Test Status 30

Report Revision History

Date	Revision	Comments
6/6/2007	О	Initial release

1.0 Introduction and Overview

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the N&E EME Test Lab for the model number H98XAH6JR2AN / NWF1277A of FCC ID: IHDT56HH1. The results herein reflect initial test results.

The EME measurements were performed in accordance with the applicable testing guidelines set forth in IEC62209-1 (2005), Draft IEC62209-2 dated 8/31/06 and adopted by CENELEC as EN62209-1 (2006). The highest SAR levels clearly demonstrate compliance to ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300GHz) RF Exposure limits of 2.0 W/kg averaged over 10grams of contiguous tissue. The results also adhere to the 1.6 W/kg averaged over 1 gram of tissue as stipulated in ANSI C95.1-2005.

2.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1(2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093 sub-part J:1999
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- IEEE 1528, 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- American National Standards Institute (ANSI) / Institute of Electrical and Electronic Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronic Engineers (IEEE) C95.1-2005 Edition
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6. Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, 1999
- Australian Communications Authority Radiocommunications (Electromagnetic Radiation -Human Exposure) Standard 2003
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9KHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"

2.1 SAR Limits

	SAR (W/kg)					
EXPOSURE LIMITS	(General Population /	(Occupational /				
	Uncontrolled Exposure	Controlled Exposure				
	Environment)	Environment)				
Spatial Average - ANSI -						
(averaged over the whole body)	0.08	0.4				
Spatial Peak - ANSI -						
(averaged over any 1-g of tissue)	1.60	8.0				
Spatial Peak – ICNIRP/ANSI -						
(hands/wrists/feet/ankles	4.0	20.0				
averaged over 10-g)						
Localized SAR - ICNIRP -	2.0	10.0				
(Head and Trunk 10-g)	2.0	10.0				

3.0 Description of Device Under Test (DUT)

FCC ID: IHDT56HH1 is a digital multi-service device that employs time division multiplexing with duty cycles ranging from 16.667% to 76.1% for Voice (Dispatch or Interconnect), Circuit Data, Packet Data, and WiDEN emission modes, with possible modulations of QPSK, M16-QAM, or M64-QAM. All voice modes employ M16-QAM modulation, and are interleaved as 1:6 (for Dispatch) or 1:3 (maximum for Interconnect). The split 1:3 Interconnect operates at a 16.667% duty cycle, but because there will be two pulses in each 90-msec frame, the overall interleave is 2:6. Interconnect, Dispatch, and Data modes are available in both the 800 and 900 MHz bands. Data transmissions employ QPSK, M16-QAM, and M64-QAM modulations, and have duty cycle ranging from 67.5% (Packet Data) to a maximum of 76.1% (for the 25 kHz WiDEN mode). WiDEN operation is also possible in 50, 75, and 100 kHz modes, but these will have lower maximum duty cycle. Packet Data and WiDEN operation is possible with and without connection to an external data device (via a data cable). This device also possesses MOTOtalk, which is a Part 15 service, employing Frequency Hopping Spread Spectrum technology in the 900 MHz ISM band. MOTOtalk emissions have a duty cycle of 114:120, and uses 8FSK modulation. Only dispatch (i.e. PTT) operation is possible when operating in this mode. No simulataneouse transmission is possible

No simultaneous transmissions are possible. Packet Data and WiDEN operations are possible with and without connection to an external data device, via a data cable. This device is also GPS capable.

This device will be marketed to and used by the general population. This device may be used while held against the head in voice mode, in front of the face in PTT mode, and next to the body (2.5cm separation distance) in phone, dispatch, MOTOtalk, Data, WiDEN and modes. This device can also be used in the hand for data mode applications. Testing at the hand was not conducted based on the current guidelines stated in IEC 62209-Part 2 section 6.1.4.6 for handheld devices which are intended to be mainly used at the ear or next to the body when transmitting.

FCC ID: IHDT56HH1 is capable of operating in the 806-825 MHz, 896-902MHz and 902-928MHz bands. MOTOtalk operates in the 902-928MHz band. WiDEN operates with the 806-825MHz and 896-902MHz bands. The rated conducted power is 0.60 watts pulsed averaged in 806-825MHz, 896-902MHz and 902-928MHz band 0.85 watts in the MOTOtalk band. The maximum conducted output power is 0.64 watts pulsed average and 0.891 watts and respectively as defined by the upper limit of the production line final test station.

FCC ID: IHDT56HH1 is offered with the options and accessories listed on the coversheet of this report.

Test Output Power

A table of the characteristic power slump versus time is provided in Appendix F.

