

PERSONAL COMMUNICATIONS SECTOR

PRODUCT SAFETY AND COMPLIANCE EMC LABORATORY

EMC TEST REPORT

Test Report Number - 8139-2

Report Date - August 29, 2002

The test results contained herein relate only to the model(s) identified. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics.

As the responsible EMC Engineer, I hereby declare that the equipment tested as specified in this report conforms to the requirements indicated.

Signature Name: Kirby Munroe_

Title: Compliance Engineer Date: 8/29/2002

This report must not be reproduced, except in full, without written approval from this laboratory.

THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY A2LA OR ANY AGENCY OF THE U.S. GOVERNMENT.

A2LA Certificate Number: 1846-01

Table of Contents

Description	Page
Test Report Details	4
Applicable Standards	4
Summary of Testing	5
General and Special Conditions	5
·	5
Equipment and Cable Configurations Magazing Equipment and Calibration Information	
Measuring Equipment and Calibration Information	6
Measurement Procedures and Data	_
RF Power Output	7
Radiated Power (ERP)	8
Modulation Characteristics	
Transmit Audio Frequency Response	9
Post Limiter Filter Attenuation	9
Modulation Limiting vs. Modulation Input Voltage	10
Occupied Bandwidth	11
AMPS Unmodulated Carrier AMPS Supervisory Audio Tone	12 12
AMPS Voice	13
AMPS Signaling Tone	13
AMPS 10kb/s Wideband Data	14
CDMA 800 Reference Plot	15
CDMA 800 Mid Band Plot	15
CDMA 800 Lower Band Edge	16
CDMA 800 Upper Band Edge	16
CDMA 1900 Reference Plot	17
CDMA 1900 Mid Band Plot	17 19
CDMA 1900 Lower Band Edge CDMA 1900 Upper Band Edge	18 18
Spurious Emissions at Antenna Terminals	19
AMPS Tabular and Graphical Data	20
AMPS Cellular Base Station Frequency Range Plot	21
CDMA 800 Tabular and Graphical Data	22
CDMA 800 Cellular Base Station Frequency Range Plot	23
CDMA 1900 Tabular and Graphical Data	24
Field Strength of Spurious Emissions	25
AMPS Tabular and Graphical Data	26
CDMA 800 Tabular and Graphical Data	27
CDMA 1900 Tabular and Graphical Data	
28	

APPLICANT: MOTOROLA INC

Description	Page
E 0. 1.111	
Frequency Stability	29
AMPS Tabular and Graphical Data	30
CDMA 800 Tabular and Graphical Data	31
CDMA 1900 Tabular and Graphical Data	32
Appendix A - Radiated Emissions Test Setup Photos	
Figure A.1 – Radiated Emissions Measurement	33
Figure A.2 – Substitution Measurement	33

FCC ID: IHDT56CG1

Test Report Details

Tests Performed By: Motorola Personal Communications Sector

Product Safety and Compliance Group

1500 Gateway Boulevard Boynton Beach, FL 33426

PH (561) 739-2179 Fax (561) 739-2131 FCC Registration Number: 100000 Industry Canada Number: IC3908

Tests Requested By: Motorola Inc.

Personal Communications Sector

600 North US Hwy 45 Libertyville, IL 60048

Product Type: Cellular Phone

Signaling Capability: Analog, CDMA 800, CDMA 1900

Model Number: SUG2663AA

Serial Numbers: 52DE6B0D, 52DE6B7E

Received Date: 8/26/2002

Testing Start Date: 8/26/2002

Testing Complete Date: 8/28/2002

Applicable Standards

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 15 Subpart B – Unintentional Radiators

X Part 22 Subpart H - Public Mobile Services

X Part 24 - Personal Communications Services

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA EIA 98-C, ANSI 63.4 2000, RSS-118, RSS-129, RSS-133

Summary of Testing

Test	Test Name	
_#		Pass/Fail
1	RF Power Output	NA
2	ERP (Effective Radiated Power)	NA
3	Modulation Characteristics	Pass
4	Occupied Bandwidth	Pass
5	Spurious Emissions at Antenna Terminal	Pass
6	Field Strength of Spurious Emissions	Pass
7	Frequency Stability	Pass
	, ,	
Test	Test Name	Margin with respect
Test #	Test Name	Margin with respect to the Limit
	Test Name	
	RF Power Output	to the Limit
_# 1 2		to the Limit
1	RF Power Output ERP (Effective Radiated Power) Modulation Characteristics	NA NA
# 1 2 3 4	RF Power Output ERP (Effective Radiated Power) Modulation Characteristics Occupied Bandwidth	NA NA NA NA NA
# 1 2 3 4 5	RF Power Output ERP (Effective Radiated Power) Modulation Characteristics Occupied Bandwidth Spurious Emissions at Antenna Terminal	NA NA NA NA NA NA 8.8 dB
# 1 2 3 4	RF Power Output ERP (Effective Radiated Power) Modulation Characteristics Occupied Bandwidth	NA NA NA NA NA

The margin with respect to the limit is the minimum margin for all modes and bands. () indicates the margin at which the product exceeds the limit.

General and Special Conditions

The EUT was tested using a fully charged battery when applicable. Where a battery could not be used due to the need for a controlled variation of input voltage, an external power supply was utilized.

