

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name: Motorola Mobility, Inc. 8000 West Sunrise Blvd. Plantation, FL 33322 **United States**

Date of Testing: 11/17/11 - 11/19/11 **Test Site/Location:** PCTEST Lab, Columbia, MD, USA **Test Report Serial No.:** 0Y1112152143.IHD

FCC ID: IHDP56ME5

APPLICANT: MOTOROLA MOBILITY, INC.

EUT Type: Portable Handset

Application Type: Certification (5 GHz SAR Only)

FCC Rule Part(s): CFR §2.1093; FCC/OET Bulletin 65 Supplement C [June 2001]

Test Device Serial No.: Pre-Production [S/N: TA22300PEA]

Band & Mode	Tx Frequency	Conducted	SAR		
		Power [dBm]	1 gm Head (W/kg)	1 gm Body-Worn (W/kg)	1 gm Hotspot (W/kg)
5.2 GHz WLAN	5180 - 5240 MHz	10.48	0.02	0.02	
5.3 GHz WLAN	5260 - 5320 MHz	10.44	0.02	0.03	
5.5 - 5.7 GHz WLAN	5500 - 5700 MHz	10.55	0.05	0.03	
5.8 GHz WLAN	5745 - 5825 MHz	10.35	0.02	0.03	

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all capabilities.

The electrically equivalent wireless portable device with respect to 5 GHz WIFI only has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for 5 GHz WIFI modes only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	MOTOROLA	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 1 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	1 Portable Handset		rage 1 01 29
© 2014 DCTCCT Engineering Laboratory, Inc.				DEV/ 10M

TABLE OF CONTENTS

1	INTRODUCTION	3
2	TEST SITE LOCATION	4
3	SAR MEASUREMENT SETUP	5
4	DASY E-FIELD PROBE SYSTEM	7
5	PROBE CALIBRATION PROCESS	8
6	PHANTOM AND EQUIVALENT TISSUES	g
7	DOSIMETRIC ASSESSMENT & PHANTOM SPECS	10
8	DEFINITION OF REFERENCE POINTS	11
9	TEST CONFIGURATION POSITIONS	12
10	FCC RF EXPOSURE LIMITS	15
11	WIFI ANTENNA LOCATION AND INFORMATION	16
12	SAR TESTING WITH IEEE 802.11 TRANSMITTERS	17
13	RF OUTPUT POWERS	18
14	SYSTEM VERIFICATION	20
15	SAR DATA SUMMARY	22
16	EQUIPMENT LIST	25
17	MEASUREMENT UNCERTAINTIES	26
18	CONCLUSION	27
19	REFERENCES	28

FCC ID: IHDP56ME5	PCTEST SOUTHING LAUGHTERY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 2 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 2 01 29

1 INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

1.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1-1).

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Figure 1-1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 3 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 3 01 29

2 TEST SITE LOCATION

2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC.

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles north of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV

Figure 2-1
Map of the Greater Baltimore and Metropolitan
Washington, D.C. area

transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada.

2.2 Test Facility / Accreditations:

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), Battery Safety, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA)
 Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data

FCC ID: IHDP56ME5	PCTEST'	SAR EVALUATION REPORT	MOTOROLA	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 4 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset		Fage 4 01 29

3 SAR MEASUREMENT SETUP

3.1 Robotic System

Measurements are performed using the DASY4 and DASY5 automated dosimetric assessment system. The DASY4 and DASY5 are made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the SAM phantom containing the head or body equivalent material. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3-1).

3.2 System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the SAR Measurement Software DASY4 or DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal from the DAE and transfers data to the PC card.

3.3 System Electronics

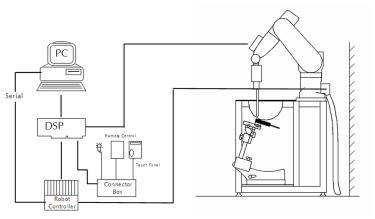


Figure 3-1 SAR Measurement System Setup

The DAE consists of a highly sensitive electrometer-grade auto-zeroing preamplifier, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 5 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 3 01 29

3.4 Automated Test System Specifications

Test Software: SPEAG DASY4 version 4.7 Measurement Software

SPEAG DASY5 version 52.6.2.482 Measurement Software

Robot: Stäubli Unimation Corp. Robot RX60L- DASY4 Stäubli Unimation Corp. Robot TX90 XL - DASY5

Repeatability: 0.02 mm

No. of Axes: 6

Data Acquisition Electronic System (DAE)

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter & control logic

Software: SEMCAD software

Connecting Lines: Optical Downlink for data and status info

Optical upload for commands and clock

PC Interface Card

Function: Link to DAE

16-bit A/D converter for surface detection system

Two Serial & Ethernet link to robotics Direct emergency stop output for robot

Phantom

Type: SAM Twin Phantom (V4.0 & V5.0)

Shell Material: Composite Thickness: 2.0 ± 0.2 mm

Figure 3-2 SAR Measurement System

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 6 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Faye 0 01 29

4 DASY E-FIELD PROBE SYSTEM

4.1 Probe Measurement System

Figure 4-1 SAR System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration (see Figure 4-3) and optimized for dosimetric evaluation [9]. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the

maximum using a 2nd order curve fitting (see Figure 5-1). The approach is stopped at reaching the maximum.

4.2 Probe Specifications

Model(s): ES3DV2, ES3DV3, EX3DV4 **Frequency** 10 MHz – 6.0 GHz (EX3DV4)

Range: 10 MHz – 4 GHz (ES3DV3, ES3DV2)

Calibration: In head and body simulating tissue at Frequencies

from 300 up to 6000MHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz) for EX3DV4

± 0.2 dB (30 MHz to 4 GHz) for ES3DV3, ES3DV2

Dynamic Range: 10 mW/kg – 100 W/kg

Probe Length: 330 mm

Length: 20 mm

Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9mm for ES3DV3)
Tip-Center: 1 mm (2.0 mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones
Dosimetry in strong gradient fields

Figure 4-2 Near-Field Probe

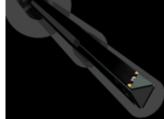


Figure 4-3 Triangular Probe Configuration

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 7 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Faye / 01 29

5 PROBE CALIBRATION PROCESS

5.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

5.2 Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

5.3 Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

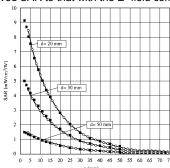


Figure 5-1 E-Field and Temperature measurements at 900MHz [9]

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

where:

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

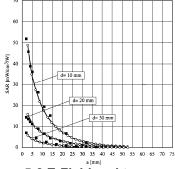


Figure 5-2 E-Field and temperature measurements at 1.9GHz [9]

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 8 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	rage o oi 29

6 PHANTOM AND EQUIVALENT TISSUES

6.1 SAM Phantoms

Figure 6-1 SAM Phantoms

The SAM Twin Phantom is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to represent the 90th percentile of the population [12][13]. The phantom enables the dosimetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

6.2 Tissue Simulating Mixture Characterization

Figure 6-2 SAM Phantom with Simulating Tissue

The mixture is characterized to obtain proper dielectric constant (permittivity) and conductivity of the tissue of interest. The tissue dielectric parameters recommended in IEEE 1528 and IEC 62209 have been used as targets for the compositions, and are to match within 5%, per the FCC recommendations.

Table 6-1
Composition of the Tissue Equivalent Matter

Composition of the rissue Equivalent Matter					
Frequency (MHz)	5200-5800	5200-5800			
Tissue	Head	Body			
Ingredients (% by weight)					
Tween80		20			
Triton X-100	17.24				
Diethylenglycol monohexylether	17.24				
Water	65.52	80			

FCC ID: IHDP56ME5	PCTEST SOMETIME LADACIDAT, INC.	SAK EVALUATION REPORT	OROLA	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 9 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset		Fage 9 01 29

7 DOSIMETRIC ASSESSMENT & PHANTOM SPECS

7.1 Measurement Procedure

The evaluation was performed using the following procedure:

- 1. The SAR distribution at the exposed side of the head was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm x 15mm.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during testing the 1 gram cube. This fixed point was measured and used as a reference value.