4.0 Description of Test System

4.1 Descriptions of Robotics/probes/Readout Electronics

The laboratory utilizes a Dosimetric Assessment System (DASY4TM) SAR measurement system Version 4.7 build 53 manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot, DAE3V1, and ET3DV6 E-Field probes. Please reference the SPEAG user manual and application notes for detailed probe, robot, and SAR computational procedures. Section 5.0 presents relevant test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

4.2 Description of Phantom(s)

4.2.1 Flat Phantom

Phantom Type	Phantom Material	Phantom Dimensions (cm)	Dimensions opening dimensions		Loss Tangent (wood)
Flat	High Density Polyethylene (HDPE)	80x30x20x0.2	68.58x20.32	Wood	< 0.05

4.2.2 SAM Phantom

Phantom Type	Material Parameters	Material Thickness (mm)	Support structure material	Loss Tangent (wood)
	200MHz -3GHz; Er			
	= <5,			
	Loss Tangent =	2mm +/-		
SAMTP1022	< 0.05	0.2mm	Wood	< 0.05

4.3 Description of Equivalent tissues

Type of Simulated Tissue

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01) and IEEE 1528, 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

Simulated Tissue Composition

% of listed ingredient	8351	МНz	900MHz		
S	s Head Body		Head	Body	
Sugar	57.0	44.9	56.5	44.9	
Diacetin	NA	NA	NA	NA	
De ionized -Water	40.45	53.06	40.95	53.06	
Salt	1.45	0.94	1.45	0.94	
HEC	1.0	1.0	1.0	1.0	
Bact.	0.1	0.1	0.1	0.1	

Reference section 6.1 for target parameters

5.0 Additional Test Equipment

Equipment Type	Model Number	Serial Number	Calibration Due Date
Power Meter (Agilent)	E4419B	MY40330364	2/6/2008
Power Meter (HP)	E4418B	US39251152	3/17/2008
Power Meter (Agilent)	E4418B	GB40206553	4/25/2008
Power Meter (HP)	E4418B	US39251150	4/25/2008
Power Meter (HP)	437B	3125U16028	9/21/2007
Power Meter (HP)	437B	3737U26425	12/4/2007
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495593	2/16/2008
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495594	2/16/2008
Power Sensor (Agilent)	8482B	3318A07392	3/19/2008
Power Sensor (HP)	8482B	3318A06773	5/2/2008
Power Sensor (HP)	8482B	3318A06774	5/2/2008
Power Sensor (Agilent)	8482B	3318A07546	5/16/2008
Power Sensor (Agilent)	8482B	3318A07393	1/29/2008
Bi-Directional Coupler (NARDA)	3020A	40296	2/17/2008
Signal Generator (HP)	E4421B	US39270649	8/16/2008
AMP (Amplifier Research)	10WD1000	28782	CNR
AMP (ComTech PST)	AR88258-10	N1R1A00-1015	CNR
Agilent PNA-L Network Analyzer	N5230A	MY45001092	5/22/2008
Dielectric Probe Kit (HP)	85070C	US99360076	CNR

6.0 SAR Measurement System Verification

The SAR measurements were conducted with probe model/serial number ET3DV6/SN1383. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C, D respectively. The table below summarizes the system performance check results normalized to 1W.

Dipole validation scans at the head from SPEAG are provided in Appendix D. The N&E EME lab validated the dipole to the applicable IEEE system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the N&E EME system performance validation are provided herein.

6.1 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 5.0.

Actual versus Target tissue parameters (5/11/07 – 5/25/07)

FCC Body									
Frequency (MHz)	Di-electric Constant Target	Di-electric Constant Meas. (Range)	Conductivity Target S/m	Conductivity Meas. (Range) S/m					
815.5	55.3	54.8-54.8	0.97	0.97-0.97					
899	55.0	52.5-54.0	1.05	1.05-1.05					
900	55.0	52.5-53.1	1.05	1.05-1.07					
915	55.0	52.3-52.8	1.06	1.07-1.07					

IEEE Head									
Frequency (MHz)	Di-electric Constant Target	Di-electric Constant Meas. (Range)	Conductivity Target S/m	Conductivity Meas. (Range) S/m					
815.5	41.6	41.1-41.5	0.90	0.88-0.88					
899	41.5	40.2-40.2	0.97	0.96-0.96					
900	41.5	39.7-40.6	0.97	0.96-0.96					
915	41.5	40.0-40.3	0.98	0.98-0.97					

6.2 System Check Test Results

Probe Serial #	Tissue Type	Probe Cal Date	Dipole Kit / Serial #	System Perf. Result when normalized to 1W (mW/g)	Reference S.A.R @ 1W (mW/g)	Test Date(s)
						5/17/07-5/18/07
	FCC		SPEAG D900V2			5/23/07-5/25/07
1383	Body	4/21/08	/084	10.355 +/- 0.145	11.06 +/- 10%	5 test days
						5/11/07, 5/14/07
	IEEE		SPEAG D900V2			& 5/22/07
1383	Head	4/21/08	/084	10.340 +/- 0.180	10.47 +/- 10%	3 test days

Note: See APPENDIX D for an explanation of the reference SAR targets stated above. (System performance results reflects the median performance +/- ½ of the test date(s) performance ranges)

The DASY4TM system is operated per the instructions in the DASY4TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess EME SAR compliance was calibrated according to 17025 A2LA guidelines.

7.0 DUT Test Strategy and Methodology

7.1 DUT Configuration(s)

The DUT is a portable device with iDEN, WiDEN, and MOTOtalk transmission signaling operational at the body, head, and face using the offered accessories. The device is placed in the test positions presented in Appendix G.