All testing was done in an indoor controlled environment with an average temperature of 22° C and relative humidity of 50%.

Equipment and Cable Configurations

The EUT was tested in a stand-alone configuration that is representative of typical use.

Measuring Equipment and Calibration Information

Manufacturer	Item	Item Version/	Serial	CALIBRATION
Name	Name	Model#	Number	DUE DATE
	Description			
	•			
Rohde & Schwarz	EMI Test Receiver	ESI26	838386/010	2/26/2003
Hewlett Packard	EMC Analyzer	E7405	US3944019	10/11/2002
Hewlett Packard	RF Amplifier	8347A	3307A02001	12/20/2002
Hewlett Packard	Pre-Amplifier	8449B	3008A01343	12/20/2002
ETS	DRG Horn Antenna	3115	6222	9/23/2002
A.H. Systems Inc.	DRG Horn Antenna	SAS-200/571	365	11/14/2002
ETS	Log-Periodic Antenna	3148	1188	12/6/2002
ETS	Log-Periodic Antenna	3148	1189	1/2/2003
ETS	Biconical Antenna	3110B	3369	12/15/2002
ETS	Biconical Antenna	3110B	3370	10/16/2002
Compliance Design	Biconical Antenna	B100	385	7/16/2003
Compliance Design	Biconical Antenna	B200	312	7/22/2003
Compliance Design	Biconical Antenna	B300	321	7/22/2003
Attenuator	Weinschel	AS-6	6675	10/10/2002
Attenuator	Weinschel	AS-6	6677	11/10/2002
Rohde & Schwarz	Mobile Test Set	CMD 80	DE29008	10/18/2002
Hewlett Packard	Signal Generator	83623B	3844A01195	1/16/2003
Thermotron	Environmental Chamber	S-4	31580	12/20/2002

All equipment is on a one-year calibration cycle.

Measurement Procedures and Data

RF POWER OUTPUT

Measurement Procedure

The RF output port of the equipment under test is directly coupled to the input of the 8650 series Gigatronics power meter through a specialized RF connector. The power meter is set for Modulated Average Power (MAP) mode. The power output is measured for all channels.

CFR Part 2.1046

Measurement Results

* Data supplied by SAR Lab

ANALOG

Frequency (MHz)	Power (dBm)
824.04	27.44
836.52	27.58
848.97	27.55

CDMA 800

Frequency (MHz)	Power (dBm)
824.7	25.0
836.52	25.0
848.31	25.0

CDMA 1900

Frequency (MHz)	Power (dBm)
1851.25	25.01
1880.0	25.02
1908.75	24.95

RADIATED POWER (ERP)

Measurement Procedure

The phone was tested in a 16' cubical anechoic chamber with a 2-axis positioner system that permits taking complete spherical scans of the EUT's radiation patterns. For all tests, the phone was supported in a free-space type environment, vertically oriented in the chamber. Tests were done for AMPS 800 frequency (824.70) (836.52MHz)and (848.37) PCS 1900 frequency(1851.3) (1880.0) and (1908.75) and AMPS Analog frequency(824.04) (836.52 MHz) and (848.97) with antenna stubby.

CDMA measurements were made with the phone placed in a call using the HP E8285A mobile station test set. The phone was weakly coupled to the test set and configured to transmit in full data rate mode. Radiated power was measured at every 15 degree step from theta=0 to 165 degrees and phi=0 to 360 degrees. The radiated power was measured using a Gigatronics 8542C power meter in "Mod Avg" mode. From these measurements, the software calculates the angle at which maximum radiated power occurs for each case, and the radiated power at this angle was extracted from the data. The max radiated power results for the EUT follows, as EIRP in dBm. To get ERP (effective radiated power referenced to a half-wave dipole), subtract 2.1 dB from these numbers.

Measurement Results

AMPS 800 Analog:

824.04 MHz: 25.34 dBm 836.52 MHz: 25.68 Bm 848.97 MHz: 25.02 dBm

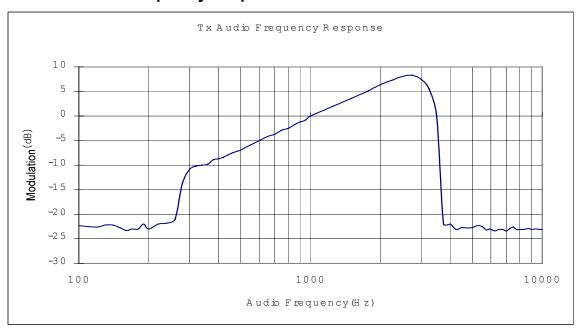
AMPS 800 CDMA:

824.70 MHz: 23.50 dBm 836.52 MHz: 23.74 dBm 848.37 MHz: 24.16 dBm

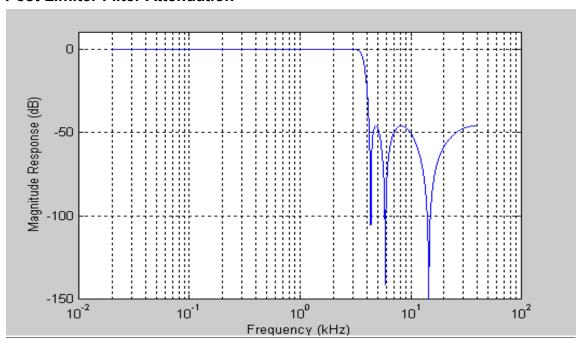
PCS 1900 CDMA

1851.30 MHz: 24.35 dBm 1880.00 MHz: 24.25 dBm 1908.75 MHz: 25.50 dBm

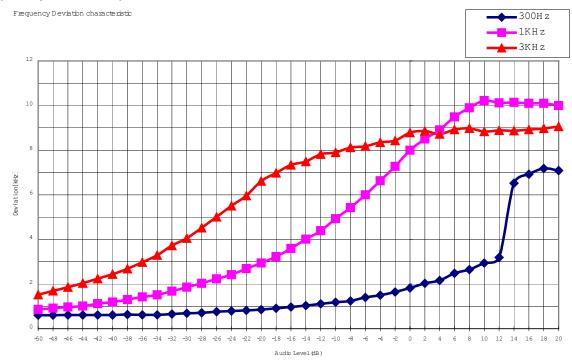
For all measurements, calibration was performed via gain substitution with a half-wave dipole.

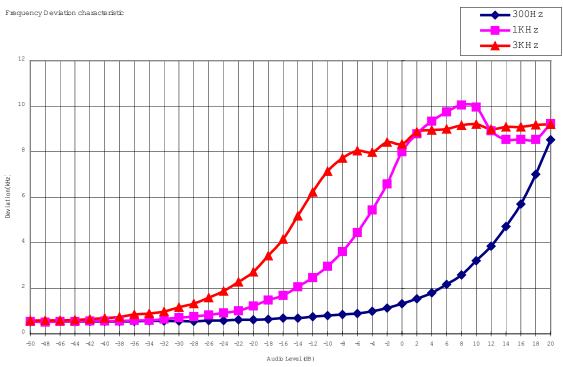

Max EIRP is 25.68 dBm in AMPS 800 mode (max **ERP is 23.58 dBm 0.23W**). Max EIRP is 24.16 dBm in CDMA 800 mode (max **ERP is 22.06 dBm 0.16W**). Max **EIRP is 25.50 dBm 0.355 W** in PCS 1900 mode

MODULATION CHARACTERISTICS


CFR Part 2.1047, 22.915

Measurement Results -AMPS * Data supplied by product group


Transmit Audio Frequency Response


Post Limiter Filter Attenuation

Modulation Limiting vs. Modulation Input Voltage (Compander On)

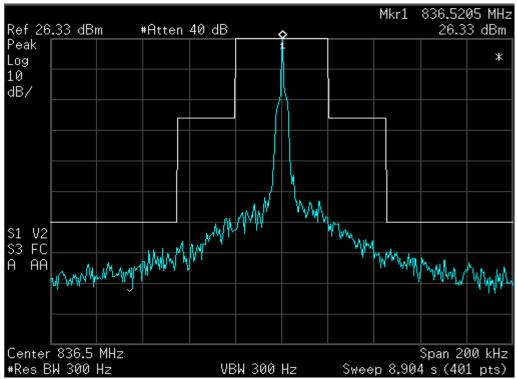
(Compander off)

OCCUPIED BANDWIDTH

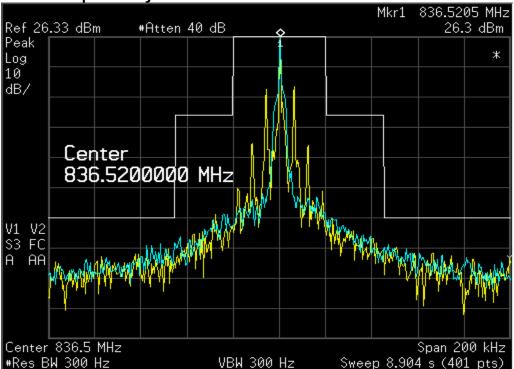
CFR Part 2.1049, 22.917, 24.238

Measurement Procedure

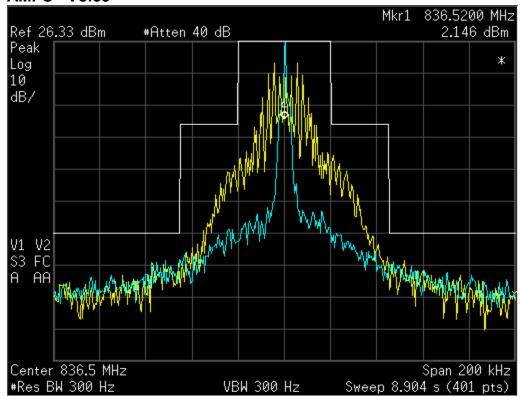
The RF output port of the equipment under test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. The amplitude of the spectrum analyzer is corrected for the attenuator and any other applicable losses. The analyzer is set for Peak Detector and each trace is set for Max Hold. A fully charged battery was used for the supply voltage.