- 3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual for more details):
 - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete. If the value deviated by more than 5%, the SAR evaluation and drift measurement would have been repeated.

7.2 5 GHz SAR Testing Considerations per KDB 865664 publication

For 5 GHz testing, finer resolution Area scans were performed as specified by FCC SAR Measurement Requirements for 3 – 6 GHz, KDB pub 865664. The 5 GHz Area Scan requires a minimum resolution of 10mm on the x and y axis for each grid measurement point.

For 5 GHz testing finer resolution zoom scans were performed as specified by FCC SAR Measurement Requirements for 3-6 GHz, KDB pub 865664. The 5 GHz zoom scan requires a minimum volume of $24 \text{mm} \times 24 \text{mm} \times 20 \text{mm}$ and $7 \times 7 \times 11$ points.

7.3 Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves. The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimize reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15 cm.

FCC ID: IHDP56ME5	PCTEST" SECRETIS LADALEY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 10 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 10 01 29

8.1 EAR REFERENCE POINT

Figure 8-1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 8-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 8-2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

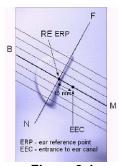


Figure 8-1 Close-Up Side view of ERP

8.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 8-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 8-2 Front, back and side view of SAM Twin Phantom

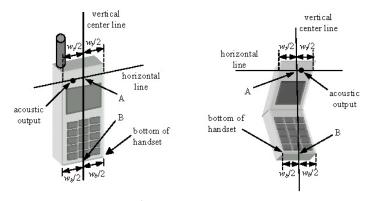


Figure 8-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 11 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Faye 11 01 29

9 TEST CONFIGURATION POSITIONS

9.1 Device Holder

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

9.2 Positioning for Cheek/Touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 9-1 Front, Side and Top View of Cheek/Touch Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 9-2).

9.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 9-2).

FCC ID: IHDP56ME5	PCTEST'	SAR EVALUATION REPORT	UTOROLA	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 12 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset		Fage 12 01 29

Figure 9-2 Front, Side and Top View of Ear/15° Tilt Position

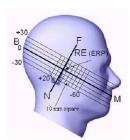


Figure 9-3
Side view w/ relevant markings

Figure 9-4 Body SAR Sample Photo (Not Actual EUT)

9.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. It has been known for some time that there are SAR measurement difficulties in these regions of the SAM phantom. SAR probes are calibrated in tissue equivalent liquids with sufficient separation between the probe sensors and nearby physical boundaries to ensure scattering does not affect probe calibration. When the probe tip is moved into tight regions with multiple boundaries surrounding its sensors, probe calibration and measurement accuracy can become questionable. In addition, these measurement locations often require a probe to be tilted at steep angles, where it may no longer comply with calibration requirements and measurement protocols, or satisfy the required measurement uncertainty. In some situations it is not feasible to tilt the probe or rotate the phantom, as suggested by measurement standards, to conduct these measurements.

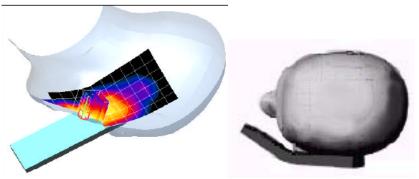


Figure 9-5 SAR Scans near the Jaw/Mouth

In order to ensure there is sufficient conservativeness for ensuring compliance until practical solutions are available, additional measurement considerations are necessary to address these technical difficulties. When measurements are required near the mouth, nose, jaw or similar tight regions of the SAM phantom,

FCC ID: IHDP56ME5	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 13 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 13 01 29

area or zoom scans are often unable to fully enclose the peak SAR location as required by IEEE 1528 and Supplement C, due to probe orientation and positioning difficulties. Even when limited measurements are possible, the test results could be questionable due to probe calibration and measurement uncertainty issues. Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document publication 648474. The SAR required in these regions of SAM should be measured using a flat phantom. **Rectangular shaped phones** should be positioned with its bottom edge positioned from the flat phantom with the same distance provided by the cheek touching position using SAM. The ear reference point (ERP, as defined for SAM) of the phone should be positioned ½ cm from the flat phantom shell. **Clam-shell phones** should be positioned with the hinge against a smooth edge of the flat phantom where the upper half of the phone is unfolded and extended beyond the phantom side wall. The lower half of the phone is secured in the test device holder at a fixed distance below the flat phantom determined by the minimum separation along the lower edge of the phone in the cheek touching position using SAM. Any case with substantial variation in separation distance along the lower edge of a clam shell is discussed with the FCC for best-to-use methodology.

The flat phantom data should allow test results to be compared uniformly across measurement systems, until suitable solutions are available in measurement standards to address certain probe calibration and positioning issues, due to implementation differences between horizontal and upright SAM configurations. These flat phantom procedures are only applicable for stand-alone SAR evaluation in tight regions of the SAM phantom, where measurement is not feasible or test results can be questionable due to probe calibration and accessibility issues. Details on device positioning and photos showing how separation distances are determined are included in the SAR report Photographs. SAR for other regions of the head must be evaluated using SAM; therefore, a phone with antennas at different locations may require flat and SAM phantom evaluation for the different antennas.

9.5 Body Holster /Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9-4). A device with a headset output is tested with a headset connected to the device.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

FCC ID: IHDP56ME5	PCTEST"	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 14 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 14 01 29

10 FCC RF EXPOSURE LIMITS

10.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

10.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 10-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS						
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)				
SPATIAL PEAK SAR Brain	1.6	8.0				
SPATIAL AVERAGE SAR Whole Body	0.08	0.4				
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20				

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 15 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 15 01 29

11 WIFI ANTENNA LOCATION AND INFORMATION

11.1 Antenna and Key Feature Information

Table 11-1 Antenna Information

Wi-Fi (5 GHz) Antenna

Туре	Internal			
Location	Right-Edge Rear of Transceiver			
Dimensions	Width	0.5 mm		
Dimensions	Length	3.9 mm		

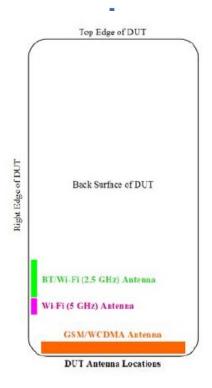


Figure 11-1 Back View of Device

FCC ID: IHDP56ME5	PCTEST:	SAR EVALUATION REPORT	MOTOROLA	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 16 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset		rage 10 01 29

12 SAR TESTING WITH IEEE 802.11 TRANSMITTERS

Per KDB 248227 publication, normal network operating configurations are not suitable for measuring the SAR of 802.11 WIFI transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

12.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

12.2 Frequency Channel Configurations [27]

802.11 a/n operating modes are tested independently according to the service requirements in each frequency band. 802.11a/n is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; channels 104, 116 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz §15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. These are referred to as the "default test channels". For 5 GHz, 802.11n modes were evaluated only if the output power was 0.25 dB higher than the 802.11a mode.

Table 12-1 802.11 Test Channels per FCC Requirements

				Turbo		fault Test		
Mo	Mode		Channel	Channel		.247	UNII	
				Channel		802.11g		
802.11 b/g		2.412	1		- √	∇		
		2.437	6	6	- √	∇		
		2.462	11		- √	∇		
		5.18	36				√	
		5.20	40	42 (5.21 GHz)				*
		5.22	44	42 (3.21 GHZ)				*
		5.24	48	50 (5.25 GHz)			√	
		5.26	52	30 (3.23 GHZ)			*	
		5.28	56	58 (5.29 GHz)				*
		5.30	60	36 (3.29 G112)				
		5.32	64				√	
		5.500	100	-				*
	UNII	5.520	104				√	
		5.540	108					*
802.11a		5.560	112					*
002.11a		5.580	116				√	
		5.600	120	Unknown				*
		5.620	124				√	
		5.640	128					*
		5.660	132					
		5.680	136				-√	
		5.700	140					
	*****	5.745	149		1		√	
	UNII	5.765	153	152 (5.76 GHz)		*		*
	or §15.247	5.785	157		√			*
	915.247	5.805	161	160 (5.80 GHz)		*	\neg	
	§15.247	5.825	165		1			

Per FCC KDB Publication 443999 and RSS-210 A9.2 (3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client.

