

Exhibit 11: SAR Test Report IHDT56CD1

Date of test: August 27 & 28, 2002 **Date of Report:** September 12, 2002

Motorola Personal Communications Sector Product Safety & Compliance Laboratory

FCC ID: IHDT56CD1

Laboratory: 2001 N. Division Room: AS228

Harvard, Illinois 60033

Test Responsible: Steven Hauswirth

Senior Staff Engineer

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following

electromagnetic exposure tests:

System Validation & Interlaboratory Comparison Simulated Tissue Specifications and Procedure EME Cellular Phone Testing Procedure

On the following types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and

Pagers

A2LA certificate #1651-01

Statement of Motorola declares under its sole responsibility that portable cellular telephone FCC ID IHDT56CD1 to which this declaration relates, is in conformity with the appropriate

General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices

are noted below:

(none)

©Motorola, Inc. 2002

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

FCC ID: IHDT56CD1

1)	Introduction	3
2)	Description of the Device Under Test Antenna description Device description	3 3 3
3)	Test Equipment 3.1 Dosimetric system 3.2 Additional equipment used	3 3 4
4)	Electrical parameters of the tissue simulating liquid	4
5)	System Accuracy Verification	4
6)	Test Results 6.1 Head Adjacent Test Results 6.2 Body-Worn Test Results	5 6 7
Re	ferences:	
Apı	pendix 1: SAR distribution comparison for the system accuracy verification	8
Apı	pendix 2: SAR distribution plots for Phantom Head Adjacent Use	9
Apı	pendix 3: SAR distribution plots for Body Worn Configuration	12
Apı	pendix 4. Probe Calibration Certificate	14
Apı	pendix 5. Dipole Characterization Certificate	15
Apı	pendix 6: Measurement Uncertainty Budget	16
Арј	pendix 7. Photographs of the device under test	19

1. Introduction

The Motorola Personal Communications Sector Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56CD1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

2. Description of the Device Under Test

Antenna description

Туре	External			
Location	Upper Left			
D:	Length	15mm		
Dimensions	Width	10mm		
Configuration	Helix			

Device description

FCC ID Number		IHDT56CD1								
Serial number	7610010									
Mode(s) of Operation	EGSM900 GSM 1800 GSM 1900 UMTS BlueTo									
Modulation Mode(s)	GSM GSM GSM WCDMA Blue'									
Maximum Output Power Setting	32.50dBm 29.50dBm 29.50dBm 21.00dBm (
Duty Cycle	1:8 1:8 1:1									
Transmitting Frequency Rang(s)	880.2- 914.8MHz	1710.2- 1784.8MHz	1850- 1910 MHz	1920.3- 1979.7MHz	2400- 2483.5 MHz					
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype									
Device Category	Portable									
RF Exposure Limits		General I	Population / Ur	ncontrolled						

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Personal Communications Sector Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The overall RSS uncertainty of the measurement system is $\pm 11.7\%$ (K=1) with an expanded uncertainty of $\pm 23.0\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY3 DAE V1	SN376	20-Jun-03
E-Field Probe ETDV6	SN1513	8-May-03
Dipole Validation Kit, DV1800V2	SN280TR	4-Jan-03
S.A.M. Phantom used for 1800MHz	TP-1105	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04845	5-Oct-02
Power Meter E4419B	GB39511084	18-Jan-03
Power Sensor #1 - 8481A	US39210932	14-Feb-03
Power Sensor #2 - 8481A	US39210934	14-Feb-03
Network Analyzer HP8753ES	US39171846	2-May-03
Dielectric Probe Kit HP85070B	US99360074	N/A

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

			tric Parar	ric Parameters		
f (MHz)	Tissue type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)	
		Measured, 27-Aug-02	40.7	1.40	22.8	
	Head	Measured, 28-Aug-02	40.1	1.41	21.6	
	Head	Recommended				
1880		Limits	40.0	1.40	20-25	
		Measured, 28-Aug-02	52.3	1.56	22.8	
	Body	Recommended				
		Limits	53.3	1.52	20-25	

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredien t	800MHz Head	800MHz Body	1900MHz Head	1900MHz Body
Sugar	57.0	44.9	47.0	30.80
DGBE			52.8	68.91
Water	40.45	53.06	0.2	0.29
Salt	1.45	0.94		
HEC	1.0	1.0		
Bact.	0.1	0.1		

5. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated on the dipole certification sheet. These tests were done at 900MHz and/or 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 Appendix D System Verification section item #5. The test was conducted on the same days as the

measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be $15.0 \text{cm} \pm 0.5 \text{cm}$. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

FCC ID: IHDT56CD1

Daily, prior to conducting tests, measurements were made with the RF sources powered off to determine the system noise level. The highest system noise was 0.0001 W/kg, which is below the recommended limit.

f		SAR		ectric meters	Ambien	Tissue
(MHz)	Description	(W/kg), 1gram	$\mathbf{\epsilon}_r$	σ (S/m)	t Temp (°C)	Temp (°C)
	Measured, 27-Aug-02	37.73	38.8	1.34	23.0	23.1
1800	Measured, 28-Aug-02	39.84	39.1	1.40	23.0	22.8
	Recommended Limits	38.80	39.6	1.37	20-25	20-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ETDV6	SN1513	1800	5.00	2 of 8

6. Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "Devices Operating Next To A Person's Ear". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

The DASY v3.1d SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY 3.1d SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than 0.02 (\pm 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone (FCC ID IHDT56CD1) has the SNN5638A as the only available battery option. The phone was placed in the SAR measurement system with a fully charged battery.

The Cellular Phone (FCC ID IHDT56CD1) has an optional camera that may be attached to the back of the phone. To evaluate the SAR impact of the optional camera, a complete set of SAR measurements were taken without the camera attached and then the worst case conditions were remeasured with the camera attached.

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 4 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 2

FCC ID: IHDT56CD1

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since same phantoms and tissue simulate are used for the system accuracy verification as the device SAR measurements, the Z-axis scans included in within Appendix 1 are applicable for verification of tissue simulate depth to be 15.0cm ± 0.5 cm. All other test conditions measured lower SAR values than those included in Appendix 2.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ETDV6	SN1513	1900	5.00	2 of 8

				Cheek / Touch Position								
		Conducted Left Head Right Head										
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Amb. Temp (°C)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Amb. Temp (°C)	Simulate Temp (°C)
	Channel 512	29.80										
Digital 1900MHz	Channel 661	29.87	0.567	-0.11	0.58	23.0	22.8	0.647	-0.12	0.67	23.0	21.6
	Channel 810	30.08										

Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56CD1 at highest possible output power. Measured against the left head in the Cheek/Touch Position.

				15° Tilt Position								
		Conducted			Left Head					Right Head		
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Amb. Temp (°C)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Amb. Temp (°C)	Simulate Temp (°C)
· ·	Channel 512	29.80			, O					, Q'		
Digital 1900MHz	Channel 661	29.87	0.601	-0.21	0.63	23.0	23.2	0.649	0.21	0.65	23.0	21.6
	Channel 810	30.08										

Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56CD1 at highest possible output power. Measured against the left head in the 15° Tilt Position.