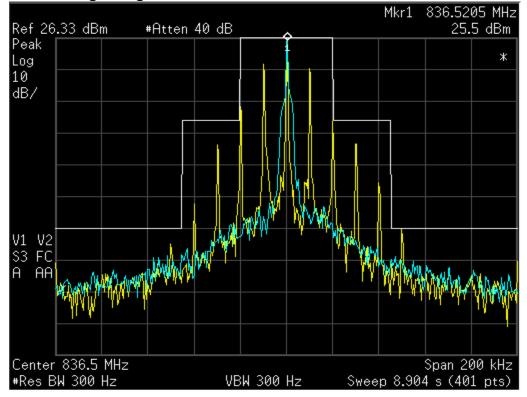

The middle channel within the designated frequency block was measured. For digital modulation, the lower and upper band edge plots are displayed.

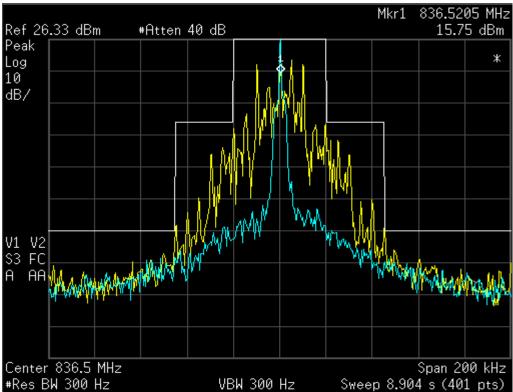
Measurement Results


Attached

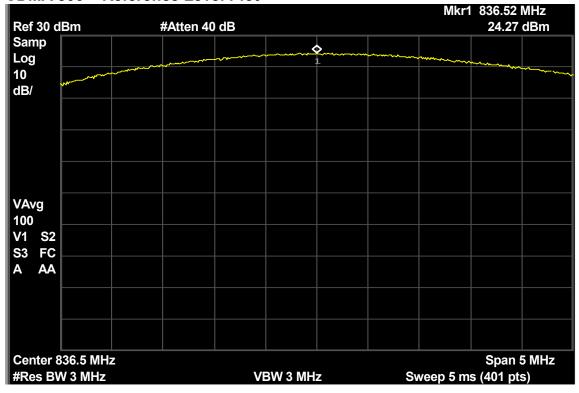
Measurement Results - AMPS


AMPS - Unmodulated Carrier

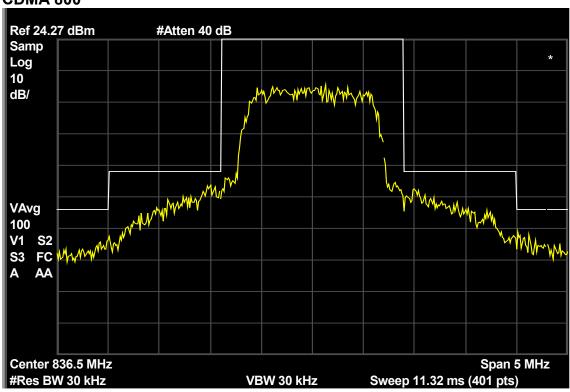



AMPS - Voice

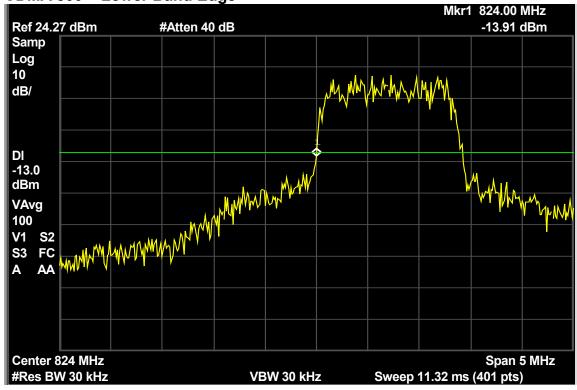
AMPS - Signaling Tone

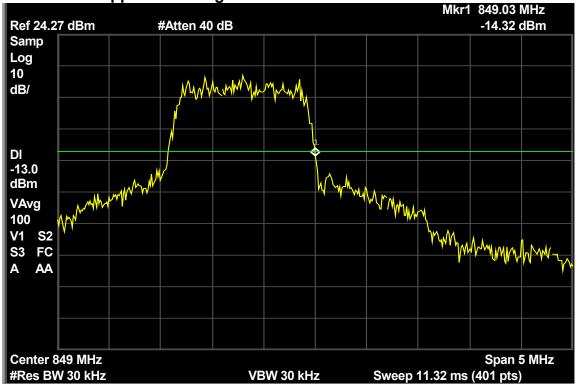


AMPS - 10kb/s Wideband Data

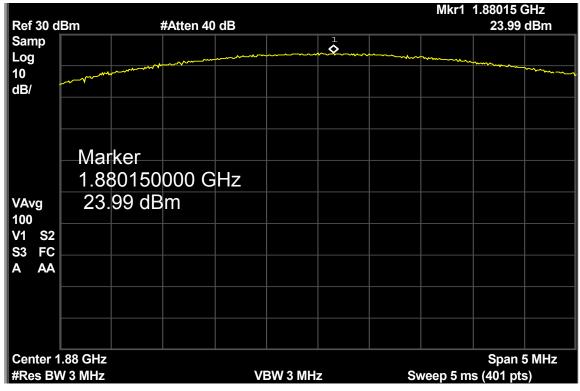


Measurement Results - CDMA 800

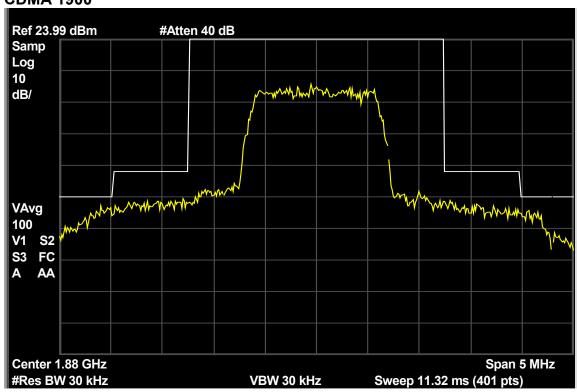

CDMA 800 - Reference Level Plot


CDMA 800

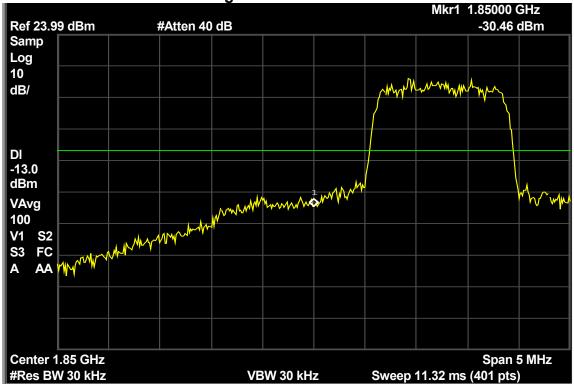
CDMA 800 - Lower Band Edge

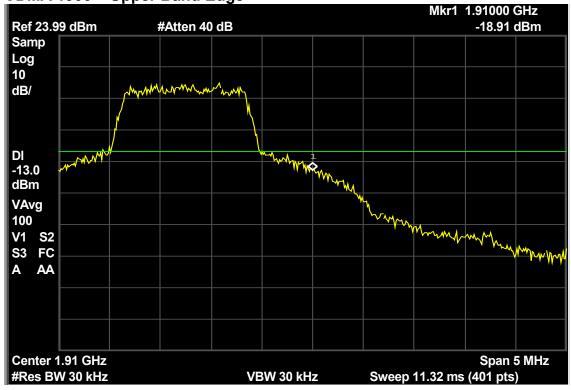