FCC ID: IHDP56ME5	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 17 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Faye 17 01 29

13

Table 13-1 IEEE 802.11a Average RF Power

Mode	Freq	Channel	Conducted Power [dBm] Data Rate [Mbps]							
	[MHz]		6	9	12	18	24	36	48	54
802.11a	5180	36	10.45	10.59	10.53	10.53	10.51	10.27	10.41	10.35
802.11a	5200	40	10.43	10.39	10.33	10.33	10.31	10.27	10.41	10.33
802.11a	5220	44	10.38	10.20	10.31	10.31	10.20	10.19	10.28	10.23
802.11a	5240	48	10.34	10.19	10.14	10.41	10.41	10.37	10.41	10.37
802.11a	5260	52	10.43	10.37	10.59	10.41	10.39	10.47	10.39	10.39
802.11a										
	5280	56	10.44	10.43	10.46	10.44	10.26	10.34	10.41	10.34
802.11a	5300	60	10.35	10.42	10.39 10.36	10.39	10.33	10.34	10.35	10.26
802.11a	5320	64	10.28	10.26		10.35	10.32	10.21	10.35	10.41
802.11a	5500	100	10.43	10.33	10.31	10.33	10.27	10.34	10.41	10.35
802.11a	5520	104	10.44	10.22	10.34	10.29	10.27	10.22	10.40	10.26
802.11a	5540	108	10.43	10.28	10.28	10.32	10.31	10.28	10.24	10.31
802.11a	5560	112	10.41	10.29	10.30	10.34	10.30	10.24	10.32	10.29
802.11a	5580	116	10.42	10.34	10.36	10.37	10.19	10.27	10.40	10.34
802.11a	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5660	132	<u>10.55</u>	10.51	10.51	10.50	10.37	10.31	10.39	10.32
802.11a	5680	136	10.46	10.39	10.39	10.37	10.30	10.24	10.33	10.29
802.11a	5700	140	10.47	10.42	10.40	10.40	10.22	10.28	10.41	10.42
802.11a	5745	149	10.35	10.31	10.35	10.31	10.25	10.25	10.32	10.26
802.11a	5765	153	10.32	10.26	10.28	10.24	10.23	10.22	10.18	10.21
802.11a	5785	157	10.34	10.25	10.36	10.29	10.27	10.40	10.37	10.37
802.11a	5805	161	10.25	10.28	10.38	10.37	10.26	10.28	10.35	10.28
802.11a	5825	165	10.23	10.34	10.36	10.32	10.17	10.30	10.24	10.20

Per FCC KDB Publication 443999 and RSS-210 A9.2 (3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Bands.

Figure 13-1 Power Measurement Setup

FCC ID: IHDP56ME5	PCTEST SOUTHING LADVACETY, US.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 18 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 10 01 29