					Cheek	k / Touc	h Position	ı w/ Cameı	a Acce	ssory		
		Conducted			Left Head					Right Head		
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Amb. Temp (°C)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Amb. Temp (°C)	Simulate Temp (°C)
	Channel 512	29.80										
Digital 1900MHz	Channel 661	29.87						0.419	0.0	0.42	23.0	21.5
	Channel 810	30.08										

FCC ID: IHDT56CD1

Table 3: SAR measurement results for the portable cellular telephone FCC ID IHDT56CD1 at highest possible output power. Measured against the left head in the Cheek/Touch Position.

6.2 Body-Worn Test Results

The SAR results shown in table 5 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(drift/10). The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. The test conditions indicated as bold numbers in the following table are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be $15.0 \, \mathrm{cm} \pm 0.5 \, \mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. There are no Body-Worn Accessories available for this phone at the time of testing hence the device was tested per the supplement C testing guidelines for devices that do not have body worn accessories. The back part of the phone was placed 1 inch away from a flat phantom per the supplement C standard guidelines to perform SAR measurement. Placing the back of the phone towards the user in this configuration causes the antenna to be closer than with the front of the phone towards the users. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ETDV6	SN1513	1900	4.60	2 of 2

			Body Worn									
		Conducted			w/o Camera					w/ Camera		
		Output				Amb.	Simulate				Amb.	Simulate
f		Power	Measured	Drift	Extrapolated	Temp	Temp	Measured	Drift	Extrapolated	Temp	Temp
(MHz)	Description	(dBm)	(W/kg)	(dB)	(W/kg)	(°C)	(°C)	(W/kg)	(dB)	(W/kg)	(°C)	(°C)
D	Channel 512	29.80	0.132	-0.14	0.14	23.0	22.8	0.0607	0.01	0.06	23.0	22.8
Digital 1900MHz	Channel 661	29.87	0.116	-0.14	0.12	23.0	22.8					
-> 0 0111111	Channel 810	30.08	0.116	-0.07	0.12	23.0	22.9					

Table 4: SAR measurement results for the portable cellular telephone FCC ID IHDT56CD1 at highest possible output power. Measured against the body.

Appendix 1

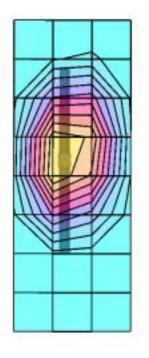
FCC ID: IHDT56CD1

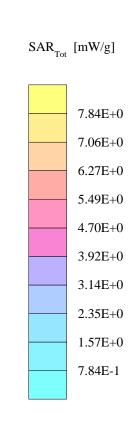
SAR distribution comparison for the system accuracy verification

1800 MHz Dipole Validation / Dipole Sn# SN280TR

Forward Power = 248mw Reflected Power = -23.70db

Room Temp at time of measurement = 23*C Simulant Temp at time of measurement = 22.8*C


R4 Amy Twin Phantom Rev.3; section 1


 $Probe: ET3DV6R - SN1513 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 \ MHz \ VALIDATION: \\ \sigma = 1.40 \ mho/m \ \epsilon_r = 39.1 \ \rho = 1.00 \ g/cm^3 \ mho/m \ \epsilon_r = 39.1 \$

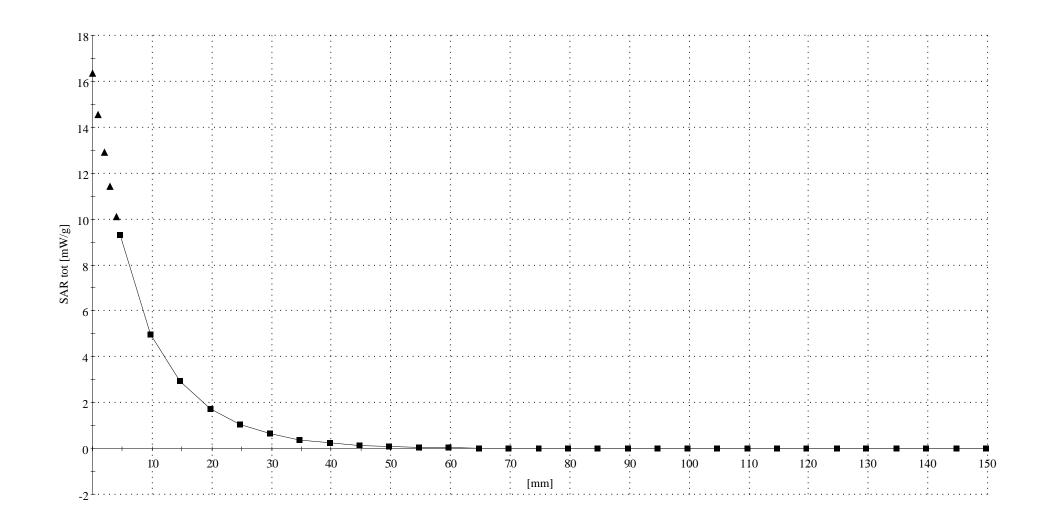
Cubes (2): Peak: 18.2 $\text{mW/g} \pm 0.03 \text{ dB}$, SAR (1g): 9.88 $\text{mW/g} \pm 0.04 \text{ dB}$, SAR (10g): 5.20 $\text{mW/g} \pm 0.05 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 8.4 (8.0, 9.2) [mm]

Powerdrift: 0.03 dB

1800 MHz Dipole Validation / Dipole Sn# SN280TR

Forward Power = 248mw Reflected Power = -23.70db


Room Temp at time of measurement = 23*C Simulant Temp at time of measurement = 22.8*C

R4 Amy Twin Phantom Rev.3;

Probe: ET3DV6R - SN1513 - VALIDATION; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION: $\sigma = 1.40$ mho/m $\epsilon_r = 39.1$ $\rho = 1.00$ g/cm³

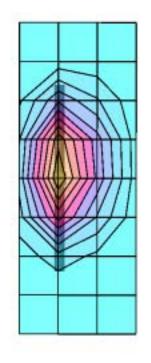
:,,()

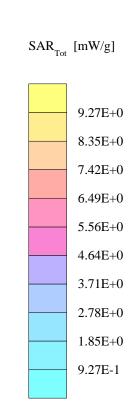
Penetration depth: 8.5 (8.1, 9.2) [mm]

1800 MHz Dipole Validation / Dipole Sn#280TR

Forward Power = 247mw Reflected Power = -23.66db

Room Temp at time of measurement = 23*C Simulant Temp at time of measurement = 23.1*C


R4 Amy Twin Phantom Rev.3; section 1


Probe: ET3DV6R - SN1513 - Validation; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.34 mho/m ϵ_r = 38.8 ρ = 1.00 g/cm³