CDMA 800 - Upper Band Edge



Measurement Results - CDMA 1900


CDMA 1900 - Reference Level Plot


CDMA 1900

CDMA 1900 - Lower Band Edge

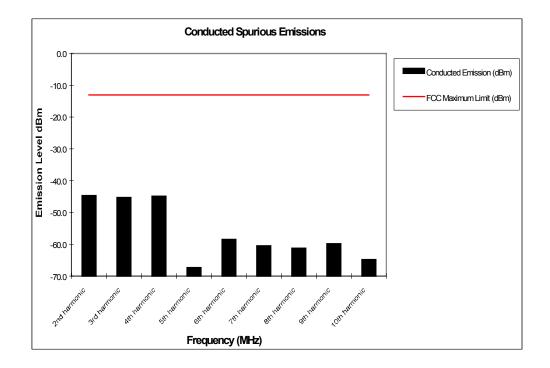
CDMA 1900 - Upper Band Edge

SPURIOUS EMISSIONS AT ANTENNA TERMINALS

CFR Part 2.1051, 22.917, 24.238

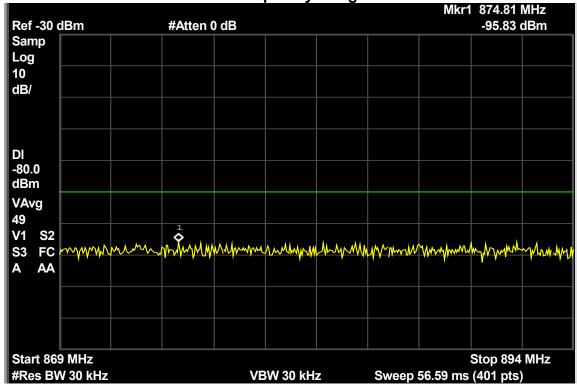
Measurement Procedure

The RF output port of the Equipment Under Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage.

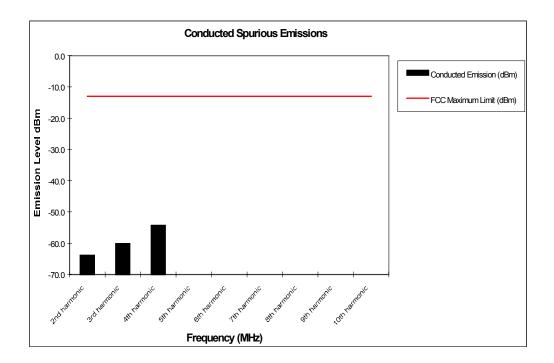

The spectrum was investigated from the lowest frequency signal generated, without going below 9 kHz, up to at least the tenth harmonic of the fundamental or 40 GHz, whichever is lower.

Measurements were made at the middle channel within the frequency band and within the base station frequency range (869-894 MHz) for cellular.