Table 13-2 IEEE 802.11n Average RF Power

Mode	Freq	Channel					Power [dB					
							00ns Guar					
200.44	[MHz]		6.5	13	20	26	39	52	58	65		
802.11n	5180	36	9.98	10.09	10.10	10.10	10.11	10.15	10.07	10.14		
802.11n	5200	40	9.99	9.94	9.94	10.10	10.06	10.06	10.04	10.17		
802.11n	5220	44	9.91	9.95	9.97	10.09	10.07	9.96	9.96	10.20		
802.11n	5240	48	9.95	9.93	9.84	9.99	9.98	9.98	9.99	10.07		
802.11n	5260	52	10.02	10.01	9.99	10.14	10.15	9.95	10.03	10.18		
802.11n	5280	56	10.02	10.03	9.99	10.15	10.16	9.99	10.02	10.08		
802.11n	5300	60	9.99	10.00	9.91	10.14	10.03	9.99	10.02	10.13		
802.11n	5320	64	10.00	10.01	10.02	10.09	10.16	10.06	10.06	10.14		
802.11n	5500	100	10.33	10.34	10.42	10.52	10.45	10.40	10.48	10.55		
802.11n	5520	104	10.43	10.40	10.49	10.50	10.59	10.43	10.41	10.58		
802.11n	5540	108	10.45	10.39	10.40	10.56	10.48	10.44	10.37	10.56		
802.11n	5560	112	10.42	10.43	10.37	10.47	10.48	10.51	10.46	10.58		
802.11n	5580	116	10.43	10.41	10.50	10.53	10.57	10.44	10.47	10.51		
802.11n	5600	120	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
802.11n	5620	124	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
802.11n	5640	128	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
802.11n	5660	132	10.48	10.42	10.46	10.60	10.60	10.55	10.56	10.65		
802.11n	5680	136	10.43	10.36	10.31	10.42	10.49	10.44	10.41	10.56		
802.11n	5700	140	10.49	10.39	10.36	10.52	10.45	10.43	10.41	10.51		
802.11n	5745	149	10.24	10.27	10.26	10.29	10.34	10.35	10.28	10.49		
802.11n	5765	153	10.27	10.44	10.43	10.44	10.41	10.25	10.37	10.43		
802.11n	5785	157	10.29	10.35	10.38	10.41	10.38	10.36	10.30	10.36		
802.11n	5805	161	10.34	10.34	10.34	10.42	10.45	10.36	10.40	10.42		
802.11n	5825	165	10.36	10.31	10 46	10.50	10.39	10.43	10.37	10.55		
Mode	Freq				Co	onducted F	Power [dBi	m]		10.00		
Mode	Freq	Channel			Co Data Rate	onducted F [Mbps] 4	Power [dBi 00ns Guar	m] d Interval				
	[MHz]	Channel	7.2	14.4	Data Rate	onducted F e [Mbps] 4 29	Power [dBi 00ns Guar 43	m] d Interval	65	72		
802.11n	[MHz] 5180	Channel 36	7.2 10.02	14.4 10.10	22 10.07	29 10.07	Power [dBi 00ns Guar 43 10.04	m] d Interval 58 10.09	65 10.03	72 10.08		
802.11n 802.11n	[MHz] 5180 5200	Channel 36 40	7.2 10.02 10.07	14.4 10.10 10.01	Data Rate 22 10.07 10.02	29 10.07 10.06	Oons Guar 43 10.04 10.04	m] d Interval 58 10.09 10.00	65 10.03 10.03	72 10.08 10.08		
802.11n 802.11n 802.11n	[MHz] 5180 5200 5220	36 40 44	7.2 10.02 10.07 9.98	14.4 10.10 10.01 10.00	Data Rate 22 10.07 10.02 9.96	29 10.07 10.06 9.98	Power [dBr 00ns Guar 43 10.04 10.04 9.98	58 10.09 10.00 9.95	65 10.03 10.03 9.95	72 10.08 10.08 9.98		
802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240	36 40 44 48	7.2 10.02 10.07 9.98 9.98	14.4 10.10 10.01 10.00 9.96	Data Rate 22 10.07 10.02 9.96 9.89	29 10.07 10.06 9.98 9.97	Power [dBr 00ns Guar 43 10.04 10.04 9.98 9.98	58 10.09 10.00 9.95 9.99	65 10.03 10.03 9.95 10.05	72 10.08 10.08 9.98 10.00		
802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260	36 40 44 48 52	7.2 10.02 10.07 9.98 9.98 10.09	14.4 10.10 10.01 10.00 9.96 10.06	Data Rate 22 10.07 10.02 9.96 9.89 10.04	29 10.07 10.06 9.98 9.97 10.09	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14	m] d Interval 58 10.09 10.00 9.95 9.99 10.08	65 10.03 10.03 9.95 10.05	72 10.08 10.08 9.98 10.00 10.12		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280	Channel 36 40 44 48 52 56	7.2 10.02 10.07 9.98 9.98 10.09	14.4 10.10 10.01 10.00 9.96 10.06 9.99	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96	Dinducted F 29 10.07 10.06 9.98 9.97 10.09 10.08	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08	65 10.03 10.03 9.95 10.05 10.06	72 10.08 10.08 9.98 10.00 10.12 10.07		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280 5300	Channel 36 40 44 48 52 56 60	7.2 10.02 10.07 9.98 9.98 10.09 10.06	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08	22 10.07 10.02 9.96 9.89 10.04 9.96 10.00	10.07 10.06 9.98 9.97 10.09 10.08 10.10	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02	65 10.03 10.03 9.95 10.05 10.06 10.04	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280 5300 5320	Channel 36 40 44 48 52 56 60 64	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04	22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06	nducted F 29 10.07 10.06 9.98 9.97 10.09 10.08 10.10 10.07	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280 5300 5320 5500	36 40 44 48 52 56 60 64 100	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41	Dinducted F 29 10.07 10.06 9.98 9.97 10.09 10.08 10.10 10.07 10.49	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97 10.38	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280 5300 5320 5500	Channel 36 40 44 48 52 56 60 64 100 104	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42	Dinducted F 29 10.07 10.06 9.98 9.97 10.09 10.08 10.10 10.07 10.49 10.47	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07 10.48 10.61	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97 10.38 10.45	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.46	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280 5320 5500 5520 5540	Channel 36 40 44 48 52 56 60 64 100 104	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42 10.41	10.07 10.08 10.49 10.47 10.55	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07 10.48 10.61	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97 10.38 10.45 10.48	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.46 10.40	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280 5300 5320 5500 5540 5560	Channel 36 40 44 48 52 56 60 64 100 104 108 112	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40	Data Rate 22 10.07 10.02 9.96 9.89 10.04 10.06 10.41 10.41 10.42	10.07 10.08 10.10 10.47 10.55 10.45	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07 10.48 10.61 10.44 10.44	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97 10.38 10.45 10.48	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.46 10.40 10.42	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280 5300 5320 5500 5520 5540 5560 5580	Channel 36 40 44 48 52 56 60 64 100 104 108 112 116	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40 10.38	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42 10.41 10.42	10.45 10.45 10.45 10.45 10.47	Power [dBi 00ns Guar 43 10.04 9.98 9.98 10.14 10.12 10.06 10.07 10.48 10.61 10.44 10.46 10.54	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97 10.38 10.45 10.48 10.48	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.46 10.40 10.42	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5280 5320 5320 55500 5550 55560 5580 5600	Channel 36 40 44 48 52 56 60 64 100 104 108 112 116 120	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40 10.38 10.39 n/a	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42 10.41 10.42 10.48 n/a	10.45 10.45 10.45 10.45 10.45 10.40 10.40 10.40 10.40 10.41 10.45 10.49	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07 10.48 10.61 10.44 10.46 10.54 n/a	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97 10.38 10.45 10.45 10.48 10.48 10.43 n/a	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.46 10.40 10.42 10.44 n/a	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47 n/a		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5280 5300 55500 5560 5600 5620	Channel 36 40 44 48 52 56 60 64 100 104 108 112 116 120 124	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40 10.38 10.39 n/a	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42 10.41 10.42 10.48 n/a n/a	10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07 10.48 10.61 10.44 10.46 10.54 n/a	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.02 9.97 10.38 10.45 10.48 10.48 10.43 n/a n/a	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.40 10.42 10.42	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.54 10.74 n/a		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5280 5300 5320 55500 5560 5560 5660 5660 5660 5660 5	Channel 36 40 44 48 52 56 60 64 100 104 112 116 120 124 128	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40 10.38 10.39 n/a n/a	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42 10.41 10.42 10.48 n/a n/a	10.47 10.49 10.49 10.49 10.49 10.49 10.49 10.49 10.49 10.49 10.47	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07 10.48 10.61 10.44 10.46 10.54 n/a	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97 10.38 10.45 10.48 10.48 10.43 n/a n/a	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.40 10.42 10.42 10.44 n/a n/a	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47 n/a n/a		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280 5300 5320 5500 5540 5560 5580 5600 5600	Channel 36 40 44 48 52 56 60 64 100 104 112 116 120 124 128 132	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40 10.38 10.39 n/a n/a 10.51	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a n/a 10.47	Data Rate 22 10.07 10.02 9.96 9.89 10.04 10.06 10.41 10.42 10.41 10.42 10.48 n/a n/a 10.46	10.49 10.55	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07 10.48 10.61 10.44 10.46 10.54 n/a n/a 10.54	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.02 9.97 10.38 10.45 10.48 10.43 n/a n/a 10.54	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.46 10.40 10.42 10.44 n/a n/a 10.52	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47 n/a n/a 10.57		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280 5300 5500 5550 5560 5560 5660 5660 5680	Channel 36 40 44 48 52 56 60 64 100 104 108 112 116 120 124 128 132	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40 10.38 10.39 n/a n/a 10.51	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a n/a 10.47 10.47	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42 10.41 10.42 10.48 n/a n/a n/a 10.46 10.37	10.07 10.45 10.45 10.39 10.39 10.07 10.08 10.09 10.08 10.10 10.07 10.49 10.45 10.45 10.49 10.45	Power [dBi 00ns Guar 43 10.04 9.98 9.98 10.14 10.06 10.07 10.48 10.61 10.44 10.46 10.54 n/a n/a 10.54 10.41	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97 10.38 10.45 10.48 10.43 n/a n/a n/a 10.54 10.47	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.46 10.40 10.42 10.44 n/a n/a 10.52 10.41	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47 n/a n/a 10.57 10.52		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5280 5320 5500 5500 5560 5560 5660 5660 5660 56	Channel 36 40 44 48 52 56 60 64 100 104 108 112 116 120 124 128 132 136 140	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.29 10.38 10.40 10.38 10.40 10.39 n/a n/a 10.51 10.40	14.4 10.10 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a n/a 10.47 10.47	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42 10.41 10.42 10.48 n/a n/a 10.46 10.37 10.39	10.45 10.45 10.39 10.47	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.16 10.07 10.48 10.61 10.44 10.46 10.54 n/a n/a 10.54 10.41 10.48	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.02 9.97 10.38 10.45 10.45 10.48 10.48 10.43 n/a n/a 10.54 10.47	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.40 10.42 10.42 10.44 n/a n/a 10.52 10.41 10.43	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47 n/a n/a 10.57 10.52		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5280 5300 5520 5540 5560 5660 5660 5680 57700 5745	Channel 36 40 44 48 52 56 60 64 100 104 108 112 116 120 124 128 132 136 140	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40 10.38 10.40 10.38 10.40 10.51 10.51 10.40	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a n/a 10.47 10.47 10.47 10.47	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42 10.41 10.42 10.41 10.42 10.43 n/a n/a 10.46 10.37 10.39 10.21	10.55 10.55 10.57 10.55 10.57 10.55 10.45 10.55 10.45 10.49 10.55 10.45 10.45 10.45 10.45 10.49 10.47	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07 10.48 10.61 10.44 10.46 10.54 n/a n/a 10.54 10.54 10.54 10.54 10.54 10.44 10.54 10	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.02 9.97 10.38 10.45 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.48 10.47 10.47	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.40 10.42 10.44 n/a n/a 10.52 10.44 10.53 10.64 10.40	72 10.08 10.08 10.09 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47 n/a n/a 10.57 10.52 10.48 10.38		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5280 5320 5550 5550 5580 5600 5680 5680 5745 5765	Channel 36 40 44 48 52 56 60 64 100 104 112 116 120 128 132 136 140 149	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40 10.38 10.39 n/a n/a 10.51 10.40 10.40 10.40 10.40	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a n/a 10.47 10.47 10.41 10.42	Data Rate 22 10.07 10.02 9.96 9.89 10.04 10.06 10.41 10.42 10.48 n/a n/a 10.46 10.37 10.39 10.21 10.39	10.55 10.39 10.47 10.55 10.39 10.47 10.49 10.49 10.49 10.49 10.49 10.45 10.49 10.45 10.49 10.45 10.49 10.45 10.49 10.49	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.12 10.06 10.07 10.48 10.61 10.54 10.54 10.54 10.41 10.41 10.44 10.54 10.43 10.54 10.41 10.44 10.45 10.54	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.02 9.97 10.38 10.45 10.45 10.48 10.43 n/a n/a 10.54 10.47 10.47 10.47 10.28 10.34	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.40 10.42 10.44 n/a n/a 10.52 10.41 10.43 10.52	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47 n/a n/a 10.57 10.52 10.48 10.38		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5280 5300 5520 5550 5580 5660 5680 5705 5745 5765 5785	Channel 36 40 44 48 52 56 60 64 100 104 112 116 120 124 132 136 140 149 153 157	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.39 n/a 10.51 10.40 10.40 10.40 10.40 10.20 10.40	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a 10.47 10.47 10.41 10.42 10.42 10.47	Data Rate 22 10.07 10.02 9.96 9.89 10.04 10.06 10.41 10.42 10.48 n/a n/a 10.46 10.37 10.39 10.21 10.39 10.31	10.45 10.45 10.45 10.47 10.28 10.37 10.09 10.09 10.08 10.10 10.07 10.49 10.47 10.45 10.49 10.45 10.49	Power [dBi 00ns Guar 43 10.04 10.04 9.98 9.98 10.14 10.06 10.07 10.48 10.61 10.54 n/a n/a 10.54 10.41 10.48 10.54 10.41 10.48 10.54 10.33 10.37	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97 10.38 10.45 10.48 10.43 n/a 10.43 n/a 10.47 10.47 10.28 10.34 10.34	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.40 10.42 10.44 n/a n/a 10.52 10.41 10.43 10.27	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47 n/a n/a 10.57 10.52 10.48 10.38 10.39 10.29		
802.11n 802.11n	[MHz] 5180 5200 5220 5240 5260 5280 5300 5320 5500 5550 5560 5560 5660 5660 5700 5745 5765 5785 5805	Channel 36 40 44 48 52 56 60 64 100 104 108 112 116 120 124 128 132 136 140 149 153 157	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40 10.38 10.40 10.39 n/a 10.51 10.40 10.46 10.19	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a n/a 10.47 10.41 10.42 10.42 10.22	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42 10.41 10.42 10.48 n/a n/a 10.46 10.37 10.39 10.21 10.39 10.31 10.29	10.07 10.49 10.45 10.45 10.39 10.36 10.36 10.36 10.36 10.36 10.36 10.36 10.36 10.36 10.36 10.36 10.36 10.36 10.39 10.36	Power [dBi 00ns Guar 43 10.04 9.98 9.98 10.14 10.06 10.07 10.48 10.61 10.44 10.54 n/a n/a n/a 10.54 10.41 10.48 10.27 10.33 10.37 10.39	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.08 10.02 9.97 10.38 10.45 10.45 10.48 10.43 n/a n/a 10.54 10.47 10.28 10.34 10.34 10.34	65 10.03 10.03 9.95 10.06 10.06 10.04 10.05 9.98 10.46 10.46 10.40 10.42 10.44 n/a n/a 10.52 10.41 10.43 10.27 10.37	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47 n/a n/a 10.57 10.52 10.48 10.38 10.39 10.29 10.38		
802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n 802.11n	[MHz] 5180 5200 5220 5240 5280 5320 5550 5560 5560 5660 5700 5745 5785 5805 5825	Channel 36 40 44 48 52 56 60 64 100 104 112 116 120 124 128 136 140 149 153 157 161	7.2 10.02 10.07 9.98 9.98 10.09 10.06 10.03 10.06 10.29 10.38 10.40 10.39 n/a n/a 10.51 10.40 10.46 10.19 10.22 10.23 10.32	14.4 10.10 10.01 10.00 9.96 10.06 9.99 10.08 10.04 10.30 10.38 10.42 10.40 10.38 n/a n/a 10.47 10.47 10.47 10.42 10.22 10.37	Data Rate 22 10.07 10.02 9.96 9.89 10.04 9.96 10.00 10.06 10.41 10.42 10.41 10.42 10.48 n/a n/a 10.46 10.37 10.39 10.21 10.39 10.21 10.29 10.45	10.07 10.49 10.45 10.45 10.45 10.49 10.47 10.28 10.47 10.28 10.46 10.46 10.46	Power [dBi 00ns Guar 43 10.04 9.98 9.98 10.14 10.06 10.07 10.48 10.61 10.44 10.54 n/a n/a 10.54 10.41 10.48 10.27 10.33 10.37 10.39 10.41	m] d Interval 58 10.09 10.00 9.95 9.99 10.08 10.02 9.97 10.38 10.45 10.45 10.48 10.48 10.43 n/a n/a 10.54 10.47 10.47 10.28 10.34 10.34 10.34 10.34 10.34 10.34	65 10.03 10.03 9.95 10.05 10.06 10.04 10.05 9.98 10.46 10.46 10.42 10.44 n/a n/a 10.52 10.41 10.43 10.27 10.37 10.28 10.37	72 10.08 10.08 9.98 10.00 10.12 10.07 10.11 9.97 10.48 10.53 10.51 10.54 10.47 n/a n/a 10.57 10.52 10.48 10.38 10.39 10.29 10.38 10.57		

