

Exhibit 11: Class II Permissive Change SAR Test Report IHDT56EU2

Date of test: 31-Jan-2006 through 1-Feb-2006

Date of Report: 2-Feb-2006

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Test Responsible: Steven Hauswirth

Principal Staff Engineer

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following tests:

ACCREDITED

<u>Tests</u>: <u>Procedures</u>:

Electromagnetic Specific Absorption Rate ANSI/IEEE C95.1-1992, 1999

(SAR) IEEE C95.3-1991 IEEE 1528, IEC 62209-1

FCC OET Bulletin 65 (including Supplements A, B, C)

FCC ID: IHDT56EU2

Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 1999 CENELEC EN 50361 (2001)

Simulated Tissue Preparation APP-0247

RF Power Measurement DOI-0876, 0900, 0902, 0904, 0915

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

A2LA certificate #1651-01

Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56EU2 to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these

Statement of Compliance:

standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2006

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. INTRODUCTION	3
2. DESCRIPTION OF THE DEVICE UNDER TEST	3
2.1 Antenna description	3
2.2 Device description	3
3. TEST EQUIPMENT USED	4
3.1 Dosimetric System	4
3.2 Additional Equipment	4
4. ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	4
5. SYSTEM ACCURACY VERIFICATION	5
6. TEST RESULTS	6
6.1 Head Adjacent Test Results	6
6.2 Body Worn Test Results	8
APPENDIX 1: SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICA	ATION11
APPENDIX 2: SAR DISTRIBUTION PLOTS FOR PHANTOM HEAD ADJACENT USE	12
APPENDIX 3: SAR DISTRIBUTION PLOTS FOR BODY WORN CONFIGURATION	13
APPENDIX 4: PROBE CALIBRATION CERTIFICATE	14
APPENDIX 5: MEASUREMENT UNCERTAINTY BUDGET	15
APPENDIX 6. PHOTOGRAPHS OF DEVICE UNDER TEST	18

1 Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56EU2). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

2 Description of the Device Under Test

2.1 Antenna description

Type	Internal Antenna		
Location	Back of Phone		
Dimonsions	Length 15 mm		
Dimensions	Width 40 mm		
Configuration	FICA Antenna		

2.2 Device description

FCC ID Number		IHDT56EU2									
Serial number		TA209000VT									
Mode(s) of Operation	GSM 850								Blue Tooth		
Modulation Mode(s)	GMSK	GMSK	GMSK	GMSK	GMSK	GMSK	GMSK	GMSK	GFSK		
Maximum Output Power Setting	33.00 dBm	33.00 dBm	30.00 dBm	30.00 dBm	33.00 dBm	33.00 dBm	30.00 dBm	30.00 dBm	0.00 dBm		
Duty Cycle	1:8	1:8	1:8	1:8	2:8	2:8	2:8	2:8	1:1		
Transmitting Frequency Rang(s)	824.2- 848.8 MHz	880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.20 - 1909.80 MHz	824.2- 848.8 MHz	880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.20 - 1909.80 MHz	2400 - 2483.5 MHz		
Production Unit or Identical Prototype (47 CFR §2908)		Identical Prototype									
Device Category					Portable						
RF Exposure Limits			G	General Po	oulation / L	Jncontrolle	ed				

3 Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.5) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY4 DAE4	SN376	05-Sept-2006
E-Field Probe ET3DV6	SN1520	22-Apr-2006
Dipole Validation Kit, D900V2	SN096	
S.A.M. Phantom used for 800MHz	TP-1131	
Dipole Validation Kit, D1800V2	SN272TR	
S.A.M. Phantom used for 1900MHz	TP-1250	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04632	20-Sept-2006
Power Meter E4419B	GB39511084	19-Aug-2006
Power Sensor #1 – E9301A	US39210918	21-Sept-2006
Power Sensor #2 – E9301A	US39210934	21-Sept-2006
Network Analyzer HP8753ES	US39172529	21-Feb-2006
Dielectric Probe Kit HP85070C	US99360070	

4 Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

f	Tissue		Dielectric Parameters				
(MHz)	type	Limits / Measured	ε,	σ (S/m)	Temp (°C)		
	Head	Measured, 31-Jan-2006	43.5	0.93	19.7		
	Heau	Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25		
835	Dody	Measured, 1-Feb-2006	54.0	0.96	19.9		
	Body	Recommended Limits	55.2 ±5%	$0.97 \pm 5\%$	18-25		
	Head	Measured, 1-Feb-2006	39.5	1.44	20.0		
	Heau	Recommended Limits	$40.0 \pm 5\%$	1.40 ±5%	18-25		
1880	Body	Measured, 1-Feb-2006	50.7	1.57	20.0		
	Douy	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25		

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

	800MHz	800MHz	1900MHz	1900MHz
Ingredient	Head	Body	Head	Body
Sugar	57.0	44.9		
DGBE			47.0	30.80
Water	40.45	53.06	52.8	68.91
Salt	1.45	0.94	0.2	0.29
HEC	1.0	1.0		
Bact.	0.1	0.1		

5 System Accuracy Verification

A system accuracy verification of the DASY4 v4.5 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated in Section 8.3.7 Reference SAR Values in IEEE 1528. These tests were done at 900MHz and 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ±0.5cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

f (MHz)	Description	SAR (W/kg),	Dielectric	Parameters	Ambient Temp	Tissue Temp
(1411 12)		1gram	$\mathbf{\epsilon}_r$	σ (S/m)	(°C)	(°C)
	Measured, 31-Jan-2006	11.1	40.2	0.96	21	20.2
900	Measured, 1-Feb-2006	11.3	41.6	0.97	22	19.8
	Recommended Limits	10.8	41.5 ±5%	0.97 ±5%	18-25	18-25
1900	Measured, 1-Feb-2006	39.5	39.9	1.36	22	19.9
1800	Recommended Limits	38.1	40.0 ±5%	1.4 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

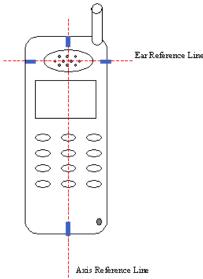
Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	1520	900	6.32	8 of 9
ET3DV6	1320	1810	5.08	8 of 9

6 Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

FCC ID: IHDT56EU2

The DASY4 v4.5 SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY4 v4.5 SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than 0.02 (\pm 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.