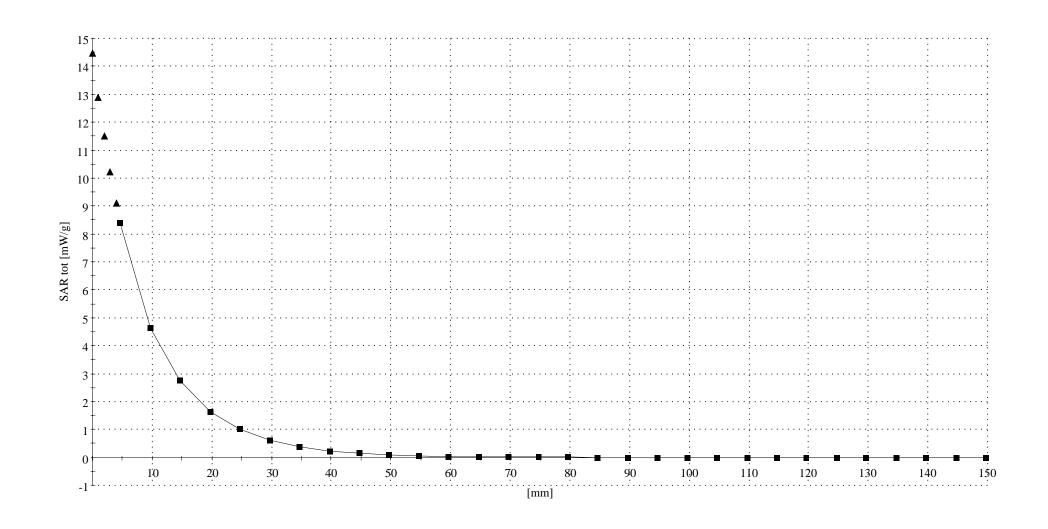
Cubes (2): Peak: 17.0 $\text{mW/g} \pm 0.01 \text{ dB}$, SAR (1g): 9.32 $\text{mW/g} \pm 0.02 \text{ dB}$, SAR (10g): 4.93 $\text{mW/g} \pm 0.04 \text{ dB}$, (Worst-case extrapolation)

Penetration depth: 8.6 (8.2, 9.4) [mm]

Powerdrift: 0.01 dB

1800 MHz Dipole Validation / Dipole Sn# SN280TR

Forward Power = 247mw Reflected Power = -23.66db


Room Temp at time of measurement = 23*C Simulant Temp at time of measurement = 23.1*C

R4 Amy Twin Phantom Rev.3;

Probe: ET3DV6R - SN1513 - Validation; ConvF(5.00,5.00,5.00); Crest factor: 1.0; 1800 MHz VALIDATION: σ = 1.34 mho/m ϵ_r = 38.8 ρ = 1.00 g/cm³

:,,()

Penetration depth: 8.8 (8.5, 9.5) [mm]

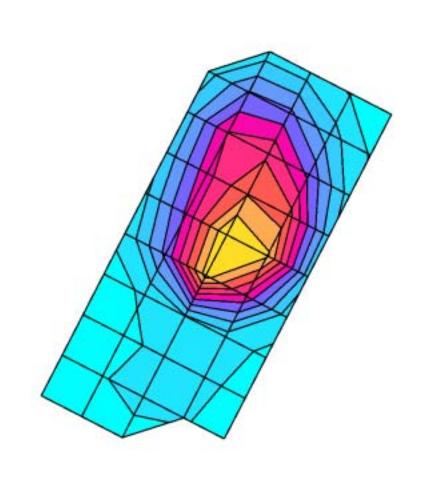
Appendix 2

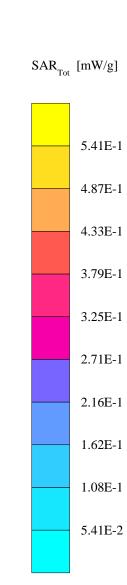
FCC ID: IHDT56CD1

SAR distribution plots for Phantom Head Adjacent Use

Ch# 661 / Pwr Step: 00 / Type of Modulation: GSM1900 / Battery Model #SNN5638A

DEVICE POSITION: Cheek


R4 TP-1105 Glycol SAM(rev.3) Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1513 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.40 \text{ mho/m} \ \epsilon_r = 40.7 \ \rho = 1.00 \text{ g/cm}^3$

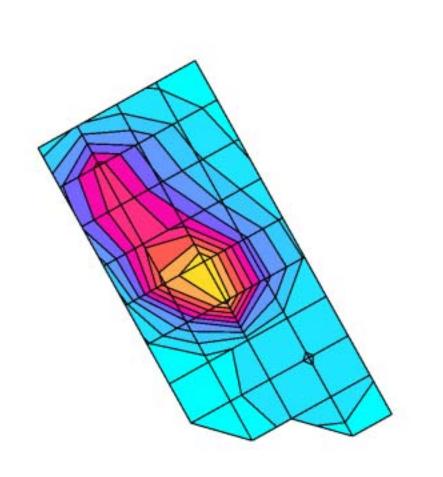
Cube 7x7x7: SAR (1g): 0.567 mW/g, SAR (10g): 0.351 mW/g, (Worst-case extrapolation)

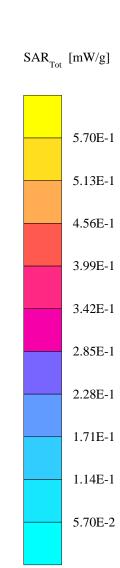
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0Penetration depth: 12.1 (11.1, 13.2) [mm]

Powerdrift: -0.11 dB

Ch# 661/ Pwr Step: 0 / Type of Modulation: GSM1900 / Battery Model #: SNN5638A

DEVICE POSITION: CHEEK


R4 TP-1105 Glycol SAM(rev.3) Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1513 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.41 \text{ mho/m } \epsilon_r = 40.1 \text{ } \rho = 1.00 \text{ g/cm}^3$

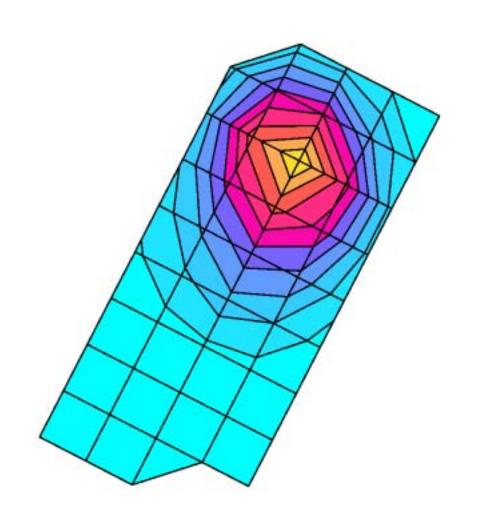
Cube 7x7x7: SAR (1g): 0.647 mW/g, SAR (10g): 0.366 mW/g, (Worst-case extrapolation)

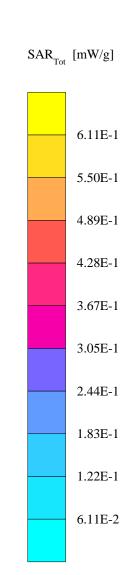
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 11.6 (11.3, 12.0) [mm]

Powerdrift: -0.12 dB

Ch# 661/ Pwr Step: 00 / Type of Modulation: GSM1900 / Battery Model #: SNN5638A

DEVICE POSITION: 15 Degree Tilt


R4 TP-1105 Glycol SAM(rev.3) Phantom; Left Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1513 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.40 \text{ mho/m} \ \epsilon_r = 40.7 \ \rho = 1.00 \text{ g/cm}^3$

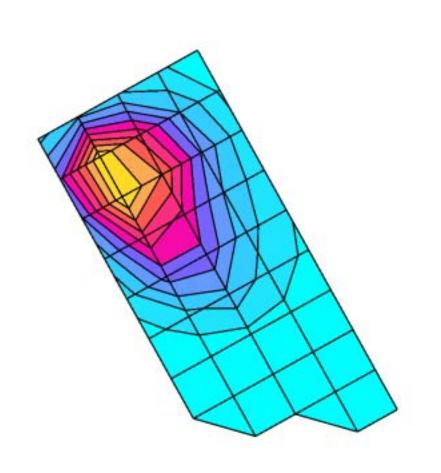
Cube 7x7x7: SAR (1g): 0.601 mW/g, SAR (10g): 0.355 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0Penetration depth: 9.7 (9.3, 10.3) [mm]