Per FCC KDB Publication 443999 and RSS-210 A9.2 (3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Bands.

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes:

- 1. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Workshop Notes: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11a. Other IEEE 802.11 modes (including 802.11n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- 2. The underlined data rates and channels above were tested for SAR.

FCC ID: IHDP56ME5	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 19 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 19 01 29

14.1 Tissue Verification

Table 14-1
Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			5200	4.702	36.15	4.660	36.000	0.90%	0.42%
			5280	4.802	35.91	4.740	35.920	1.31%	-0.03%
11/19/2011 5200H-5800H	5200H-5800H	24.9	5500	5.004	35.56	4.965	35.650	0.79%	-0.25%
11/19/2011	5200H-5600H	24.9	5660	5.220	35.24	5.130	35.440	1.75%	-0.56%
			5745	5.315	35.20	5.215	35.355	1.92%	-0.44%
			5800	5.354	35.20	5.270	35.300	1.59%	-0.28%
			5200	5.198	49.48	5.299	49.014	-1.91%	0.95%
		23.8	5280	5.397	49.54	5.393	48.879	0.07%	1.35%
11/17/2011	5200B-5800B		5500	5.794	48.70	5.650	48.580	2.55%	0.25%
11/1//2011	3200B-3800B		5660	6.031	48.30	5.837	48.363	3.32%	-0.13%
			5745	6.232	48.16	5.936	48.248	4.99%	-0.18%
			5800	6.242	47.79	6.000	48.200	4.03%	-0.85%

Note: KDB Publication 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2). The SAR test plots may slightly differ from the table above since the DASY software rounds to three significant digits.

Probe calibration used within ±100 MHz of the test frequency in either 5.725 - 5.85 or 5.47-5.725 GHz is acceptable per KDB Publication 865664 since the design of the SAR probe supports the extended frequency, provided the DASY software version recommended is used for the tests, and the expanded calibration uncertainty (k=2) is less than or equal to 15% (See SAR probe calibration certificate for this information). The dielectric and conductivities measured are within 10% and 5% respectively of the target parameters specified in Supplement C 01-01.

14.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity, for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 20 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 20 01 29

14.3 Test System Verification

Prior to assessment, the system is verified to $\pm 10\%$ of the manufacturer SAR measurement on the reference dipole at the time of calibration.