The Cellular Phone (FCC ID IHDT56EU2) has the SNN5696B as the only battery option. This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Head Adjacent Test Results

To aid in positioning repeatability, the ear reference line of the device and the axis reference line of the device have been physically added using a non-metallic marker.

- Per Figure 1, the "Ear Reference Line" is centered vertically through the center of the listening area (as defined by the speaker holes in the housing).
- The "Axis Reference Line" bisects the front surface of the device at its top and bottom edges.
- The intersection of these two lines defines the location of the "Ear Reference Point".

The lines drawn on the device extended to the outside edges, as shown in blue in the figure below, and wrap around the sides of the device.

The SAR results shown in tables 1 and 2 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * $10^{\circ}(-drift/10)$. The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

FCC ID: IHDT56EU2

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and tissue simulate are used for the system accuracy verification as the device SAR measurements, the Z-axis scans included in within Appendix 1 are applicable for verification of tissue simulate depth to be 15.0cm ± 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description Serial Number		f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6	1520	900	6.32	8 of 9
	1320	1810	5.08	8 of 9

		Conducted	Cheek / Touch Position							
f (MHz)		Conducted Output		Le	ft Head			Rig	tht Head	
	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
	Channel 128	33.09	1.36	-0.1	1.39	19.7	0.902	-0.14	0.93	19.7
Digital 850MHz	Channel 190	33.06	1.39	-0.07	1.41	19.7	0.925	-0.06	0.94	19.7
OSOWITZ	Channel 251	32.95	1.08	0.03	1.08	19.8	0.851	-0.14	0.88	19.8
Dividal	Channel 512	29.82								
Digital 1900MHz	Channel 661	30.00	0.391	0.05	0.39	20.02	0.403	-0.01	0.40	20.0
TOOMITIE	Channel 810	30.08								

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56EU2 at highest possible output power. Measured against the head in the Cheek/Touch Position.

		Conducted	15° Tilt Position							
f (MHz)		Conducted Output		Le	ft Head			Rig	tht Head	
	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
D: :: 1	Channel 128	33.09								
Digital 850MHz	Channel 190	33.06	0.521	-0.05	0.53	19.8	0.533	-0.02	0.54	19.8
OSONITE	Channel 251	32.95								
Dividal	Channel 512	29.82								
Digital 1900MHz	Channel 661	30.00	0.0927	0.26	0.09	20.2	0.0943	0.24	0.09	20.2
TOOMITIE	Channel 810	30.08								

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56EU2 at highest possible output power. Measured against the head in the 15° Tilt Position.

6.2 Body Worn Test Results

The SAR results shown in tables 3 through 6 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

FCC ID: IHDT56EU2

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be $15.0 \,\mathrm{cm} \pm 0.5 \,\mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are three Body-Worn Accessories available for this phone:

A Leather Pouch with Belt Clip: Model #CHYN4647A

A Leather Pouch: Model #CERZH1 with belt clip model SYN8631A

All three accessories were tested. In addition, the phone was tested in a body worn configuration, per Supplement C, by using a separation distance of no more than 25mm between the phone and the phantom.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	1520	900	6.12	8 of 9
ET3DV6	1320	1810	4.67	8 of 9

Channel 810

1900MHz

							GSM Body Worn						
		Conducted Output	Front of	Phone 15	mm Away from P	hantom	Back of I	Phone 15	mm Away from P	hantom			
f (MHz)	f Description (MHz)	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)			
D: : 1	Channel 128	33.09					0.948	0.01	0.95	20.0			
Digital 850MHz	Channel 190	33.06	0.779	-0.03	0.78	20.5	1.05	-0.01	1.05	20.0			
OSOIVIIIZ	Channel 251	32.95					0.62	-0.10	0.63	19.9			
D: : 1	Channel 512	29.82											
Digital	Channel 661	30.00	0.42	-0.01	0.42	20.0	0.287	-0.07	0.29	20.0			

FCC ID: IHDT56EU2

Table 3: SAR measurement results for the portable cellular telephone FCC ID IHDT56EU2 at highest possible output power. Measured against the body.

30.08

		Candaatad	GSM Body Worn with Bluetooth						
		Conducted Output	Phone 15mm Away from Phantom						
f (MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)			
Digital	Channel 128	33.09	0.953	0.01	0.95	19.8			
850MHz	Channel 190	33.06	1.06	0.01	1.06	19.9			
Back	Channel 251	32.95	0.612	-0.11	0.63	19.1			
Digital	Channel 512	29.82							
1900MHz Front	Channel 661	30.00	0.367	-0.02	0.37	20.0			
	Channel 810	30.08							

Table 4: SAR measurement results for the portable cellular telephone FCC ID IHDT56EU2 at highest possible output power. Measured against the body.