Test Plan

All options and accessories listed on the cover page of this report were considered in order to develop the SAR test plan for this product. SAR measurements were performed using a flat phantom and a SAM phantom with the applicable simulated tissue to assess performance at the body, head, and face respectively using the relevant transmission modes.

Note that a coarse-to-cube approximation methodology was utilized to determine the worst-case SAR performance configuration for each applicable body location. The test configurations that produced the highest SAR results for each body position using the coarse-to-cube approximation methodology were assessed using the full DASY4TM coarse and 7x7x7 cube scans.

Assessments at the Head (Phone mode 1:3) Pages 11 - 12 of 29; Tables 1

- Assessment in the 806-825MHz band using applicable test configurations at the head.
- Assessment at the 806-825MHz band edges using the worst case configuration from above.
- Assessment in the 896-902MHz band using applicable test configurations at the head.
- Assessment at the 896-902MHz band edges the worst case configuration from 896-902MHz band.

Assessments at the Face (PTT mode 1:6) Pages 12 of 29; Table 1

- Assessment in the 806-825MHz band including band edges.
- Assessment in the 896-902MHz band including band edges.

Assessments at the Face (MOTOtalk mode 114:120) Page 13 of 29; Table 1

- Assessment in the 902-928MHz band including band edges.

Assessments at the Body 2.5cm (WiDEN mode 236:310) Page 13 - 14 of 29; Table 2

- Assessment in the 806-825MHz band without accessory cables.
- Assessment in the 806-825MHz band of the offered data cable options.
- Assessment in the 806-825MHz band of the band edge frequencies.
- Same sequence above followed for 896-902MHz band

Assessments at the Body 2.5cm (iDEN phone mode 1:3) Pages 13 - 14 of 29; Table 2

- Assessment in the 806-825MHz band of the offered audio accessories.
- Assessment in the 896-902MHz band of the offered audio accessories.

Assessments at the Body 2.5cm (MOTOtalk mode 114:120) Pages 14 - 15 of 29; Table 2

- Assessment in the 902-928MHz band of the offered audio accessories.
- Assessment in the 902-928MHz band of the band edges using the worst configuration from above.

Shortened scan assessment at the Body Page 15 of 29; Table 3

- A "shortened" scan was performed using the offered battery and test configuration that produced the highest SAR results overall. Note that the shortened scan is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a cube scan only was performed. The shortened scan represents the cube scan performance results.

7.2 Device Positioning Procedures

Reference Appendix G for photos of the DUT tested positions.

7.2.1 **Body**

The DUT was positioned with its' front and back sides separated 2.5cm from the phantom.

7.2.2 Head

The DUT was placed against the right and left heads of the SAM phantom in the cheek touch and tilt positions.

7.2.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom with the flip opened and closed.

8.0 Environmental Test Conditions

The EME Laboratory ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was 15cm +/- 0.5cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein:

	Target	Measured
		Range: 21.0-24.8°C
Ambient Temperature	20 - 25 °C	Avg. 22.5°C
		Range: 50.2-72.4%
Relative Humidity	30 - 70 %	Avg. 58.2%
		Range: 19.9-21.9°C
Tissue Temperature	NA	Avg. 20.6 °C

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

9.0 Test Results Summary

All SAR results obtained by the tests described in Section 7.1 are listed below. As noted in section 7.1, a coarse-to-cube approximation methodology, was utilized to ascertain the worst-case test configuration for each body location. The worst case test configurations observed for each body location and band (in bold with *) were then assessed using the full DASY4TM coarse and 7x7x7 cube methodology, and they are presented in the worst case configuration table below. The associated SAR plots are provided in appendix E. Appendix E also presents shortened SAR cube scans to assess the validity of the calculated results presented herein. Note: The results of the shortened cube scans presented in Appendix E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid.

Table 1

Assessments at the Head (Phone mode 1:3) 806-825MHz band												
Run Number/ SN	Antenna Pos.	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)
			Assessn	ent at the	e right ear - to	uch/tilt and ba	and edge	search				
JsT-Rear-070511- 03/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Cheek Touch	None	None	0.671	-0.043	1.32	0.916	1.33	0.93
JsT-Rear-070511- 10/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Cheek Tilt	None	None	0.669	-0.104	0.718	0.500	0.74	0.51
JsT-Rear-070511- 11/364VHE3W18	Internal	806.01250	SNN5784A NNTN7136A	Cheek Touch	None	None	0.635	-0.043	1.21	0.840	1.23	0.86
JsT-Rear-070511- 12/364VHE3W18	Internal	824.98750	SNN5784A NNTN7136A	Cheek Touch	None	None	0.660	-0.034	1.40	0.970	1.41	0.98
			Assessi	ment at th	ie left ear - tou	ch/tilt and bar	nd edge s	earch				
JsT-Lear-070511- 13/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Cheek Touch	None	None	0.654	-0.004	1.28	0.885	1.28	0.89
JsT-Lear-070511- 14/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Cheek Tilt	None	None	0.655	-0.055	0.784	0.540	0.79	0.55
JsT-Lear-070511- 15/364VHE3W18	Internal	806.01250	SNN5784A NNTN7136A	Cheek Touch	None	None	0.635	-0.124	1.23	0.850	1.28	0.88
JsT-Lear-070511- 16/364VHE3W18	Internal	824.98750	SNN5784A NNTN7136A	Cheek Touch	None	None	0.661	-0.113	1.35	0.930	1.39	0.95