Table 14-2 System Verification Results

	System Verification TARGET & MEASURED													
Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Tissue Frequency (MHz)	Dipole SN	Probe SN	Tissue Type	Measured SAR _{1g} (W/kg)	1 W Target SAR¹g (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation (%)			
11/19/2011	24.4	23.6	0.100	5200	1057	3550	Head	8.09	83.100	80.900	-2.65%			
11/19/2011	24.6	23.7	0.100	5500	1057	3550	Head	9.36	90.100	93.600	3.88%			
11/19/2011	24.7	23.8	0.100	5800	1057	3550	Head	8.52	82.900	85.200	2.77%			
11/17/2011	23.2	22.2	0.025	5200	1057	3550	Body	1.99	77.700	79.600	2.45%			
11/17/2011	23.4	22.7	0.025	5500	1057	3550	Body	2.14	84.400	85.600	1.42%			
11/17/2011	23.5	22.0	0.025	5800	1057	3550	Body	1.9	75.000	76.000	1.33%			

Note: Per KDB Publication 865664, when a reference dipole is not defined within $\pm 100 \text{MHz}$ of the test frequency, the system verification may be conducted within $\pm 200 \text{ MHz}$ of the center frequency of the measurement frequencies if the SAR probe calibration is valid and the same tissue-equivalent matter is used for verification and test measurements.

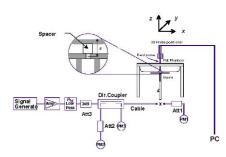


Figure 14-1
System Verification Setup Diagram

Figure 14-2
System Verification Setup Photo

FCC ID: IHDP56ME5	PCTEST SOUTHING LADVACETY, US.	SAR EVALUATION REPORT	W MOTOROLA	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 21 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset		Fage 21 01 29

Table 15-1 5.2 GHz WLAN Head SAR Results

	MEASUREMENT RESULTS											
FREQUE	ENCY	Mode	Service	Conducted	Power	Side	Test	Phone Serial	Data Rate	SAR (1g)		
MHz	Ch.			Power [dBm]	υτιπ (αΒ)		Position	Number	(Mbps)	(W/kg)		
5200	40	IEEE 802.11a	OFDM	10.48	0.00	Right	Touch	TA22300PEA	6	0.000		
5200	40	IEEE 802.11a	OFDM	10.48	-0.10	Right	Tilt	TA22300PEA	6	0.002		
5200	40	IEEE 802.11a	OFDM	10.48	0.15	Left	Touch	TA22300PEA	6	0.023		
5200	40	IEEE 802.11a	OFDM	10.48	-0.17	Left	Tilt	TA22300PEA	6	0.001		
	ANSI	/ IEEE C95.1 1	992 - SAFE	TY LIMIT				Head				
		Spatia	l Peak				1.	.6 W/kg (mW/g)			
	Uncont	rolled Exposu	re/General	Population			ave	raged over 1 gra	am			

Table 15-2 5.3 GHz WLAN Head SAR Results

	MEASUREMENT RESULTS											
FREQUE	ENCY	Mode	Service	Conducted	Power	Side	Test	Phone Serial	Data Rate	SAR (1g)		
MHz	Ch.			Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(W/kg)		
5280	56	IEEE 802.11a	OFDM	10.44	0.19	Right	Touch	TA22300PEA	6	0.001		
5280	56	IEEE 802.11a	OFDM	10.44	0.19	Right	Tilt	TA22300PEA	6	0.000		
5280	56	IEEE 802.11a	OFDM	10.44	0.11	Left	Touch	TA22300PEA	6	0.021		
5280	56	IEEE 802.11a	OFDM	10.44	-0.15	Left	Tilt	TA22300PEA	6	0.000		
	ANSI	/ IEEE C95.1 1	992 - SAFE				Head					
		Spatia	l Peak				1.0	6 W/kg (mW/g	J)			
	Uncont	rolled Exposu	re/General l	Population			aver	aged over 1 gr	am			

Table 15-3 5.5 - 5.7 GHz WLAN Head SAR Results

	MEASUREMENT RESULTS											
FREQUE	ENCY	Mode	Service	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Phone Serial	Data Rate (Mbps)	SAR (1g)		
MHz	Ch.			r ower [abin]	отпі (ав)		1 Galdon	Number	(MDPS)	(W/kg)		
5660	132	IEEE 802.11a	OFDM	10.55	0.11	Right	Touch	TA22300PEA	6	0.054		
5660	132	IEEE 802.11a	OFDM	10.55	-0.13	Right	Tilt	TA22300PEA	6	0.028		
5660	132	IEEE 802.11a	OFDM	10.55	0.13	Left	Touch	TA22300PEA	6	0.035		
5660	132	IEEE 802.11a	OFDM	10.55	-0.15	Left	Tilt	TA22300PEA	6	0.001		
	ANSI	/ IEEE C95.1 1	992 - SAFE				Head					
		Spatia	l Peak			1.	6 W/kg (mW/g	J)				
	Uncont	rolled Exposu	re/General	Population			avei	raged over 1 gr	am			

FCC ID: IHDP56ME5	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 22 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Faye 22 01 29

Table 15-4 5.8 GHz WLAN Head SAR Results

	MEASUREMENT RESULTS											
FREQU	ENCY	Mode	Service	Conducted	Power	Side Test Position		Phone Serial	Data Rate	SAR (1g)		
MHz	Ch.			Power [dBm]	υτιπ (αΒ)		Position	Number	(Mbps)	(W/kg)		
5745	149	IEEE 802.11a	OFDM	10.35	0.11	Right	Touch	TA22300PEA	6	0.013		
5745	149	IEEE 802.11a	OFDM	10.35	0.18	Right	Tilt	TA22300PEA	6	0.023		
5745	149	IEEE 802.11a	OFDM	10.35	-0.12	Left	Touch	TA22300PEA	6	0.016		
5745	149	IEEE 802.11a	OFDM	10.35	-0.18	Left	Tilt	TA22300PEA	6	0.011		
		/ IEEE C95.1 1 Spatia trolled Exposu	l Peak				Head 6 W/kg (mW/g raged over 1 gr	•				

Table 15-5 Body-Worn SAR Results

MEASUREMENT RESULTS										
FREQUENCY		Mode	Service	Conducted	Power Drift	Body-Worn	Phone Serial	Data Rate	Side	SAR (1g)
MHz	Ch.			Power [dBm]	[dB]	Spacing	Number	(Mbps)		(W/kg)
5200	40	IEEE 802.11a	OFDM	10.48	-0.03	2.5 cm	TA22300PEA	6	back	0.021
5200	40	IEEE 802.11a	OFDM	10.48	-0.03	2.5 cm	TA22300PEA	6	front	0.019
5280	56	IEEE 802.11a	OFDM	10.44	-0.04	2.5 cm	TA22300PEA	6	back	0.026
5280	56	IEEE 802.11a	OFDM	10.44	0.09	2.5 cm	TA22300PEA	6	front	0.020
5660	132	IEEE 802.11a	OFDM	10.55	0.02	2.5 cm	TA22300PEA	6	back	0.031
5660	132	IEEE 802.11a	OFDM	10.55	-0.03	2.5 cm	TA22300PEA	6	front	0.027
5745	149	IEEE 802.11a	OFDM	10.35	-0.12	2.5 cm	TA22300PEA	6	back	0.028
5745	149	IEEE 802.11a	OFDM	10.35	-0.17	2.5 cm	TA22300PEA	6	front	0.022
	ANS	SI / IEEE C95.1 1	992 - SAFE	TY LIMIT			Body	;		•
	Spatial Peak Uncontrolled Exposure/General Population					1.6 W/kg (mW/g) averaged over 1 gram				
	Unico	Introlled Exposul	er General	1 Opulation			averaged 0ve	i i granii		

FCC ID: IHDP56ME5	PCTEST SOUTHING LADVACETY, US.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 23 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Fage 23 01 29

15.1 SAR Test Notes

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. Batteries are fully charged for all readings. Standard battery was used.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Liquid tissue depth was at least 15.0 cm.
- 5. Device was tested using a fixed spacing for body-worn testing. A separation distance of 25 mm was tested because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- The device was tested with the front and back of the device facing the phantom. Both sides of the device were tested for Body SAR for the purpose of including the SAR evaluation for bodyworn accessories that support the device with the front side facing the user.
- 7. To confirm the proper SAR liquid depth, the z-axis plots from the system verifications were included since the system verifications were performed using the same liquid, SAR probe, test system and DAE as the SAR tests in the same time period.
- 8. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Workshop Notes: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11a. Other IEEE 802.11 modes (including 802.11n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- 9. All 5 GHz SAR testing was performed in accordance to FCC KDB 865664 5-6 GHz SAR Test requirements for the area and zoom scans.
- 10. When hotspot is enabled, all 5 GHz WIFI bands are disabled. Therefore Wireless Router SAR data is not applicable for 5 GHz WIFI.
- 11. According to the manufacturer's operational description, 5 GHz WIFI is not operational when used with any lapdock accessory. Therefore no 5 GHz WIFI SAR tests were performed with a lapdock.
- 12. WLAN transmission was verified using a spectrum analyzer.