		Conducted	GPRS Body Worn								
		Conducted Output	Front of l	Phone 25	mm Away from P	hantom	Back of I	Phone 251	mm Away from P	hantom	
f (MHz)	Description	Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	
D: :. 1	Channel 128	33.09									
Digital 850MHz	Channel 190	33.06	0.426	-0.02	0.43	19.3	0.503	-0.03	0.51	20.3	
030141112	Channel 251	32.95									
D:::4:1	Channel 512	29.82									
Digital 1900MHz	Channel 661	30.00	0.255	0.01	0.26	20.0	0.202	0.01	0.20	20.0	
170011112	Channel 810	30.08									

Table 5: SAR measurement results for the portable cellular telephone FCC ID IHDT56EU2 at highest possible output power. Measured against the body.

FCC	ID:	IHD	T56	EU	2

		Conducted	GSM Body Worn tested on channels that resulted in highest 15mm results								
	f (MHz) Description	Conducted Output	CHYN4647A Pouch				CERZH1 Pouch				
-		Da	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	
D: : 1	Channel 128	33.09									
Digital 850MHz	Channel 190	33.06	0.933	-0.11	0.85	20.3	0.869	-0.16	0.90	20.3	
OSOWITZ	Channel 251	32.95									
D: : 1	Channel 512	29.82									
Digital 1900MHz	Channel 661	30.00	0.239	0.04	0.24	19.4	0.408	-0.02	0.41	20.0	
170011112	Channel 810	30.08									

Table 6: SAR measurement results for the portable cellular telephone FCC ID IHDT56EU2 at highest possible output power. Measured against the body.

Appendix 1

FCC ID: IHDT56EU2

SAR distribution comparison for the system accuracy verification

Date/Time: 1/31/2006 11:18:43 AM

Test Laboratory: Motorola

900MHz Validation

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:096;

Procedure Notes: 900 MHz System Performance Check PM1 Power = 200 mW Refl.Pwr PM3 = -23.42 dB

Sim.Temp@SPC = 20.2C Room Temp @ SPC = 21C

Communication System: CW - Dipole; Frequency: 900 MHz; Communication System Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.32, 6.32, 6.32); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Sugar Water SAM; Type: SAM; Serial: TP-1131;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.10 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

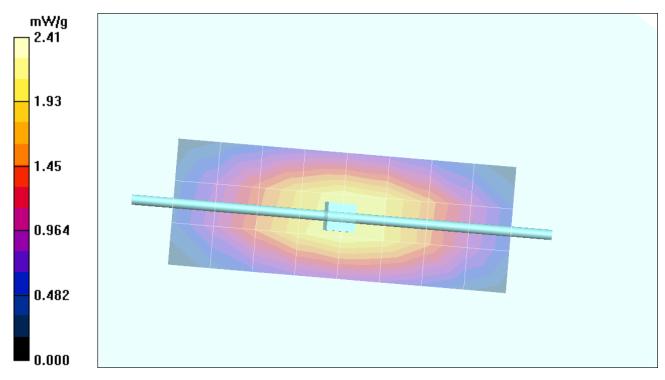
Reference Value = 52.1 V/m; Power Drift = -0.001 dB

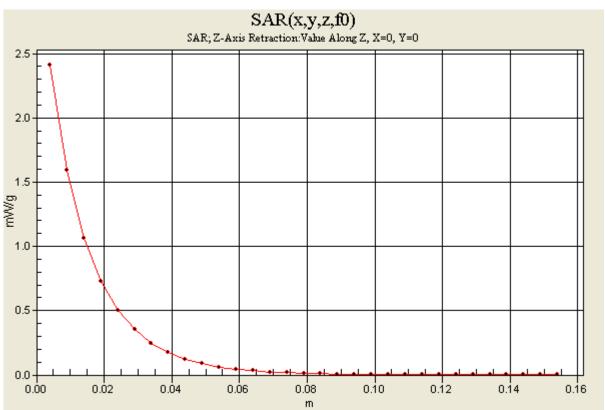
Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.23 mW/g; SAR(10 g) = 1.43 mW/g

Maximum value of SAR (measured) = 2.43 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 52.1 V/m; Power Drift = -0.001 dB


Peak SAR (extrapolated) = 3.30 W/kg

SAR(1 g) = 2.2 mW/g; SAR(10 g) = 1.41 mW/g

Maximum value of SAR (measured) = 2.37 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.41 mW/g

Date/Time: 2/1/2006 8:40:13 AM

Test Laboratory: Motorola

900MHz Validation

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:096;

Procedure Notes: 900 MHz System Performance Check PM1 Power = 200 mW Refl.Pwr PM3 = -24.6dB

Sim.Temp@SPC = 19.8*C Room Temp @ SPC = 22*C

Communication System: CW - Dipole; Frequency: 900 MHz; Communication System Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.32, 6.32, 6.32); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Sugar Water SAM; Type: SAM; Serial: TP-1131;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.10 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

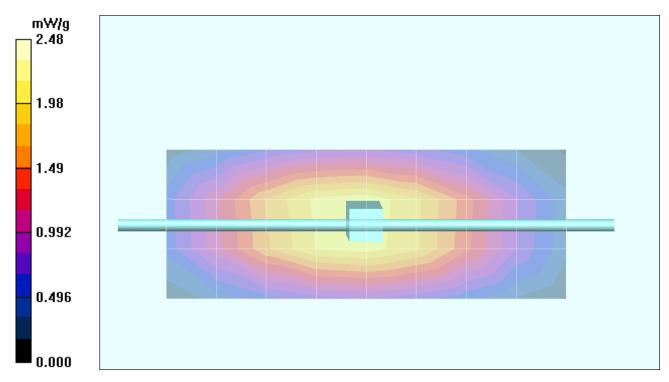
Reference Value = 52.2 V/m; Power Drift = -0.024 dB