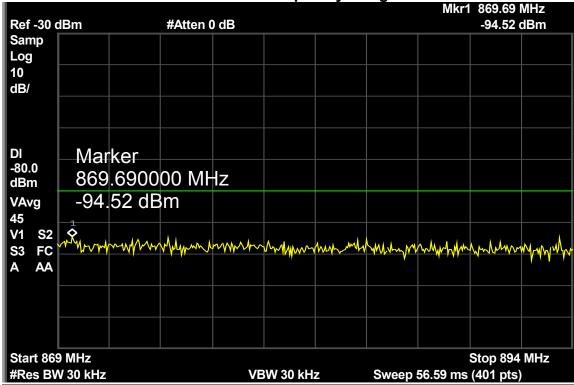
Measurement Results


Attached

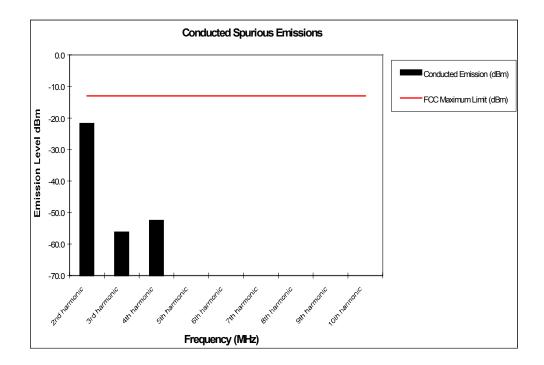
Harmonic of Fundamental	FCC Maximum Limit (dBm)	Conducted Emission (dBm)
2nd harmonic	-13	-44.7
3rd harmonic	-13	-45.3
4th harmonic	-13	-44.9
5th harmonic	-13	-67.4
6th harmonic	-13	-58.5
7th harmonic	-13	-60.5
8th harmonic	-13	-61.3
9th harmonic	-13	-59.9
10th harmonic	-13	-64.8



- 1. * Indicates the spurious emission could not be detected due to noise limitations or ambients.
- 2. Each emission reported reflects the highest absolute level at the specific harmonic for the low, mid, and high channels at maximum power.
- 3. The Spectrum was investigated from 9 kHz to the tenth harmonic of the fundamental.



Harmonic of Fundamental	FCC Maximum Limit (dBm)	Conducted Emission (dBm)
2nd harmonic	-13	-63.9
3rd harmonic	-13	-60.1
4th harmonic	-13	-54.3
5th harmonic	-13	*
6th harmonic	-13	*
7th harmonic	-13	*
8th harmonic	-13	*
9th harmonic	-13	*
10th harmonic	-13	*



- 1. * Indicates the spurious emission could not be detected due to noise limitations or ambients.
- 2. Each emission reported reflects the highest absolute level at the specific harmonic for the low, mid, and high channels at maximum power.
- 3. The Spectrum was investigated from 9 kHz to the tenth harmonic of the fundamental.

Harmonic of Fundamental	FCC Meximum Limit (dBm)	Conducted Emission (dBm)
2nd harmonic	-13	-21.8
3rd harmonic	-13	-56.3
4th harmonic	-13	-52.5
5th harmonic	-13	*
6th harmonic	-13	*
7th harmonic	-13	*
8th harmonic	-13	*
9th harmonic	-13	*
10th harmonic	-13	*

- 1. * Indicates the spurious emission could not be detected due to noise limitations or ambients.
- 2. Each emission reported reflects the highest absolute level at the specific harmonic for the low, mid, and high channels at maximum power.
- 3. The Spectrum was investigated from 9 kHz to the tenth harmonic of the fundamental.

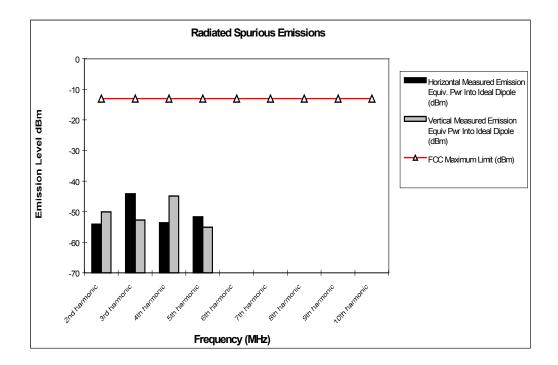
FIELD STRENGTH OF SPURIOUS EMISSIONS

CFR Part 2.1053, 22.917, 24.238

Measurement Procedure

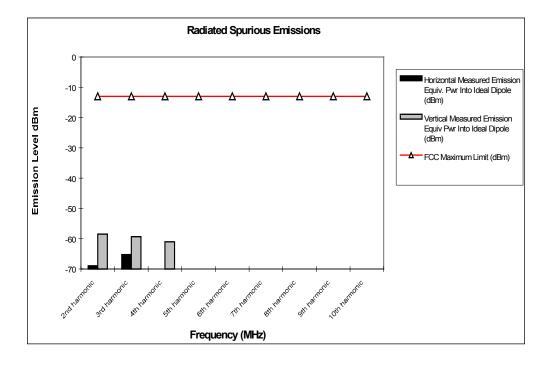
The equipment under test is placed inside the semi-anechoic chamber on a wooden table at the turntable center. For each spurious frequency, the antenna mast is raised and lowered from 1 to 4 meters and the turntable is rotated 360 degrees to obtain a maximum reading on the spectrum analyzer. This is repeated for both horizontal and vertical polarizations of the receive antenna.