Powerdrift: -0.21 dB

Ch# 661 / Pwr Step: 0 / Type of Modulation: GSM1900 / Battery Model #SNN5638A

DEVICE POSITION: 15 Degree Tilt


R4 TP-1105 Glycol SAM(rev.3) Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz

Probe: ET3DV6R - SN1513 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.41 \text{ mho/m} \ \epsilon_r = 40.1 \ \rho = 1.00 \text{ g/cm}^3$

Cube 7x7x7: SAR (1g): 0.649 mW/g, SAR (10g): 0.360 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0Penetration depth: 8.4 (8.0, 9.2) [mm]

Powerdrift: 0.21 dB

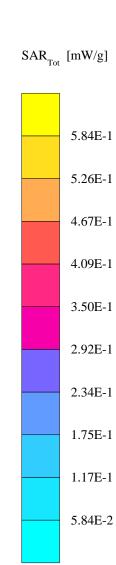


Figure 1.Typical 1900MHz Head Adjacent Contour Overlaid on Phone (Cheek Touch)

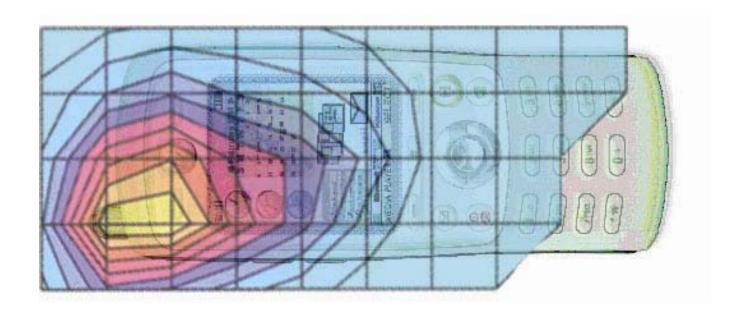
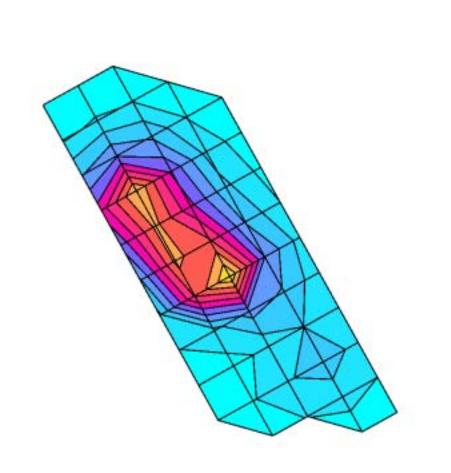
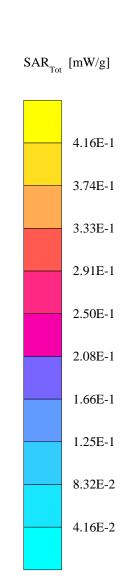


Figure 2.Typical 1900MHz Head Adjacent Contour Overlaid on Phone (15 ° Tilt)

Ch# 661 / Pwr Step: 00 / Type of Modulation: GSM1900 / Battery Model #SNN5638A

DEVICE POSITION (cheek or rotated): Cheek / Camera Attached


R4 TP-1105 Glycol SAM(rev.3) Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz


Probe: ET3DV6R - SN1513 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.41 \text{ mho/m} \ \epsilon_r = 40.1 \ \rho = 1.00 \text{ g/cm}^3$

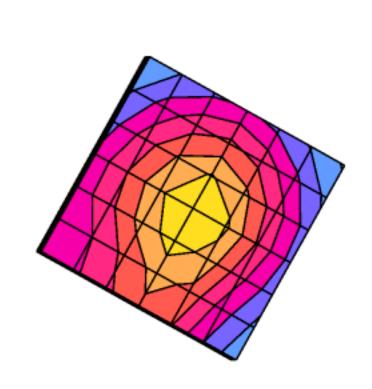
Cube 7x7x7: SAR (1g): 0.419 mW/g, SAR (10g): 0.242 mW/g, (Worst-case extrapolation)

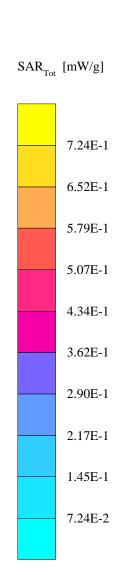
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0 Penetration depth: 11.9 (11.5, 12.4) [mm]

Powerdrift: -0.00 dB

Ch# 661 / Pwr Step: 00 / Type of Modulation: GSM1900 / Battery Model #SNN5638A

DEVICE POSITION (cheek or rotated): Cheek / Camera Attached


2nd Hot Spot


R4 TP-1105 Glycol SAM(rev.3) Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz

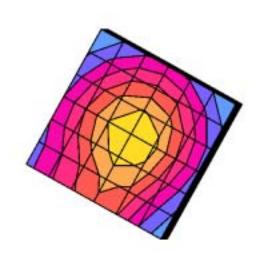
Probe: ET3DV6R - SN1513 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.41 \text{ mho/m} \ \epsilon_r = 40.1 \ \rho = 1.00 \ \text{g/cm}^3$

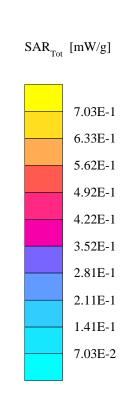
Cube 7x7x7: SAR (1g): 0.399 mW/g, SAR (10g): 0.219 mW/g, (Worst-case extrapolation)

Cube 7x7x7: Dx = 5.0, Dy = 5.0, Dz = 5.0 Penetration depth: 8.5 (8.1, 9.2) [mm]

Ch# 661 / Pwr Step: 00 / Type of Modulation: GSM1900 / Battery Model #SNN5638A

DEVICE POSITION (cheek or rotated): Cheek / Camera Attached


3rd Hot Spot


R4 TP-1105 Glycol SAM(rev.3) Phantom; Right Hand Section; Position: (90°,180°); Frequency: 1880 MHz

Probe: ET3DV6R - SN1513 - IEEE Head; ConvF(5.00,5.00,5.00); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.41 \text{ mho/m} \ \epsilon_r = 40.1 \ \rho = 1.00 \text{ g/cm}^3$

Cube 7x7x7: SAR (1g): 0.390 mW/g, SAR (10g): 0.214 mW/g, (Worst-case extrapolation)

Cube 7x7x7: Dx = 5.0, Dy = 5.0, Dz = 5.0 Penetration depth: 8.5 (8.1, 9.2) [mm]

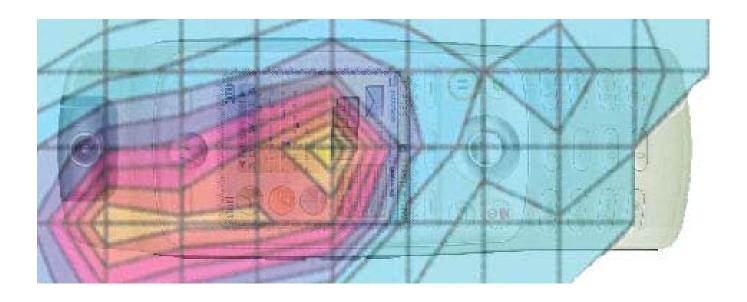


Figure 3.Typical 1900MHz Head Adjacent Contour Overlaid on Phone with Camera Attached (Cheek Touch)