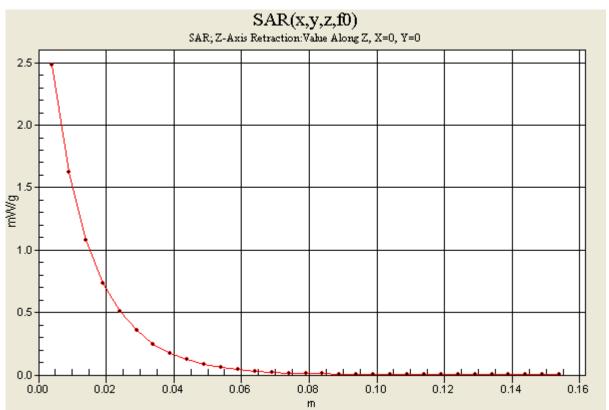
Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.26 mW/g; SAR(10 g) = 1.45 mW/g

Maximum value of SAR (measured) = 2.44 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 52.2 V/m; Power Drift = -0.024 dB


Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 2.25 mW/g; SAR(10 g) = 1.44 mW/g

Maximum value of SAR (measured) = 2.35 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.48 mW/g

Date/Time: 2/1/2006 8:13:36 AM

Test Laboratory: Motorola

1800MHz Validation

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:272TR;

Procedure Notes: 1800 MHz System Performance Check PM1 Power = 200 mW Refl.Pwr PM3 = -22.9dB

Sim.Temp@SPC = 19.9*C Room Temp @ SPC = 22*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(5.08, 5.08, 5.08); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4 : Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.86 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

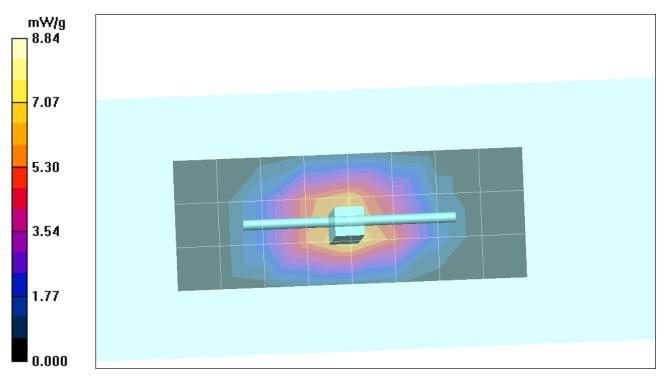
Reference Value = 85.4 V/m; Power Drift = -0.009 dB

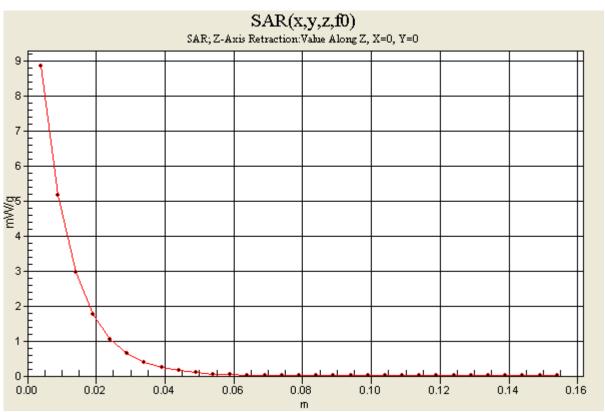
Peak SAR (extrapolated) = 13.3 W/kg

SAR(1 g) = 7.89 mW/g; SAR(10 g) = 4.24 mW/g

Maximum value of SAR (measured) = 8.82 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 85.4 V/m; Power Drift = -0.009 dB


Peak SAR (extrapolated) = 13.6 W/kg

SAR(1 g) = 7.92 mW/g; SAR(10 g) = 4.24 mW/g

Maximum value of SAR (measured) = 8.62 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.84 mW/g

Date/Time: 2/2/2006 9:32:17 AM

Test Laboratory: Motorola

1800MHz Validation

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 272TR;

Procedure Notes: 1800 MHz System Performance Check PM1 Power = 200 mW Refl.Pwr PM3 = -22.6dB

Sim. Temp@SPC = 19.9*C Room Temp @ SPC = 22*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(5.08, 5.08, 5.08); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4 : Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.68 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

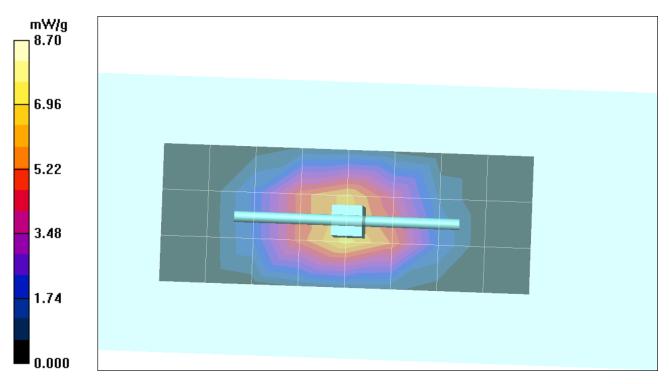
Reference Value = 85.2 V/m; Power Drift = -0.006 dB