Table 1 Continued

					Table 1 Co	onunuea						
			Assessm	ents at th	e Head (Phone	mode 1:3) 89	6-902MH	z band				
Run Number/ SN	Antenna Pos.	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)
			Assessn	nent at the	e right ear - to	uch/tilt and ba	nd edge	search				
JsT-Rear-070514- 03/364VHE3W18	Internal	898.49375	SNN5784A NNTN7136 A	Cheek Touch	None	None	0.669	-0.118	1.37	0.949	1.41	0.98
JsT-Rear-070514- 04/364VHE3W18	Internal	898.49375	SNN5784A NNTN7136 A	Cheek Tilt	None	None	0.670	-0.090	0.822	0.566	0.84	0.58
*JsT-Rear-070514- 05/364VHE3W18	Internal	896.01875	SNN5784A NNTN7136 A	Cheek Touch	None	None	0.665	-0.150	1.40	0.960	1.45	0.99
JsT-Rear-070514- 06/364VHE3W18	Internal	901.98125	SNN5784A NNTN7136 A	Cheek Touch	None	None	0.662	-0.141	1.32	0.914	1.36	0.94
			A ccocc	mont at th	o loft oor - tou	ch/tilt and bar	nd odgo s	ooreh				
JsT-Lear-070514-			SNN5784A NNTN7136	Cheek	e leit ear - tou	CH/tht and bai	iu euge s	earch				
07/364VHE3W18	Internal	898.49375	A	Touch	None	None	0.669	0.003	1.28	0.892	1.28	0.89
JsT-Lear-070514- 08/364VHE3W18	Internal	898.49375	SNN5784A NNTN7136 A	Cheek Tilt	None	None	0.667	-0.097	0.852	0.586	0.87	0.60
JsT-Lear-070514- 09/364VHE3W18	Internal	896.01875	SNN5784A NNTN7136 A	Cheek Touch	None	None	0.663	-0.151	1.32	0.921	1.37	0.95
JsT-Lear-070514- 10/364VHE3W18	Internal	901.98125	SNN5784A NNTN7136 A	Cheek Touch	None	None	0.664	-0.210	1.23	0.851	1.29	0.89
			Assessme	ents at the	Face (Dispate	h mode 1:6) 80	06-825MI	Hz band				
				Assessr	nent at the fac	e – across the	band					
JsT-Face-070511- 17/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136 A	Front 2.5cm	None	None	0.653	0.005	0.280	0.200	0.14	0.10
JsT-Face-070511- 18/364VHE3W18	Internal	806.01250	SNN5784A NNTN7136 A	Front 2.5cm	None	None	0.633	-0.011	0.268	0.190	0.14	0.10
JsT-Face-070514- 02/364VHE3W18	Internal	824.98750	SNN5784A NNTN7136 A	Front 2.5cm	None	None	0.663	0.055	0.273	0.192	0.14	0.10
			Assessme	ents at the	Face (Dispate	h mode 1:6) 89	96-901M	Hz band				
						e – across the						
MeC-FACE-070514- 15/364VHE3W18	Internal	898.49375	SNN5784A NNTN7136 A	Front 2.5cm	None None	None None	0.669	-0.024	0.308	0.217	0.16	0.11
MeC-FACE-070514- 16/364VHE3W18	Internal	896.01875	SNN5784A NNTN7136 A	Front 2.5cm	None	None	0.667	-0.046	0.321	0.227	0.16	0.11
MeC-FACE-070514- 17/364VHE3W18	Internal	901.98125	SNN5784A NNTN7136 A	Front 2.5cm	None	None	0.666	-0.035	0.322	0.226	0.16	0.11

Table 1 Continued

	Assessments at the Face (Dispatch MOTOtalk mode 114:120) 902-928MHz band											
Run Number/ SN	Antenna Pos.	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)
	Assessment at the face – across the band											
JsT-Face-070517-			SNN5784A	Front								
04/364VHE3W18	Internal	915.52500	NNTN7136A	2.5cm	None	None	0.905	-0.075	2.02	1.43	1.03	0.73
*JsT-Face-070518-			SNN5784A	Front								
05/364VHE3W18	Internal	902.52500	NNTN7136A	2.5cm	None	None	0.930	-0.011	2.32	1.63	1.16	0.82
JsT-Face-070518-			SNN5784A	Front								
06/364VHE3W18	Internal	927.47500	NNTN7136A	2.5cm	None	None	0.883	0.080	1.88	1.32	0.95	0.67