Page 11

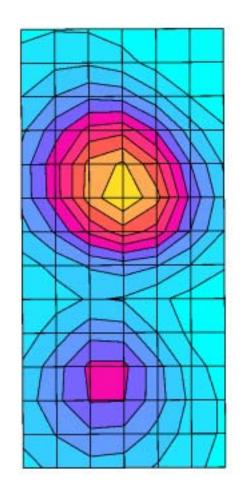
Appendix 3

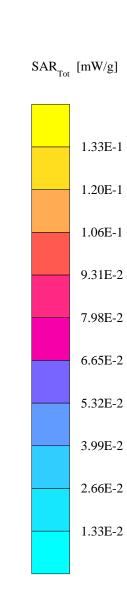
FCC ID: IHDT56CD1

SAR distribution plots for Body Worn Configuration

Ch# 512 / Pwr Step: 00 / Type of Modulation: GSM 1900 / Battery Model #: SNN5638A

Body Worn - Back of phone 1in. from phantom


R4 Amy Twin Phantom Rev.3 Phantom; section 2 Section; Position: (0°,0°); Frequency: 1850 MHz


Probe: ET3DV6R - SN1513 - FCC Body; ConvF(4.60,4.60,4.60); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.56$ mho/m $\epsilon_r = 52.3$ $\rho = 1.00$ g/cm³

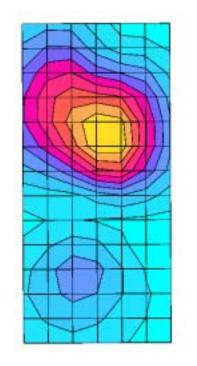
Cube 7x7x7: SAR (1g): 0.132 mW/g, SAR (10g): 0.0851 mW/g, (Worst-case extrapolation)

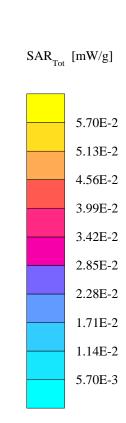
Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 11.3 (10.0, 13.0) [mm]

Powerdrift: -0.14 dB

Ch# 512 / Pwr Step: 00 / Type of Modulation: GSM 1900 / Battery Model #: SNN5638A

Body Worn - Back of phone 1in. from phantom with Camera Attached


R4 Amy Twin Phantom Rev.3 Phantom; section 2 Section; Position: (0°,0°); Frequency: 1850 MHz


Probe: ET3DV6R - SN1513 - FCC Body; ConvF(4.60,4.60,4.60); Crest factor: 8.0; 1880 MHz Head & Body: $\sigma = 1.56$ mho/m $\epsilon_r = 52.3$ $\rho = 1.00$ g/cm³

Cube 7x7x7: SAR (1g): 0.0607 mW/g, SAR (10g): 0.0386 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0Penetration depth: 11.0 (9.5, 13.1) [mm]

Powerdrift: 0.01 dB

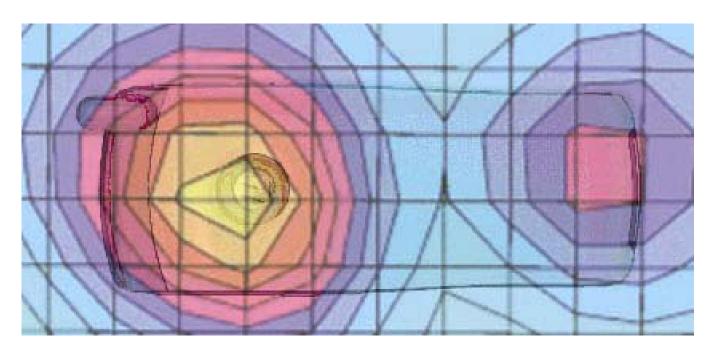


Figure 4. Typical 1900 MHz Body-Worn Contour Overlaid on Phone

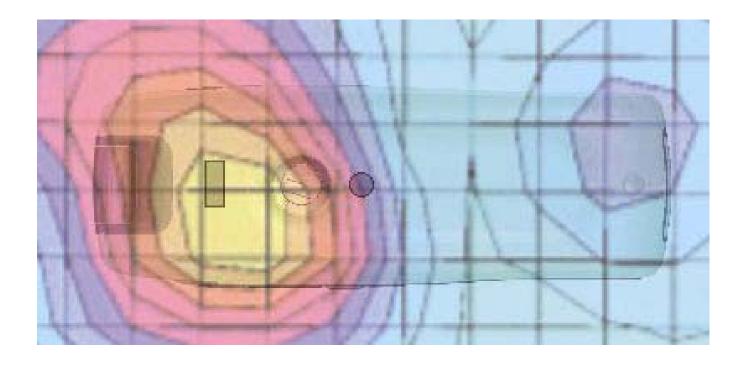


Figure 5. Typical 1900 MHz Body-Worn Contour Overlaid on Phone with Camera Attached

Appendix 4

FCC ID: IHDT56CD1

Probe Calibration Certificate

Schmid & Partner Engineering AG

Zoughausstrassa 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fex +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Type:

Serial Number:

Place of Calibration:

Date of Calibration:

May 8, 2002

Calibration Interval:

12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

D.Vellar

Seni- Uga

Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

Probe ET3DV6R

SN:1513

Manufactured:

November 24, 1999

Last calibration:

February 20, 2001

Remake ET3DV6R:

May 3, 2002

Recalibrated:

May 8, 2002

Calibrated for System DASY3

DASY3 - Parameters of Probe: ET3DV6R SN:1513

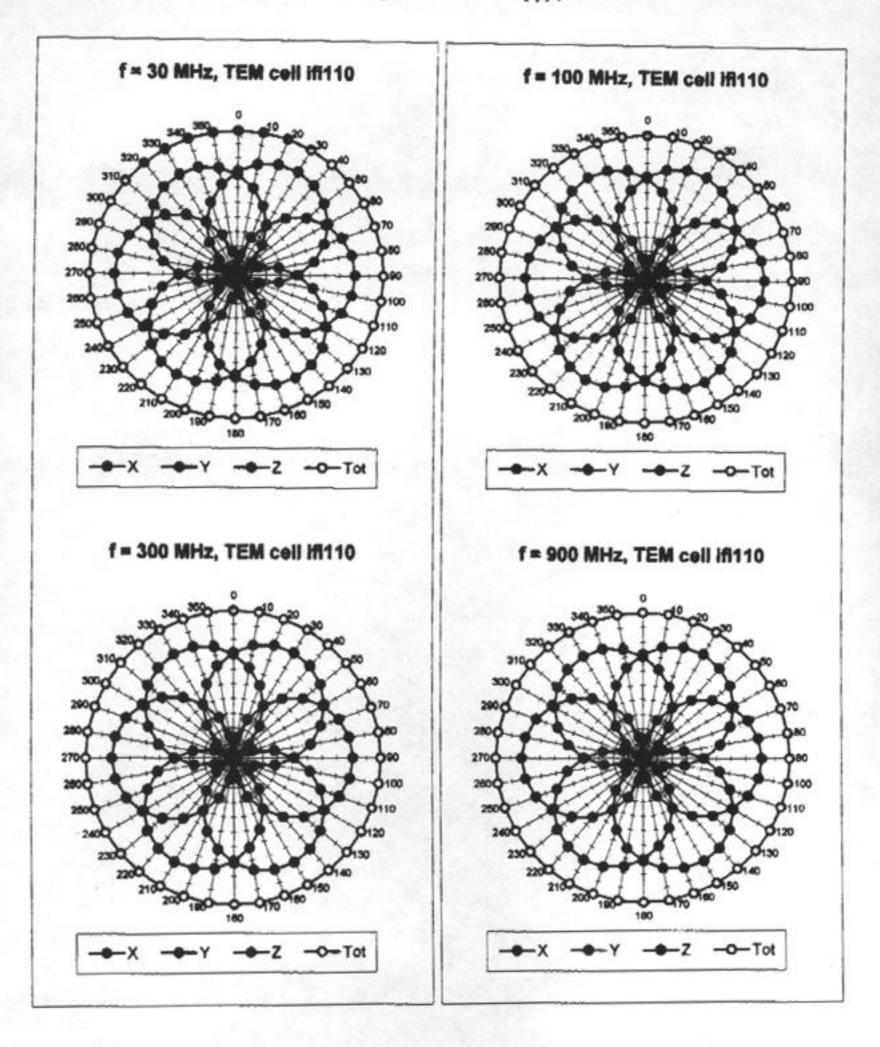
Sensitivity in Free	Snace

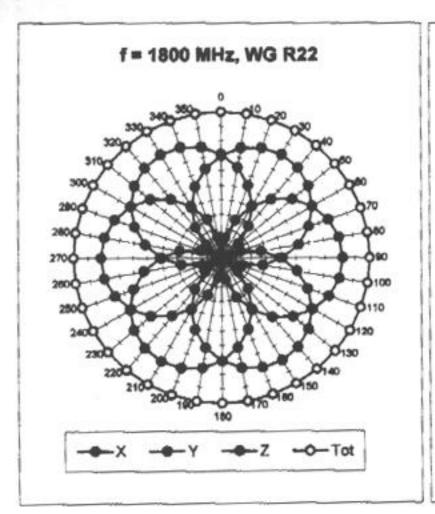
Diode Compression

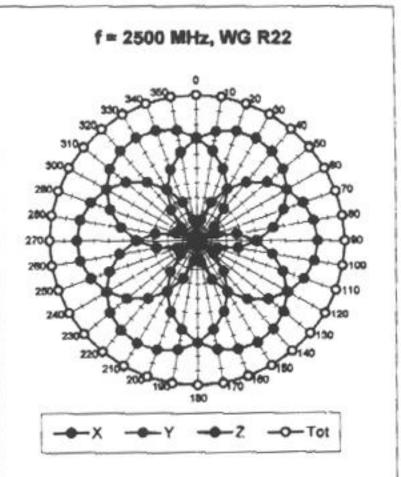
NormX	1.96 μV/(V/m) ²	DCP X	95	mV
NormY	2.02 μV/(V/m) ²	DCP Y	95	mV
NormZ	2.02 μV/(V/m) ²	DCP Z	95	mV

Sensitivity in Tissue Simulating Liquid

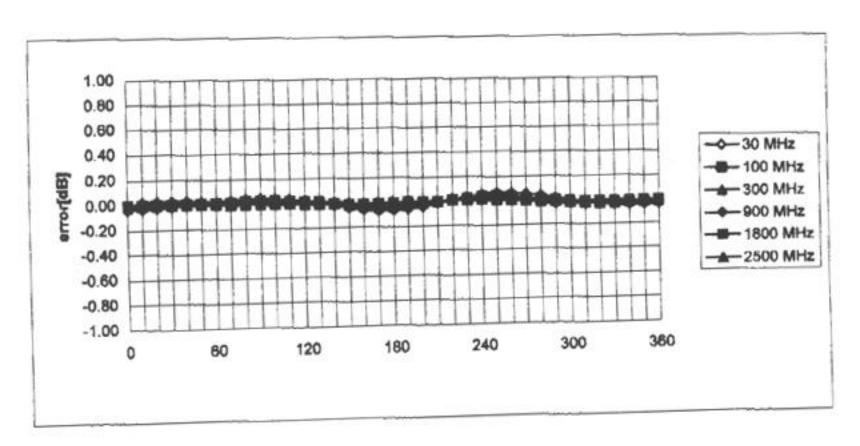
Head	900 MHz	s, = 41.6 ± 5%	$\sigma = 0.97 \pm 5\% \text{ mho/m}$
Head	835 MHz	$e_r = 41.5 \pm 5\%$	σ = 0.90 ± 5% mho/m
	ConvF X	6.1 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.1 ± 9.5% (k=2)	Alpha 0.81
	ConvF Z	6.1 ± 9.5% (k=2)	Depth 1.64
Head	1800 MHz	e _r = 40.0 ± 5%	o = 1.40 ± 5% mho/m
Head	1900 MHz	e, = 40.0 ± 5%	$\sigma = 1.40 \pm 5\%$ mho/m
	ConvF X	5.0 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	5.0 ± 9.5% (k≠2)	Alpha 0.61
	ConvF Z	5.0 ± 9.5% (k=2)	Depth 2.13