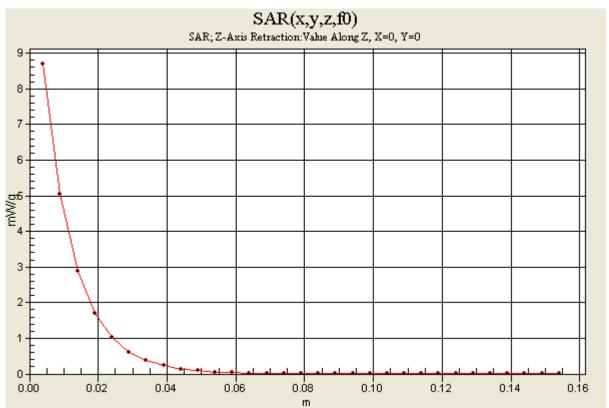
Peak SAR (extrapolated) = 13.4 W/kg

SAR(1 g) = 7.85 mW/g; SAR(10 g) = 4.2 mW/g

Maximum value of SAR (measured) = 8.80 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 85.2 V/m; Power Drift = -0.006 dB


Peak SAR (extrapolated) = 13.2 W/kg

SAR(1 g) = 7.71 mW/g; SAR(10 g) = 4.13 mW/g

Maximum value of SAR (measured) = 8.65 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.70 mW/g

Appendix 2

FCC ID: IHDT56EU2

SAR distribution plots for Phantom Head Adjacent Use

Date/Time: 1/31/2006 10:50:54 PM

Test Laboratory: Motorola

GSM850 Cheek Touch

Serial: TA209000VT;

Procedure Notes: Pwr Step: 5 Antenna Position: Internal Battery Model #: SNN5696B DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 850; Frequency: 836.6 MHz; Communication System Channel Number: 190; Duty Cycle: 1:8

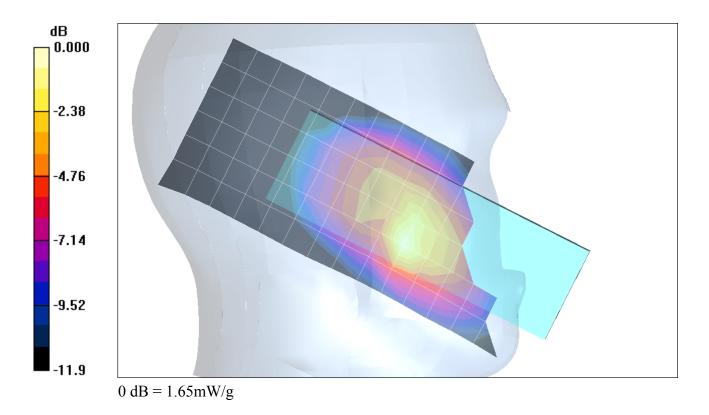
Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 43.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.32, 6.32, 6.32); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Sugar Water SAM; Type: SAM; Serial: TP-1131;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.61 mW/g


Left Head Template/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.9 V/m; Power Drift = -0.072 dB

Peak SAR (extrapolated) = 4.10 W/kg

SAR(1 g) = 1.39 mW/g; SAR(10 g) = 0.755 mW/g

Maximum value of SAR (measured) = 1.65 mW/g

Date/Time: 2/1/2006 1:23:45 AM

Test Laboratory: Motorola

GSM850 Tilt

Serial: TA209000VT;

Procedure Notes: Pwr Step: 5 Antenna Position: INTERNAL Battery Model #: SNN5696B DEVICE

POSITION: ROTATED

Communication System: GSM 850; Frequency: 836.6 MHz; Communication System Channel Number: 190;

Duty Cycle: 1:8

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 43.5$; $\rho = 1000$ kg/m³

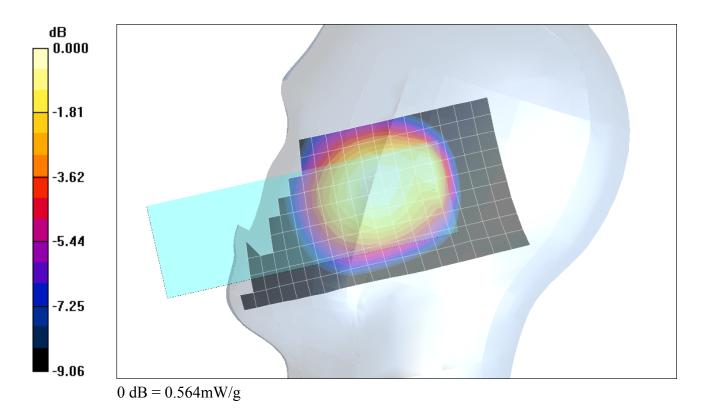
DASY4 Configuration:

• Probe: ET3DV6 - SN1520; ConvF(6.32, 6.32, 6.32); Calibrated: 4/22/2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Sugar Water SAM; Type: SAM; Serial: TP-1131;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal (10mm) (10x25x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.550 mW/g


Right Head Template/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.3 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 0.679 W/kg

SAR(1 g) = 0.533 mW/g; SAR(10 g) = 0.395 mW/g

Maximum value of SAR (measured) = 0.564 mW/g

Date/Time: 2/1/2006 12:31:54 PM

Test Laboratory: Motorola

GSM1900 Cheek Touch

Serial: TA209000VT;

Procedure Notes: Pwr Step: 0 Antenna Position: INTERNAL Battery Model #: SNN5696B DEVICE

POSITION: CHEEK

Communication System: GSM 1900; Frequency: 1880 MHz; Communication System Channel Number: 661;