Table 2

Table 2												
		Asse	ssments at the	Body 2.5 c	em (WiDEN m	ode 236:310) 8	806-825M	IHz band				
Run Number/ SN	Antenna Pos.	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)
				Assessm	ent at the body	y – data cable	search					
JsT-Ab-070522- 02/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Back 2.5cm	None	None	0.603	-0.185	0.992	0.697	1.10	0.77
JsT-Ab-070522- 03/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Back 2.5cm	None	data cable NNTN6531A	0.602	-0.282	0.827	0.582	0.94	0.66
JsT-Ab-070522- 04/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Back 2.5cm	None	data cable SKN6371C	0.600	-0.034	0.902	0.641	0.97	0.69
			Assessment	s at the B	ody 2.5cm (Ph	one mode 1:3)	806-825	MHz band	ı			
				Assessmo	ent at the body	- audio cable	search					
JsT-Ab-070522- 05/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5330B	0.655	0.000	0.468	0.329	0.47	0.33
JsT-Ab-070522- 06/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5004B	0.653	-0.009	0.527	0.373	0.53	0.37
JsT-Ab-070522- 07/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5005B	0.658	-0.006	0.404	0.286	0.40	0.29
JsT-Ab-070522- 08/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5006B	0.658	-0.006	0.455	0.321	0.46	0.32
JsT-Ab-070522- 09/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5211B	0.657	-0.013	0.438	0.308	0.44	0.31
JsT-Ab-070522- 10/364VHE3W18	Internal	813.51250	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN6312A	0.658	-0.039	0.433	0.304	0.44	0.31
			Assessments at	t the Body	2.5cm (WiDE	N mode 236:3	10) 806-8	25MHz b	and			
	Assessment at the body - band edge from worst case above											
JsT-Ab-070522- 12/364VHE3W18	Internal	806.01250	SNN5784A NNTN7136A	Back 2.5cm	None	None	0.586	-0.011	1.03	0.722	1.13	0.79
JsT-Ab-070522- 13/364VHE3W18	Internal		SNN5784A NNTN7136A	Back 2.5cm	None	None	0.609	-0.046	0.945	0.672	1.00	0.71
				ccecemen	t at the hody -	from worst ca	se ahove					
JsT-Ab-070522-			SNN5784A	Front	t at the body -	I om worst ca	DC above					
14/364VHE3W18	Internal	806.01250	NNTN7136A	2.5cm	None	None	0.585	-0.027	0.909	0.644	1.00	0.71

Table 2 Continued

					Table 2 Co							
Run Number/ SN	Antenna Pos.	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)
	1	1	1		ent at the body	y – data cable	search	1		1		1
JsT-Ab-070522-	Intomol	900 66975	SNN5784A	Back	None	None	0.617	0.464	1 22	0.952	1.41	0.00
16/364VHE3W18 JsT-Ab-070522-	Internal	899.66875	NNTN7136A SNN5784A	2.5cm Back	None	None data cable	0.617	-0.464	1.22	0.853	1.41	0.98
17/364VHE3W18	Internal	899.66875	NNTN7136A	2.5cm	None	NNTN6531A	0.618	-0.415	0.852	0.594	0.97	0.68
JsT-Ab-070522- 18/364VHE3W18	Internal	899.66875	SNN5784A NNTN7136A	Back 2.5cm	None	data cable SKN6371C	0.617	-0.285	0.935	0.646	1.04	0.72
			Assessment	s at the B	ody 2.5cm (Ph	one mode 1:3)	896-902	MHz ban	d			
				Assessme	ent at the body	- audio cable	search					
JsT-Ab-070522- 19/364VHE3W18	Internal	898.49375	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5330B	0.672	0.019	0.558	0.390	0.56	0.39
JsT-Ab-070522-			SNN5784A	Back				01007			7.00	7.07
20/364VHE3W18	Internal	898.49375	NNTN7136A	2.5cm	None	NNTN5004B	0.671	-0.015	0.566	0.394	0.57	0.40
JsT-Ab-070523- 02/364VHE3W18	Internal	898.49375	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5005B	0.671	-0.066	0.577	0.400	0.59	0.41
JsT-Ab-070523-			SNN5784A	Back								
03/364VHE3W18	Internal	898.49375	NNTN7136A	2.5cm	None	NNTN5006B	0.672	0.000	0.582	0.406	0.58	0.41
JsT-Ab-070523- 04/364VHE3W18	Internal	898.49375	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5211B	0.670	0.008	0.591	0.409	0.59	0.41
JsT-Ab-070523-		000 4005	SNN5784A	Back			0.450	0.015	0.7.1	0.004	0.55	0.40
05/364VHE3W18	Internal	898.49375	•	2.5cm	None	NNTN6312A	0.672	-0.017	0.564	0.396	0.57	0.40
			Assessments at	t the Body	2.5cm (WiDE	N mode 236:3	10) 896-9	002MHz b	and			
	1	ı	Assess	ment at th	e body - band	edge from wo	rst case a	above		1		1
JsT-Ab-070523- 07/364VHE3W18	Internal	896.01875	SNN5784A NNTN7136A	Back 2.5cm	None	None	0.616	-0.319	1.25	0.874	1.40	0.98
*JsT-Ab-070523- 08/364VHE3W18	Internal	901.98125	SNN5784A NNTN7136A	Back 2.5cm	None	None	0.615	-0.211	1.31	0.910	1.43	0.99
			A	Assessmen	t at the body -	from worst ca	se above					
JsT-Ab-070523-			SNN5784A	Front								
09/364VHE3W18	Internal	901.98125	NNTN7136A	2.5cm	None	None	0.613	-0.246	1.09	0.760	1.20	0.84
		Assessi	ments at the B	odv 2.5cm	(Dispatch MO	OTOtalk mode	114:120	902-928	MHz band			
			_			y - audio cable						
JsT-Ab-070523- 12/364VHE3W18	Internal	915.52500	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5330B	0.904	0.041	1.98	1.38	0.99	0.69
JsT-Ab-070523-			SNN5784A	Back			0.907	-0.028	2.29		1.15	0.80
13/364VHE3W18	Internal	915.52500	NNTN7136A	2.5cm	None	NNTN5004B	0.907	-0.028	2.29	1.59	1.15	0.80
*JsT-Ab-070523- 14/364VHE3W18	Internal	915.52500	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5005B	0.906	-0.298	2.26	1.57	1.21	0.84
JsT-Ab-070523- 15/364VHE3W18	Internal	915.52500	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5006B	0.907	0.097	2.13	1.48	1.07	0.74
JsT-Ab-070523-			SNN5784A	Back								
16/364VHE3W18	Internal	915.52500		2.5cm	None	NNTN5211B	0.908	-0.013	2.32	1.62	1.16	0.81
JsT-Ab-070524- 02/364VHE3W18	Internal	915.52500	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN6312A	0.912	-0.009	2.40	1.66	1.20	0.83