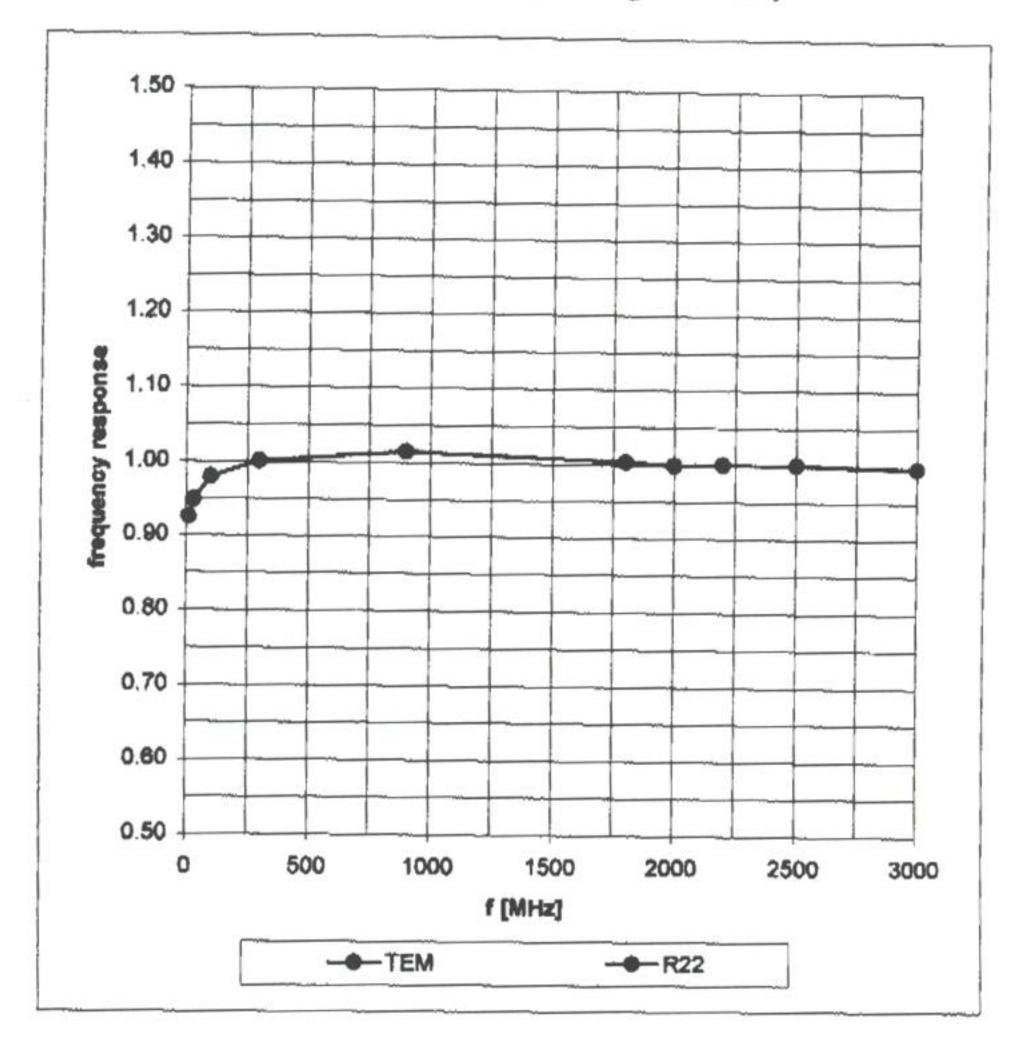

Boundary Effect


Head	900 MHz Typical SAR gradi	ent: 5 % per mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR ₀₀ [%] Without Correction Algorithm	9.3	4.6
	SAR _{be} [%] With Correction Algorithm	0.0	0.1
Head	1800 MHz Typical SAR grad	ient: 10 % per mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction Algorithm	11.8	7.3
	SAR _{be} [%] With Correction Algorithm	0.2	0.1

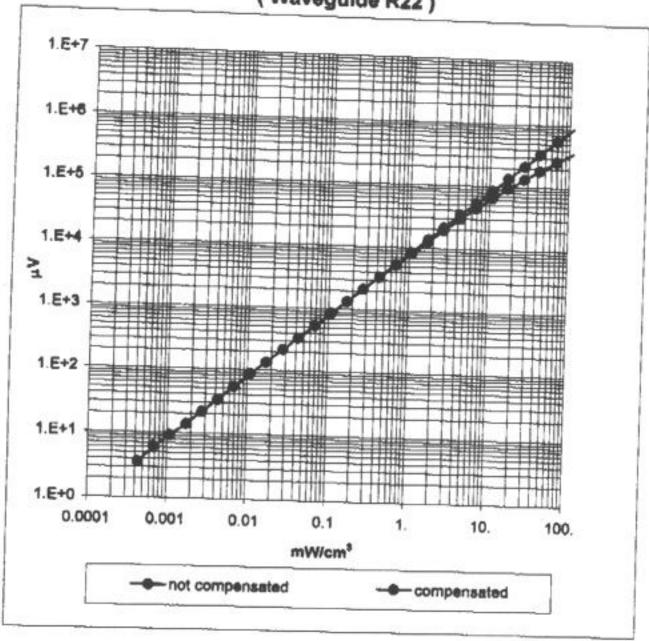

Sensor Offset

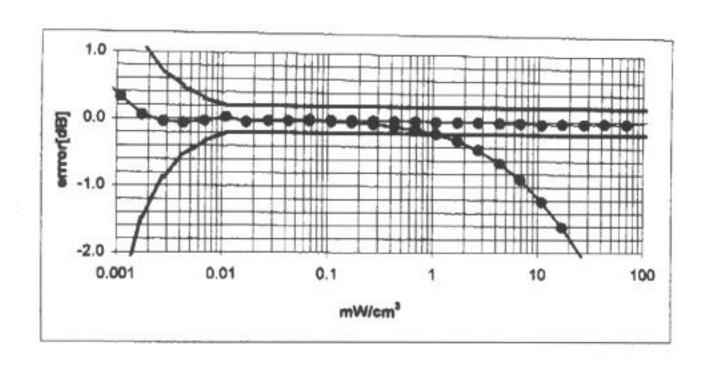
Probe Tip to Sensor Center 2.7 mm

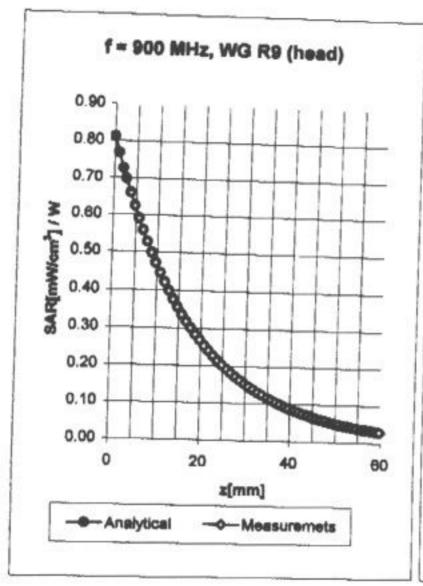

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

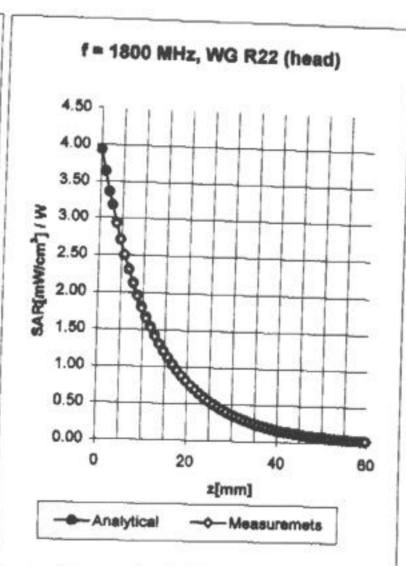


Isotropy Error (ϕ), $\theta = 0^{\circ}$

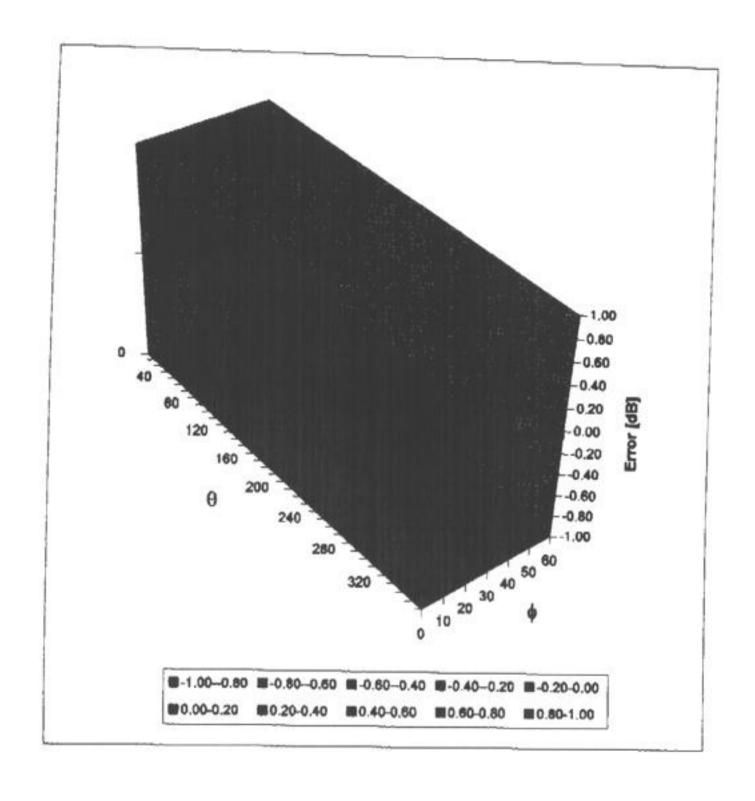

Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)