The equipment under test is then replaced with a substitution antenna fed by a signal generator. With the signal generator tuned to a particular spurious frequency, the antenna mast is raised and lowered from 1 to 4 meters to obtain a maximum reading at the spectrum analyzer. The output of the signal generator is then adjusted until a reading identical to that obtained with the actual transmitter is achieved.

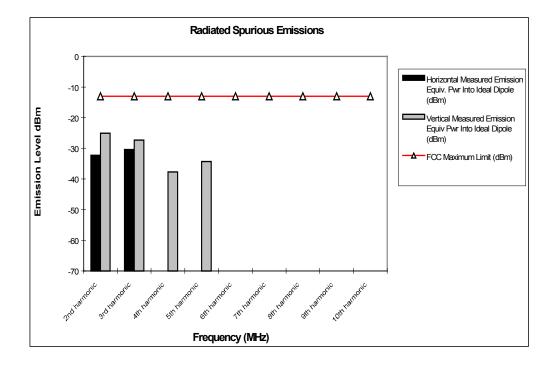

The power in dBm of each spurious emission is calculated by correcting the signal generator level for cable loss and gain of the substitution antenna referenced to a dipole. A fully charged battery was used for the supply voltage.

Photographs of the radiated test set-up including substitution are enclosed in Appendix A.

Measurement Results


Attached

Frequency (MHz)	FCC Maximum Limit (dBm)	Horizontal Measured Emission Equiv. Pwr Into Ideal Dipole (dBm)	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
2nd harmonic	-13	-54.1	-50.1
3rd harmonic	-13	-44.1	-52.8
4th harmonic	-13	-53.6	-44.9
5th harmonic	-13	-51.7	-55.1
6th harmonic	-13	*	*
7th harmonic	-13	*	*
8th harmonic	-13	*	*
9th harmonic	-13	*	*
10th harmonic	-13	*	*


- 1. * Indicates the spurious emission could not be detected due to noise limitations or ambients.
- 2. Each emission reported reflects the highest absolute level at the specific harmonic for the low, mid, and high channels at maximum power.
- 3. The Spectrum was investigated from 30 MHz to the tenth harmonic of the fundamental.

Frequency (MHz)	FCC Maximum Limit (dBm)	Horizontal Measured Emission Equiv. Pwr Into Ideal Dipole (dBm)	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
2nd harmonic	-13	-69.0	-58.5
3rd harmonic	-13	-65.3	-59.3
4th harmonic	-13	*	-61.0
5th harmonic	-13	*	*
6th harmonic	-13	*	*
7th harmonic	-13	*	*
8th harmonic	-13	*	*
9th harmonic	-13	*	*
10th harmonic	-13	*	*

- 1. * Indicates the spurious emission could not be detected due to noise limitations or ambients.
- 2. Each emission reported reflects the highest absolute level at the specific harmonic for the low, mid, and high channels at maximum power.
- 3. The Spectrum was investigated from 30 MHz to the tenth harmonic of the fundamental.

Frequency (MHz)	FCC Maximum Limit (dBm)	Horizontal Measured Emission Equiv. Pwr Into Ideal Dipole (dBm)	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
2nd harmonic	-13	-32.3	-25.0
3rd harmonic	-13	-30.4	-27.3
4th harmonic	-13	*	-37.7
5th harmonic	-13	*	-34.3
6th harmonic	-13	*	*
7th harmonic	-13	*	*
8th harmonic	-13	*	*
9th harmonic	-13	*	*
10th harmonic	-13	*	*

- 1. * Indicates the spurious emission could not be detected due to noise limitations or ambients.
- 2. Each emission reported reflects the highest absolute level at the specific harmonic for the low, mid, and high channels at maximum power.
- 3. The Spectrum was investigated from 30 MHz to the tenth harmonic of the fundamental.

FREQUENCY STABILITY

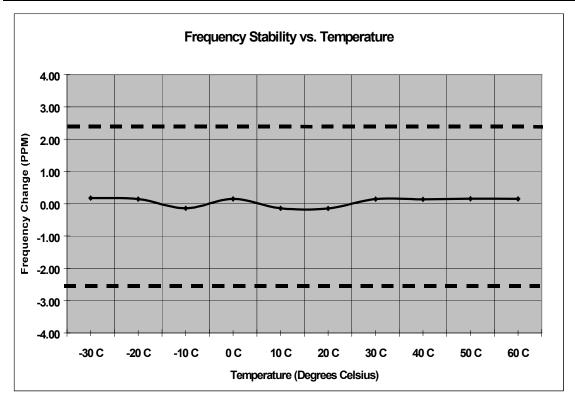
CFR Part 2.1055, 22.355, 24.235

Measurement Procedure

The equipment under test is placed in an environmental chamber. The antenna port of the Equipment Under Test is directly coupled to the input of the measurement equipment through a specialized RF connector. A power supply is attached as the primary voltage supply.

Frequency measurements are made at the extremes of the temperature range -30° C to +60° C and at intervals of 10° C with the primary supply voltage set to the nominal battery operating voltage. A period of time sufficient to stabilize all components of the equipment is allowed at each frequency measurement. The maximum variation of frequency is measured.