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 24 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Faye 24 01 29

16 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5318
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5442
Anritsu	ML2438A	Power Meter	2/7/2011	Annual	2/7/2012	1190013
Anritsu	ML2438A	Power Meter	2/7/2011	Annual	2/7/2012	98150041
Anritsu	ML2438A	Power Meter	2/7/2011	Annual	2/7/2012	1070030
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5821
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	8013
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5605
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	2400
SPEAG	D5GHzV2	5 GHz SAR Dipole	2/11/2011	Annual	2/11/2012	1057
SPEAG	EX3DV4	SAR Probe	2/14/2011	Annual	2/14/2012	3550
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/21/2011	Annual	2/21/2012	649
VWR	36934-158	Wall-Mounted Thermometer	2/26/2010	Biennial	2/26/2012	101536273
Agilent	8648D	Signal Generator	4/5/2011	Annual	4/5/2012	3629U00687
Rohde & Schwarz	SMIQ03B	Signal Generator	4/6/2011	Annual	4/6/2012	DE27259
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/8/2011	Annual	4/8/2012	MY45470194
Agilent	8753E	(30kHz-6GHz) Network Analyzer	4/21/2011	Annual	4/21/2012	JP38020182
VWR	36934-158	Wall-Mounted Thermometer	5/26/2010	Biennial	5/26/2012	101718589
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/16/2011	Annual	9/16/2012	704
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/12/2011	Annual	10/12/2012	1833460
Gigatronics	8651A	Universal Power Meter	10/12/2011	Annual	10/12/2012	8650319
VWR	36934-158	Wall-Mounted Thermometer	1/21/2011	Biennial	1/21/2013	111286445
VWR	36934-158	Wall-Mounted Thermometer	1/21/2011	Biennial	1/21/2013	111286460
VWR	36934-158	Wall-Mounted Thermometer	1/21/2011	Biennial	1/21/2013	111286454
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331322
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331323
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331330
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331332
Control Company	61220-416	Long-Stem Thermometer	3/16/2011	Biennial	3/16/2013	111391601
Rohde & Schwarz	NRVD	Dual Channel Power Meter	4/8/2011	Biennial	4/8/2013	101695
Index SAR	IXTL-010	Dielectric Measurement Kit	N/A		N/A	N/A
Index SAR	IXTL-030	30MM TEM line for 6 GHz	N/A		N/A	N/A
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A
Pasternack	PE2209-10	Bidirectional Coupler	N/A		N/A	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	N/A		N/A	N/A
Narda	4772-3	Attenuator (3dB)	N/A		N/A	9406
Narda	BW-S3W2	Attenuator (3dB)	N/A		N/A	120
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	N/A		N/A	N/A

FCC ID: IHDP56ME5	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 25 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Faye 25 01 29

17 MEASUREMENT UNCERTAINTIES

Applicable for up to 6 GHz

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.	, ,	Ci	C _i	1gm	10gms	
Component	1528	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
Оппропен	Sec.	(= /0)	Dist.	Div.	ıgııı	io gilis	(± %)	(± %)	"
Measurement System							(= 70)	(= 70)	
Probe Calibration	E.2.1	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	8.0	R	1.73	1.0	1.0	0.5	0.5	×
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	×
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	\omega
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	8
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1) RSS							12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)]

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 26 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Faye 20 01 29

18 CONCLUSION

18.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters indicated in this test report for 5GHz WIFI only. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: IHDP56ME5	PCTEST'	SAR EVALUATION REPORT	UTOROLA	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 27 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset		Faye 27 01 29

19 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 28 of 29
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset	Faye 20 01 29

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB Publication 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publication 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz - 3 GHz, KDB Publication 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB Publication 616217
- [31] FCC SAR Measurement Requirements for 3 6 GHz, KDB Publication 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB Publication 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB Publication 447498
- [34] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [35] FCC SAR Test Considerations for LTE Handsets and Data Modems, KDB Publication 941225.
- [36] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.
- [37] FCC Hot Spot SAR v01, KDB Publication 941225 D06.

FCC ID: IHDP56ME5	PCTEST	SAR EVALUATION REPORT	MOTOROLA	Reviewed by: Quality Manager		
Filename:	Test Dates:	EUT Type:		Page 29 of 29		
0Y1112152143.IHD	11/17/11 - 11/19/11	Portable Handset		Page 29 01 29		
© 2014 DOTECT Engineering Laboratory, Inc.						

APPENDIX A: SAR TEST DATA

DUT: IHDP56ME5; Type: Portable Handset; Serial: TA22300PEA

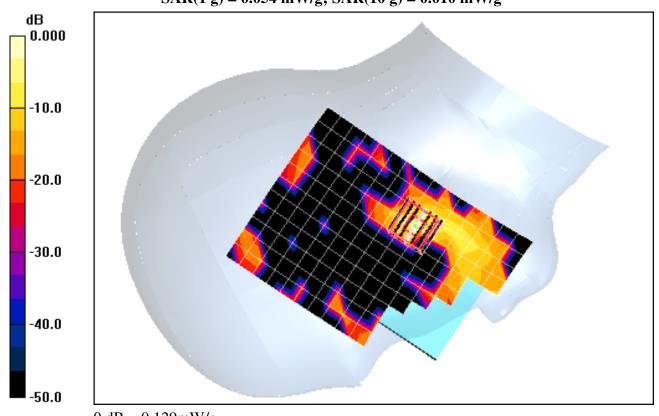
Communication System: IEEE 802.11a; Frequency: 5660 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: $f = 5660 \text{ MHz}; \ \sigma = 5.22 \text{ mho/m}; \ \epsilon_r = 35.24; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 11-19-2011; Ambient Temp: 24.7 °C; Tissue Temp: 23.8 °C

Probe: EX3DV4 - SN3550; ConvF(3.5, 3.5, 3.5); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.5-5.7 GHz, Right Head, Touch, Ch 132, 6 Mbps


Area Scan (12x16x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.621 V/m; Power Drift = 0.111 dB

Peak SAR (extrapolated) = 0.423 W/kg

SAR(1 g) = 0.054 mW/g; SAR(10 g) = 0.010 mW/g

DUT: IHDP56ME5; Type: Portable Handset; Serial: TA22300PEA

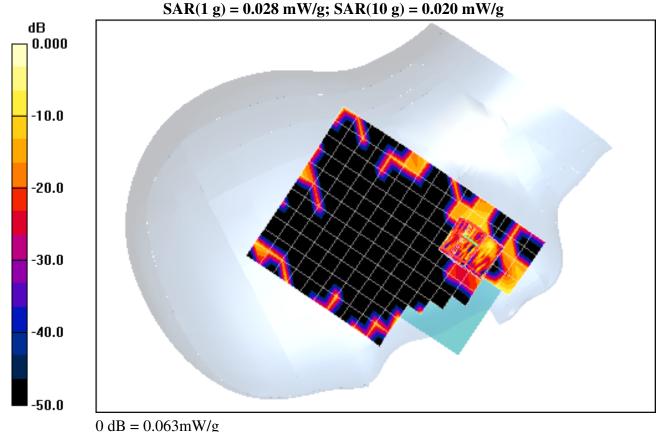
Communication System: IEEE 802.11a; Frequency: 5660 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: $f = 5660 \text{ MHz}; \ \sigma = 5.22 \text{ mho/m}; \ \epsilon_r = 35.24; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 11-19-2011; Ambient Temp: 24.7 °C; Tissue Temp: 23.8 °C