Dynamic Range f(SAR_{brain})


(Waveguide R22)

Conversion Factor Assessment



Head	900 MHz		$\epsilon_r = 41.5 \pm 5\%$	σ = 0.97 ± 5% m	ho/m
Head	836 MHz		$e_r = 41.6 \pm 5\%$	o = 0.90 ± 5% m	ho/m
	ConvF X	6.1	± 9.5% (k=2)	Boundary eff	ect:
	ConvF Y	6.1	± 9.5% (k≠2)	Alpha	0.81
	ConvF Z	6.1	± 9.5% (k=2)	Depth	1.64

Head	1800 MHz	$\varepsilon_r = 40.0 \pm 5\%$	σ = 1.40 ± 5% mho/m
Head	1900 MHz	$\epsilon_{\rm r}$ = 40.0 ± 5%	σ = 1.40 ± 5% mho/m
	ConvF X	5.0 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	5.0 ± 9.5% (k=2)	Alpha 0.61
	ConvF Z	5.0 ± 9.5% (k=2)	Depth 2.13

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Schmid & Partner Engineering AG

Zoughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6R			
Serial Number:	1513			
Place of Assessment:	Zurich			
Date of Assessment:	May 8, 2002			
Probe Calibration Date:	May 8, 2002			

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Denie Krt-

Dosimetric E-Field Probe ET3DV6R SN:1513

Conversion factor (* standard deviation)

835 MHz	ConvF	6.2±8%	$e_r = 41.5 \pm 5\%$ $\sigma = 0.90 \pm 5\%$ mho/m (head tissue)
1950 MHz	ConvF	4.8 ± 8%	$\varepsilon_r = 40.0 \pm 5\%$ $\sigma = 1.40 \pm 5\% \text{ mho/m}$ (head tissue)
835 MHz	ConvF	6.0 ± 8%	$\varepsilon_r = 55.2 \pm 5\%$ $\sigma = 0.97 \pm 5\% \text{ mho/m}$ (body tissue)
900 MHz	ConvF	5.9 ± 8%	$\varepsilon_r = 55.0 \pm 5\%$ $\sigma = 1.05 \pm 5\% \text{ mho/m}$ (body tissue)
1800 MHz	ConvF	4.6 ± 8%	$\varepsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\% \text{ mho/m}$ (body tissue)
1950 MHz	ConvF	4.4 ± 8%	$\varepsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\% \text{ mho/m}$ (body tissue)

Appendix 5

FCC ID: IHDT56CD1

Dipole Characterization Certificate

Interim Dipole Correlation Certificate

FCD-0359, Rev.001

Dinala Carial Numb		2710 NAME - 10-10-10-10-10-10-10-10-10-10-10-10-10-1
Dipole Serial Number: (200(178)	Last Calibration Date:	4-Jan-01
Dipole Type (MHz):	Calibration Due:	4-7an-03
	Manufacturer:	SPEAG
-Manufacturer's Original Calibration Informa	tion-	
T	nber: 280(TR)]	
Ig SAR normalized to IW forward power	(mW/g): 42.46	
Relative Dielectric:	(III W/g).	
Conductivity:		
Probe Serial Number:		1 97
Forward Power:	2500	nW .
Primary Dipole Referenced. (Sector No.		
Primary Dipole Referenced: [Serial Nun lg SAR normalized to 1W forward power	nber: 246(TR)]	TO THE PROPERTY OF THE PARTY OF
Relative Dielectric:	2000 2 d January 1 (1970)	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT
Conductivity:	39	AND ACCUPATION AND ACCUPATION.
Probe Serial Number:	13	All the state of t
Forward Power:	150	HT STATE PRODUCTION AND ADDRESS.
Forward Fower:	250 s	(1) A Carlo (1) A
-Measured Data- Probe S/N: Conduct	(if required) ee & 90-degree 1g cubes (if required)	
-NEW Correlated Target-		
1g SAR normalized to 1W forward power (mW/g): 35.3 in 9	11 45-56
Relative Dielectric:	39.6	
Conductivity:		
		1010101010101010101010101010101
Approved by: Antono Ferom	Date: 3/8	102
Comments: Secondary dipole measured +0.9	% from primary dipole.	

Appendix 6

FCC ID: IHDT56CD1

Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test									
							h =	i =	
а	b	c	d	e = f(d,k)	f	g	cxf/e	c x g / e	\boldsymbol{k}
		Tol.	Prob.		c_i	c_i	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	Sec.	(= / 0 /	2150	Div.	(- 8)	(= 0 g)	(±%)	(±%)	v _i
Measurement System				2111			(= /0)	(= /0)	, ,
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Spherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	8
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	1.3	R	1.73	1	1	0.8	0.8	8
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	8
Extrapolation, interpolation and									
Integration Algorithms for Max. SAR									
Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	8
Test sample Related									
Test Sample Positioning	E.4.2	3.6	N	1.00	1	1	3.6	3.6	29
Device Holder Uncertainty	E.4.1	2.8	N	1.00	1	1	2.8	2.8	8
Output Power Variation - SAR drift									
measurement	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from									
target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement									
uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation from							_		
target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	8
Liquid Permittivity - measurement									
uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Combined Standard Uncertainty			RSS				11.72	11.09	1363
Expanded Uncertainty			, ,				22.00	21.77	
(95% CONFIDENCE LEVEL)			k=2				22.98	21.75	

FCC ID: IHDT56CD1

Uncertainty Budget for System Performance Check (dipole & flat phantom)

FCC ID: IHDT56CD1

Uncertainty Budget for	System	<u>i Perio</u>	<u>rman</u>	<u>ce Un</u>	eck (aipoie	& Hat	pnant	om)
				e =			h =	<i>i</i> =	
				f(d,k)			cxf/	c x g	
a	b	c	d)	f	g	e	/ e	k
		Tol.	Prob.		c_i	c_i	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	Sec.			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.5	N	2.00	1	1	4.8	4.8	8
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	× ×
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	∞
Response Time	E.2.7	0.0	R	1.73	1	1	0.0	0.0	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical									
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to									
Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	∞
Extrapolation, interpolation and									
Integration Algorithms for Max.			_						
SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	∞
Dipole			_						
Dipole Axis to Liquid Distance	8, E.4.2	1.0	R	1.73	1	1	0.6	0.6	∞
Input Power and SAR Drift Measurement	0.662	4.7	R	1.73	1	1	2.7	2.7	
Phantom and Tissue	8, 6.6.2	4.7	K	1./3	1	1	2.1	2.1	∞
Parameters									
Phantom Uncertainty (shape and									
thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation									
from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity -									
measurement uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Permittivity - deviation									
from target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity -									
measurement uncertainty	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Combined Standard									
Uncertainty			RSS				10.16	9.43	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				19.92	18.48	

Appendix 7

FCC ID: IHDT56CD1

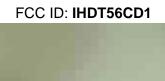

Photographs of the device under test

Figure 6. Illustrations of the Phone without the Camera Attached.

Figure 7. Illustrations of the Phone with the Camera Attached.