At room temperature, the primary supply voltage is reduced to the battery operating endpoint of the equipment under test. The maximum variation of frequency is measured.


Measurement Results

Attached

Frequency Stability

Mode:AnalogOperating Frequency:836.52 MHzChannel:384Deviation Limit (PPM):2.5ppm

Temperature	Frequency Error	Frequency Error	Voltage	Voltage
С	HZ	(PPM)	(%)	(VDC)
-30 C	148.00	0.177	100%	3.60
-20 C	123.00	0.147	100%	3.60
-10 C	-117.00	-0.140	100%	3.60
0 C	126.00	0.151	100%	3.60
10 C	-119.00	-0.142	100%	3.60
20 C	-120.00	-0.143	100%	3.60
30 C	121.00	0.145	100%	3.60
40 C	114.00	0.136	100%	3.60
50 C	128.00	0.153	100%	3.60
60 C	125.00	0.149	100%	3.60
20 C	127.00	0.152	Battery Endpoint	3.20

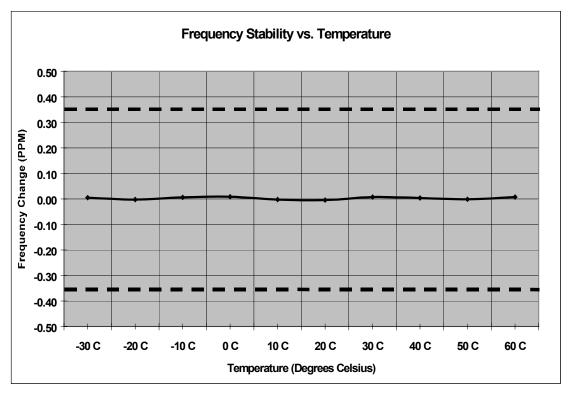
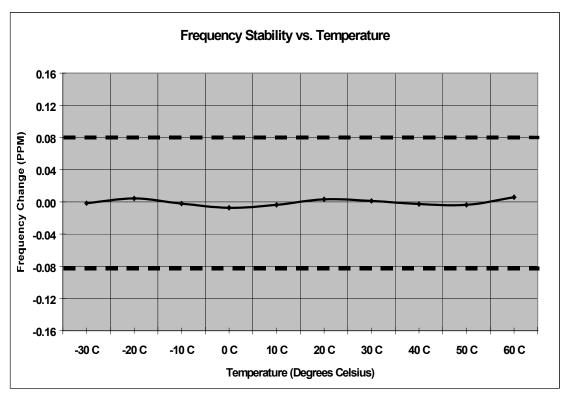


EXHIBIT 6

Frequency Stability

Mode: CDMA 800 Operating Frequency: 836.52 MHz
Channel: 384 Deviation Limit (PPM): 0.359ppm (+/-300 Hz)


Temperature	Frequency Error	Frequency Error	Voltage	Voltage
С	HZ	(PPM)	(%)	(VDC)
-30 C	4.00	0.005	100%	3.60
-20 C	-2.00	-0.002	100%	3.60
-10 C	5.00	0.006	100%	3.60
0 C	7.00	0.008	100%	3.60
10 C	-2.00	-0.002	100%	3.60
20 C	-4.00	-0.005	100%	3.60
30 C	6.00	0.007	100%	3.60
40 C	3.00	0.004	100%	3.60
50 C	-1.00	-0.001	100%	3.60
60 C	6.00	0.007	100%	3.60
20 C	7.00	0.008	Battery Endpoint	3.20

Frequency Stability

Mode: CDMA 1900 Operating Frequency: 1880.0 MHz
Channel: 600 Deviation Limit (PPM): 0.08ppm (+/-150Hz)

Temperature	Frequency Error	Frequency Error	Voltage	Voltage
С	HZ	(PPM)	(%)	(VDC)
-30 C	-3.00	-0.002	100%	3.60
-20 C	8.00	0.004	100%	3.60
-10 C	-4.00	-0.002	100%	3.60
0 C	-14.00	-0.007	100%	3.60
10 C	-7.00	-0.004	100%	3.60
20 C	6.00	0.003	100%	3.60
30 C	2.00	0.001	100%	3.60
40 C	-5.00	-0.003	100%	3.60
50 C	-7.00	-0.004	100%	3.60
60 C	11.00	0.006	100%	3.60
20 C	-5.00	-0.003	Battery Endpoint	3.20

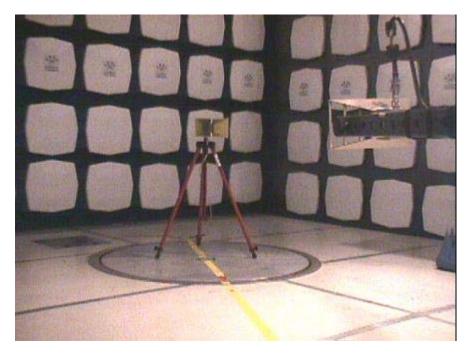


EXHIBIT 6

Appendix A – Radiated Emissions Test Setup Photos

A.1 Radiated Emissions Measurement

A.2 Substitution Measurement

End of Test Report