Tab	16 2	Contin	harr
1 41	HE 2	v .commun	mea

	Assessments at the Body 2.5cm (Dispatch MOTOtalk mode 114:120) 902-928MHz band Continued											
Run Number/ SN	Antenna Pos.	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)
			Assess	ment at th	e body - band	edge from wo	rst case a	bove				
JsT-Ab-070524- 03/364VHE3W18	Internal	902.52500	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5005B	0.935	-0.028	2.09	1.45	1.05	0.73
JsT-Ab-070524- 04/364VHE3W18	Internal	927.47500	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5005B	0.889	-0.020	1.82	1.27	0.92	0.64
	Assessment at the body - from worst case above											
JsT-Ab-070524- 05/364VHE3W18	Internal	915.52500	SNN5784A NNTN7136A	Front 2.5cm	None	NNTN5005B	0.910	-0.011	2.23	1.55	1.12	0.78

Table 3

*Worst case config	guration p	er body loca	tion and mode	e (highest	duty cycle) fro	om above –usin	ng the DA	SY 4 full	coarse and	7x7x7 cube s	can measure	ements.
Full Scan JsT-Rear-070514- 14/364VHE3W18	Internal	896.01875	SNN5784A NNTN7136A	Cheek Touch	None	None	0.667	-0.271	1.27	0.929	1.35	0.99
Full Scan JsT-Face-070518- 08/364VHE3W18	Internal	902.52500	SNN5784A NNTN7136A	Front 2.5cm	None	None	0.930	0.050	2.31	1.64	1.16	0.82
Full Scan JsT-Ab-070523- 11/364VHE3W18	Internal	901.98125	SNN5784A NNTN7136A	Back 2.5cm	None	None	0.615	-0.919	1.10	0.811	1.41	1.04
Short Scan JsT-Ab-070525- 03/364VHE3W18	Internal	901.98125	SNN5784A NNTN7136A	Back 2.5cm	None	None	0.622	-0.273	1.26	0.923	1.38	1.01
Full Scan JsT-Ab-070524- 07/364VHE3W18	Internal	915.52500	SNN5784A NNTN7136A	Back 2.5cm	None	NNTN5005B	0.912	-0.018	2.23	1.63	1.12	0.82

9.1 Highest SAR results calculation methodology

The calculated maximum 1-gram and 10-gram averaged SAR results reported herein for the full DASY TM coarse and (7x7x7) cube measurements are determined by scaling the measured SAR to account for power leveling variations and power slump. For this device the Maximum Calculated 1-gram and 10-gram averaged peak SAR is calculated using the following formula:

Max. Calc. 1-g/10-g Avg. SAR = ((SAR meas. / (10^(Pdrift/10)))*(Pmax/Pint))* DC%

 $P_{max} = Maximum Power (W)$

 P_{int} = Initial Power (W)

Pdrift = DASY drift results (dB) - (for conservative results positive drifts are not accounted for)

 SAR_{meas} . = Measured 1-g/10-g Avg. SAR (mW/g)

DC % = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation.

10.0 Conclusion

The highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for FCC ID: IHDT56HH1 model H98XAH6JR2AN / NWF1277A are below.

```
Max. Calc.: 1-g Avg. SAR: 1.41 W/kg (Body); 10-g Avg. SAR: 1.04 W/kg (Body)
Max. Calc.: 1-g Avg. SAR: 1.16 W/kg (Face); 10-g Avg. SAR: 0.82 W/kg (Face)
Max. Calc.: 1-g Avg. SAR: 1.35 W/kg (Head); 10-g Avg. SAR: 0.99 W/kg (Head)
```

These test results clearly demonstrate compliance with FCC General Population/Uncontrolled RF Exposure limits of **1.6W/kg** per the requirements of 47 CFR 2.1093(d) and ANSIC95.1.