Duty Cycle: 1:8

Medium: Regular Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ mho/m; $\varepsilon_r = 39.5$; $\rho = 1000$

 kg/m^3

DASY4 Configuration:

• Probe: ET3DV6 - SN1520; ConvF(5.08, 5.08, 5.08); Calibrated: 4/22/2005

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn376; Calibrated: 9/5/2005

• Phantom: R4: Glycol SAM; Type: SAM; Serial: TP-1250;

• Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dv=15mm

Maximum value of SAR (measured) = 0.431 mW/g


Right Head Template/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.2 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 0.579 W/kg

SAR(1 g) = 0.403 mW/g; SAR(10 g) = 0.254 mW/g

Maximum value of SAR (measured) = 0.438 mW/g

Date/Time: 2/1/2006 12:56:20 PM

Test Laboratory: Motorola

GSM1900 Tilt

Serial: TA209000VT;

Procedure Notes: Pwr Step: 0 Antenna Position: INTERNAL Battery Model #: SNN5696B DEVICE

POSITION: TILT

Communication System: GSM 1900; Frequency: 1880 MHz; Communication System Channel Number: 661;

Duty Cycle: 1:8

Medium: Regular Glycol Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ mho/m; $\varepsilon_r = 39.5$; $\rho = 1000$

 kg/m^3

DASY4 Configuration:

• Probe: ET3DV6 - SN1520; ConvF(5.08, 5.08, 5.08); Calibrated: 4/22/2005

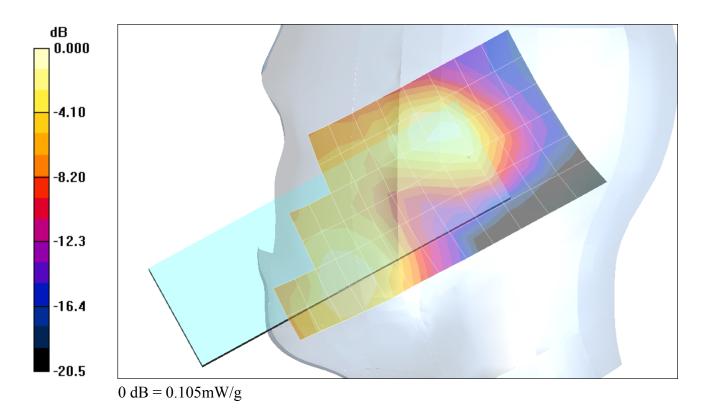
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Glycol SAM; Type: SAM; Serial: TP-1250;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.090 mW/g

Right Head Template/Zoom Scan - to correct max outside (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.59 V/m; Power Drift = 0.239 dB

Peak SAR (extrapolated) = 0.160 W/kg

SAR(1 g) = 0.094 mW/g; SAR(10 g) = 0.054 mW/g

Maximum value of SAR (measured) = 0.105 mW/g

Appendix 3

FCC ID: IHDT56EU2

SAR distribution plots for Body Worn Configuration

Date/Time: 2/1/2006 7:57:37 PM

Test Laboratory: Motorola

GSM850 Body

Serial: TA209000VT:

Procedure Notes: Pwr Step: 5 Antenna Position: Internal Battery Model #: SNN5696B

Accessory Model # = Back of Phone 15mm from Phantom with Bluetooth Also On

Communication System: GSM 850; Frequency: 836.6 MHz; Communication System Channel Number: 190;

Duty Cycle: 1:8

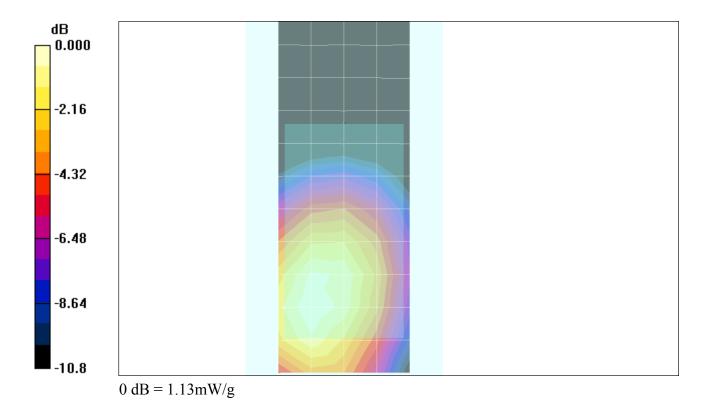
Medium: Low Freq Body; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6 SN1520; ConvF(6.12, 6.12, 6.12); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Sect. 1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid:

dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.13 mW/g

Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.7 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.744 mW/g

Date/Time: 2/1/2006 2:23:19 PM

Test Laboratory: Motorola

GSM1900 Body

Serial: TA209000VT;

Procedure Notes: Pwr Step: 0 Antenna Position: INTERNAL Battery Model #: SNN5696B

Accessory Model # = front of phone 15mm below phantom

Communication System: GSM 1900; Frequency: 1880 MHz; Communication System Channel Number: 661;

Duty Cycle: 1:8

Medium: Regular Glycol Body; Medium parameters used: f = 1880 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 50.7$; $\rho = 1000$

kg/m³

DASY4 Configuration:

• Probe: ET3DV6 - SN1520; ConvF(4.67, 4.67, 4.67); Calibrated: 4/22/2005

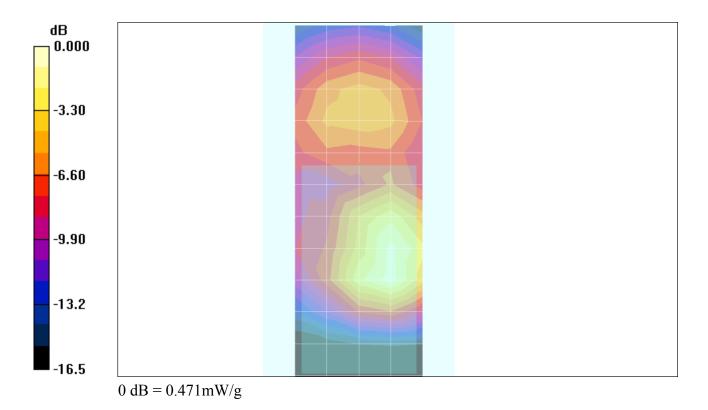
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 9/5/2005
- Phantom: R4: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.418 mW/g

Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 14.0 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 0.669 W/kg

SAR(1 g) = 0.420 mW/g; SAR(10 g) = 0.243 mW/g

Maximum value of SAR (measured) = 0.471 mW/g

FCC ID: IHDT56EU2

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

C

Client

Notorola MDb

Certificate No. E [3/15/20_Apr05

llent appeters of a more		Sautification of the	
Maetry along			- 3 -3-4
Dbject	ERIPATO SING	520	
Calibration procedure(s)	.ØA.€/AL=01 v5:		
	Campranon proc	edure for dosimetric E-field probes?	
Calibration date:	Atarii 22, 2005	R	
Condition of the calibrated item	In Tolerance		
		tional standards, which realize the physical units of probability are given on the following pages and are	
All calibrations have been condu	cted in the closed laborat	ory facility: environment temperature (22 ± 3)°C and	d humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-May-04 (METAS, No. 251-00388)	May-05
Power sensor E4412A	MY41495277	5-May-04 (METAS, No. 251-00388)	May-05
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-04 (METAS, No. 251-00403)	Aug-05
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-04 (METAS, No. 251-00389)	May-05
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-04 (METAS, No. 251-00404)	Aug-05
Reference Probe ES3DV2	SN: 3013	7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	Jan-06
DAE4	SN: 617	19-Jan-05 (SPEAG, No. DAE4-617_Jan05)	Jan-06
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Dec-03)	In house check: Dec-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov 05
	Name	Function	Signature
Calibrated by:	Nico Vetterli	Laboratory Technician	D) pto
Approved by:	Katja Pokovic	Technical Manager) ZZ - KJ
			Issued: April 25, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point φ rotation around probe axis

Polarization φ
Polarization θ

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1520_Apr05

Probe ET3DV6

SN:1520

Manufactured:

February 1, 2000

Last calibrated:

May 27, 2004

Recalibrated:

April 22, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1520

Sensitivity in Free	Diode Compression ^B				
NormX	1.89 ± 10.1%	μ V/(V/m) ²	DCP X	95 mV	
NormY	1.70 ± 10.1%	μV/(V/m) ²	DCP Y	95 mV	
NormZ	1.89 ± 10.1%	μV/(V/m) ²	DCP Z	95 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz Typical SAR gradient: 5 % per mm

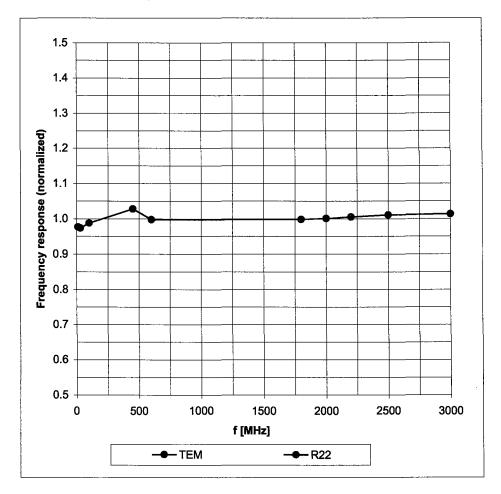
Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	9.2	4.8
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	13.7	9.2
SAR _{be} [%]	With Correction Algorithm	0.7	0.0