These test results clearly demonstrate compliance with ICNIRP General Population/Uncontrolled SAR Exposure limits of **2.0 W/kg** averaged over 10grams per the guidelines published in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998.

APPENDIX A Measurement Uncertainty

Uncertainty Budget for Device Under Test, for 30 MHz to 3 GHz

encertainty Baaget for Be-			,						
							h =	i =	
а	b	с	d	e = f(d,k)	f	g	cxf/e	cxg/e	k
	IEEE	Tol.	Prob		С;	c_i	l g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u_i	u_i	
Uncertainty Component	section	` ,		Div.	, 6,		(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	œ
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	œ
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	œ
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	œ
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	œ
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	œ
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				11	11	411
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				22	22	
(3570 CONFIDENCE LEVEL)			κ-Z				22	22	

FCD-0558 Rev 5

Uncertainty Budget for System Validation (dipole & flat phantom) for 30 MHz to 3 GHz

			<u> </u>	27 77111	_				
							h =	i =	
а	b	с	d	e = f(d, k)	f	g	cxf/e	cxg/e	k
		Tol.	Prob.		c_i	c_i	l g	10 g	
	IEEE 1528	(± %)	Dist.		(1 g)	(10 g)	u_{j}	u_i	
Uncertainty Component	section			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	- 00
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	8
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	00
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	80
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	80
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	00
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	00
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	00
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	8
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	00
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	00
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	80
Combined Standard Uncertainty			RSS				9	9	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				18	17	

FCD-0558 Rev 5

Notes for Tables 1 and 2

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty.

Appendix B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Motorola CGISS

Client

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ET3-1383_Feb07

Accreditation No.: SCS 108

Object	ET3DV6 - SN:1	383	Strip Assessment of the
Calibration procedure(s)		and QA CAL-12.v4 edure for dosimetric E-field probes	
Calibration date:	February 15, 20	07	
Condition of the calibrated item	In Tolerance		
The measurements and the unc	ertainties with confidence	tional standards, which realize the physical units of probability are given on the following pages and are ory facility: environment temperature (22 ± 3)°C and	e part of the certificate.
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence	probability are given on the following pages and are	e part of the certificate.
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B	ertainties with confidence octed in the closed laborate oct critical for calibration)	probability are given on the following pages and are ory facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.)	e part of the certificate. d humidity < 70%. Scheduled Calibration
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A	ertainties with confidence acted in the closed laborate acted in the closed laborate acted for calibration) ID # GB41293874	probability are given on the following pages and are by facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557)	e part of the certificate. d humidity < 70%. Scheduled Calibration Apr-07
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ertainties with confidence acted in the closed laborate acted in the close	probability are given on the following pages and are by facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ertainties with confidence acted in the closed laborate acted in the close	cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	e part of the certificate. d humidity < 70%. Scheduled Calibration Apr-07 Apr-07 Apr-07
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ertainties with confidence acted in the closed laborate acted lab	cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00558)	scheduled Calibration Apr-07 Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Aug-07 Aug-07
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ertainties with confidence acted in the closed laborate acted lab	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	scheduled Calibration Apr-07 Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Aug-07 Jan-08
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 70 dB Attenuator Reference Probe ES3DV2	ertainties with confidence acted in the closed laborate acted lab	cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00558)	scheduled Calibration Apr-07 Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Aug-07 Aug-07
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ertainties with confidence acted in the closed laborate acted lab	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	scheduled Calibration Apr-07 Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Aug-07 Jan-08
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ertainties with confidence acted in the closed laborate acted lab	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	scheduled Calibration Apr-07 Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Aug-07 Jan-08 Jun-07
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ertainties with confidence acted in the closed laborate acted	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house)	se part of the certificate. d humidity < 70%. Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Jan-08 Jun-07 Scheduled Check
The measurements and the unc	ertainties with confidence of the closed laborate of the closed laborate of the critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	se part of the certificate. d humidity < 70%. Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-07

Certificate No: ET3-1383_Feb07 Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: February 15, 2007

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NOR

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Multilateral Agreement for the recognition of calibration certificates

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1383_Feb07 Page 2 of 9

ET3DV6 SN:1383

February 15, 2007

Probe ET3DV6

SN:1383

Manufactured: August 16, 1999
Last calibrated: February 22, 2006
Recalibrated: February 15, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1383_Feb07 Page 3 of 9

ET3DV6 SN:1383 February 15, 2007

DASY - Parameters of Probe: ET3DV6 SN:1383

Sensitivity in Fre	e Space ^A		Diode C	ompression	В
NormX	1.85 ± 10.1%	μ V/(V/m) ²	DCP X	93 mV	
NormY	1.61 ± 10.1%	μV/(V/m) ²	DCP Y	91 mV	
NormZ	1.68 ± 10.1%	μV/(V/m) ²	DCP Z	94 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR	gradient: 5 % per mm
-----	---------	-------------	----------------------

Sensor Center	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	9.9	5.0
SAR _{be} [%]	With Correction Algorithm	0.1	0.3

TSL 1810 MHz Typical SAR gradient: 10 % per mm

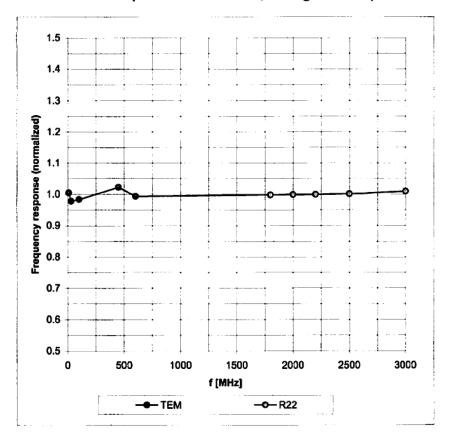
Sensor Center t	3.7 mm	4.7 mm	
SAR _∞ [%]	Without Correction Algorithm	13.6	8.8
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

Sensor Offset

Probe Tip to Sensor Center 2.7 mm

Optical Surface Detection NOT in Tolerance

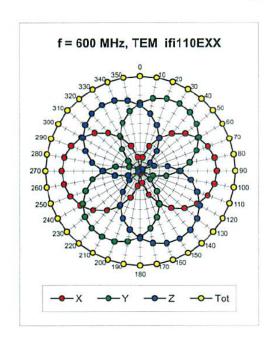
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

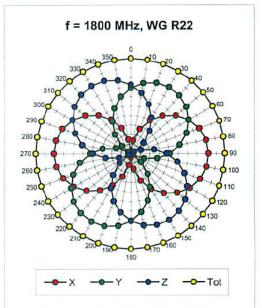

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

ET3DV6 SN:1383 February 15, 2007

Frequency Response of E-Field

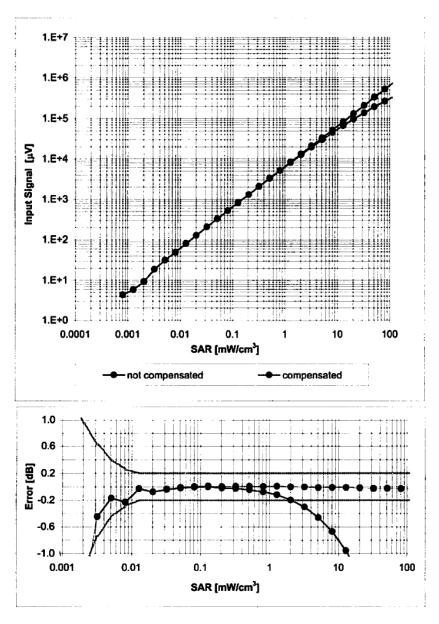

(TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ET3DV6 SN:1383 February 15, 2007

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

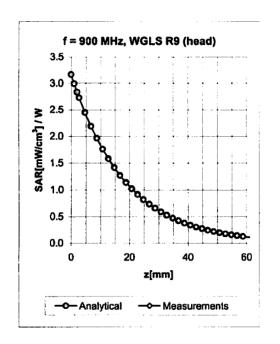
ET3DV6 SN:1383

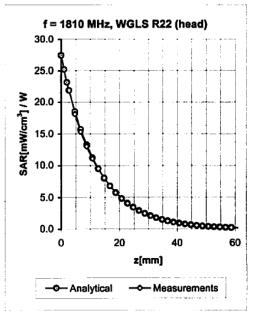
February 15, 2007

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1383_Feb07

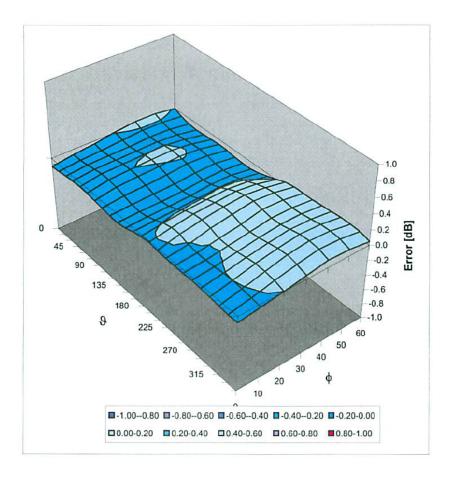

Page 7 of 9

ET3DV6 SN:1383

February 15, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.39	2.01	7.11 ± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.33	2.58	6.31 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.63	2.32	5.27 ± 11.0% (k=2)
2300	± 50 / ± 100	Head	39.4 ± 5%	1.71 ± 5%	0.83	1.99	4.87 ± 11.8% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.85	1.62	4.71 ± 11.8% (k=2)
450	±50/±100	Body	56.7 ± 5%	0.94 ± 5%	0.35	2.08	7.67 ± 13.3% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.37	2.60	6.03 ± 11.0% (k=2)
1810	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.80	2.19	4.71 ± 11.0% (k=2)
2300	± 50 / ± 100	Body	52.8 ± 5%	1.85 ± 5%	0.86	1.68	4.42 ± 11.8% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.85	1.60	4.19 ± 11.8% (k=2)


 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ET3DV6 SN:1383

February 15, 2007

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)