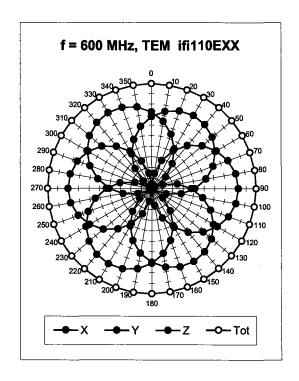
Sensor Offset

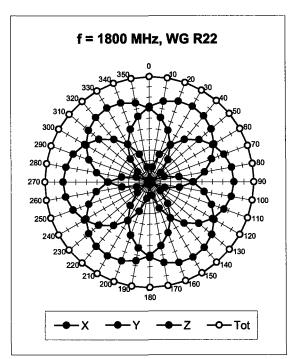
Probe Tip to Sensor Center 2.7 mm

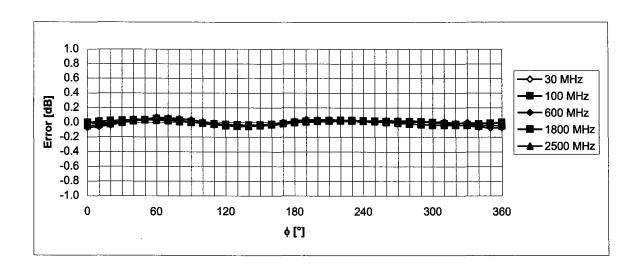

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

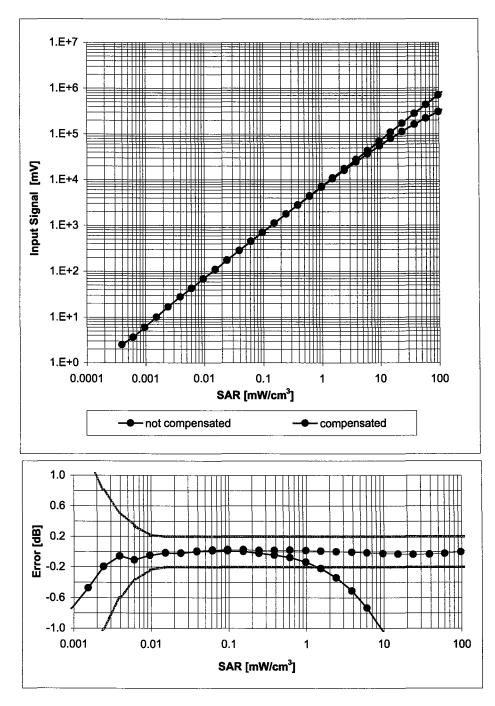

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

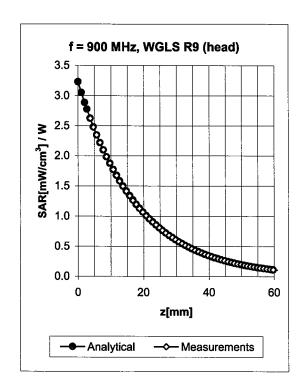


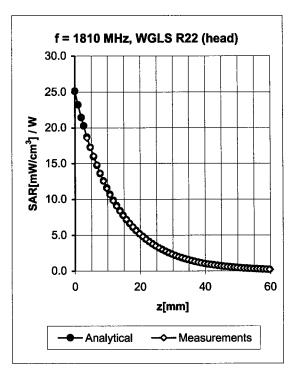
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



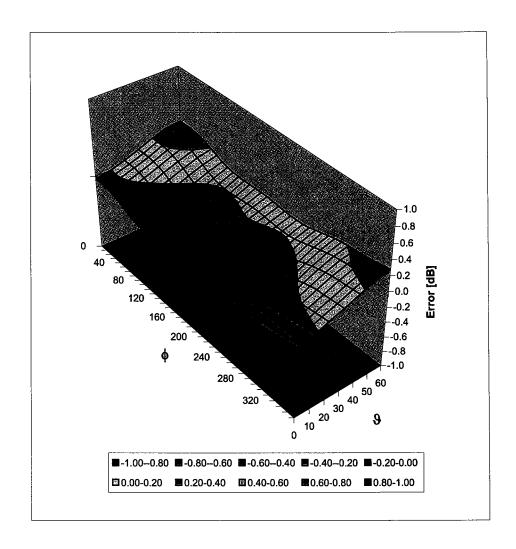
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.68	1.77	6.32 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.58	2.44	5.08 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.55	2.58	4.84 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.65	2.24	4.51 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.54	2.04	6.12 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.53	2.91	4.67 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.59	2.56	4.36 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.66	2.04	4.27 ± 11.8% (k=2)

 $^{^{\}rm c}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5

FCC ID: IHDT56EU2

Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test: 30 – 3000 MHz

FCC ID: IHDT56EU2

							h=	i =	
				e =			cxf	$c \times g$	
а	b	С	d	f(d,k)	f	g	/e	/e	k
		Tol.	Prob		Ci	C _i	1 g	10 g	
	IEEE	(±	FIOD		O ₁	(10	' y	10 9	
	1528	%)	Dist		(1 g)	g)	u i	u _i	
Uncertainty Component	section			Div.	, (3,	3,	(±%)	(±%)	V _i
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	~
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mech.									
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t	F 0 0		-	4.70		4	0.0	0.0	
Phantom Max. SAR Evaluation (ext.,	E.6.3	1.4	R	1.73	1	1	8.0	8.0	∞
int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related	L.U	5.4	IX	1.75	'	-	2.0	2.0	8
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue	0.0.2	3.0	11	1.75	'	-	2.5	2.0	38
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	~
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity						-			
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity									
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard			DCC				11.1	10.0	111
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty			16-2				22.2	21.6	
(95% CONFIDENCE LEVEL)			<i>k</i> =2				22.2	21.6	

Uncertainty Budget for System Check: 30 – 3000 MHz

							h=	i=	
	b	С	d	e = f(d,k)	f	~	cxf/	cxg/	k
Uncertainty Component	IEEE 1528 section	Tol. (± %)	Prob.	Div.	(1 g)	<i>g c_i</i> (10 g)	e 1 g u _i (±%)	e 10 g u _i (±%)	
Measurement System				DIV.			(±70)	(±70)	V _i
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞ ∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	<u>∞</u>
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	<u>∞</u>
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞ ∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mechanical						-			-
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	∞
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters	0.0.2	0.0	11	1.70	·	-	2.0	2.0	35
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	∞
									9999
Combined Standard Uncertainty			RSS				9.0	8.8	9
Expanded Uncertainty (95% CONFIDENCE LEVEL)			<i>k</i> =2				17.7	17.3	

FCC ID: IHDT56EU2

Appendix 6

FCC ID: IHDT56EU2

Photographs of the device under test

Figure 1. Front of Phone

Figure 2. Back of Phone

Figure 3. Phone open

Figure 4. Body Worn

Figure 5. CHYN4647A top

Figure 6. CHYN4647A side

Figure 7. CERZH1 top

Figure 8. CERZH1 side

Figure 11. Cheek/Touch Position

Figure 12. Tilt Position