Probe: EX3DV4 - SN3550; ConvF(3.5, 3.5, 3.5); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Mode: IEEE 802.11a 5.5-5.7 GHz, Right Head, Tilt, Ch 132, 6 Mbps

Area Scan (12x16x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.74 V/m; Power Drift = -0.131 dB

Peak SAR (extrapolated) = 0.116 W/kg

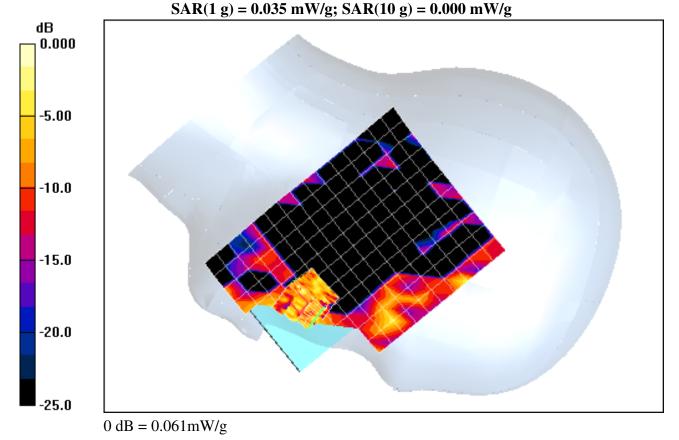
DUT: IHDP56ME5; Type: Portable Handset; Serial: TA22300PEA

Communication System: IEEE 802.11a; Frequency: 5660 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: $f = 5660 \text{ MHz}; \ \sigma = 5.22 \text{ mho/m}; \ \epsilon_r = 35.24; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-19-2011; Ambient Temp: 24.7 °C; Tissue Temp: 23.8 °C

Probe: EX3DV4 - SN3550; ConvF(3.5, 3.5, 3.5); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Mode: IEEE 802.11a, 5.5-5.7 GHz Left Head, Touch, Ch 132, 6 Mbps

Area Scan (12x16x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0.619 V/m; Power Drift = 0.128 dB

Peak SAR (extrapolated) = 0.117 W/kg

DUT: IHDP56ME5; Type: Portable Handset; Serial: TA22300PEA

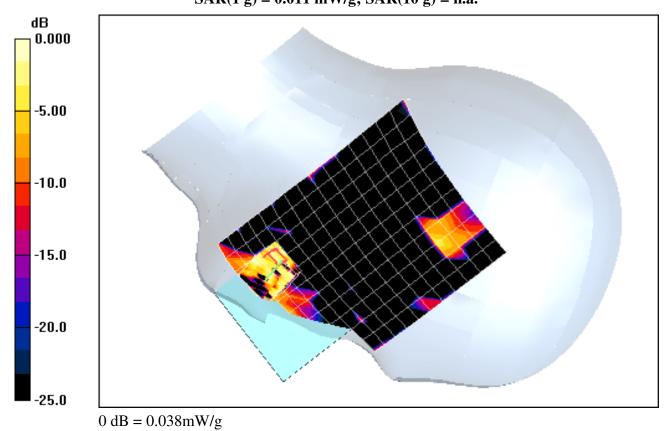
Communication System: IEEE 802.11a; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: $f = 5745 \text{ MHz}; \ \sigma = 5.315 \text{ mho/m}; \ \epsilon_r = 35.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-19-2011; Ambient Temp: 24.7°C; Tissue Temp: 23.8°C

Probe: EX3DV4 - SN3550; ConvF(3.64, 3.64, 3.64); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a, 5.8 GHz Left Head, Tilt, Ch 149, 6 Mbps


Area Scan (12x16x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.21 V/m; Power Drift = -0.180 dB

Peak SAR (extrapolated) = 0.060 W/kg

SAR(1 g) = 0.011 mW/g; SAR(10 g) = n.a.

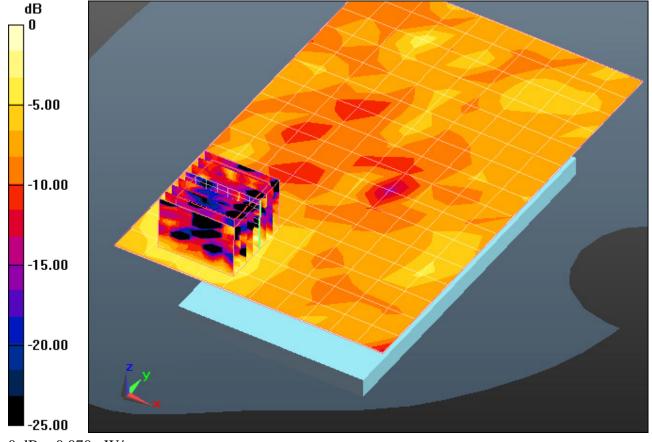
DUT: IHDP56ME5; Type: Portable Handset; Serial:TA22300PEA

Communication System: IEEE 802.11a; Frequency: 5660 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5660 \text{ MHz}; \ \sigma = 6.031 \text{ mho/m}; \ \epsilon_r = 48.30; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 2.5 cm

Test Date: 11-17-2011; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN3550; ConvF(3.19, 3.19, 3.19); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 9/16/2011 Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646 Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

Mode: IEEE 802.11a, 5.5-5.7 GHz, Body SAR, Ch 132, 6 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.188 V/m; Power Drift = 0.0159 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.016 mW/g

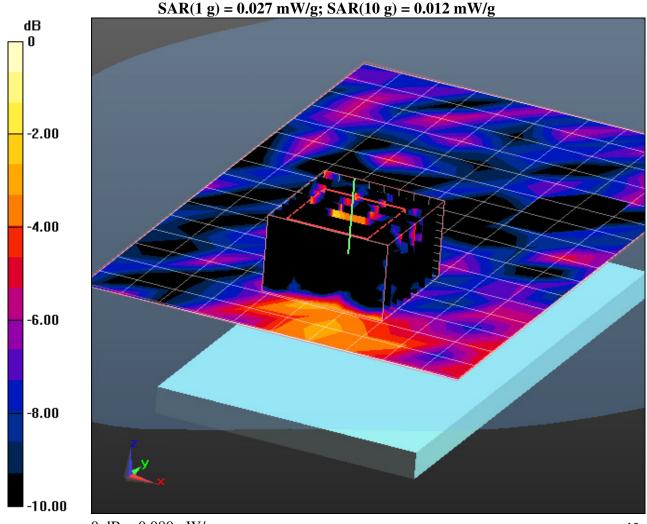
0 dB = 0.070 mW/g

DUT: IHDP56ME5; Type: Portable Handset; Serial:TA22300PEA

Communication System: IEEE 802.11a; Frequency: 5660 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5660 \text{ MHz}; \ \sigma = 6.031 \text{ mho/m}; \ \epsilon_r = 48.30; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 2.5 cm

Test Date: 11-17-2011; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN3550; ConvF(3.19, 3.19, 3.19); Calibrated: 2/14/2011
Sensor-Surface: 2mm (Mechanical Surface Detection)
Electronics: DAE4 Sn704; Calibrated: 9/16/2011
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)


Mode: IEEE 802.11a, 5.5-5.7 GHz, Body SAR, Ch 132, 6 Mbps, Front Side

Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.950 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.230 W/kg

0 dB = 0.080 mW/g

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: f = 5200 MHz; $\sigma = 4.702$ mho/m; $\epsilon_r = 36.15$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

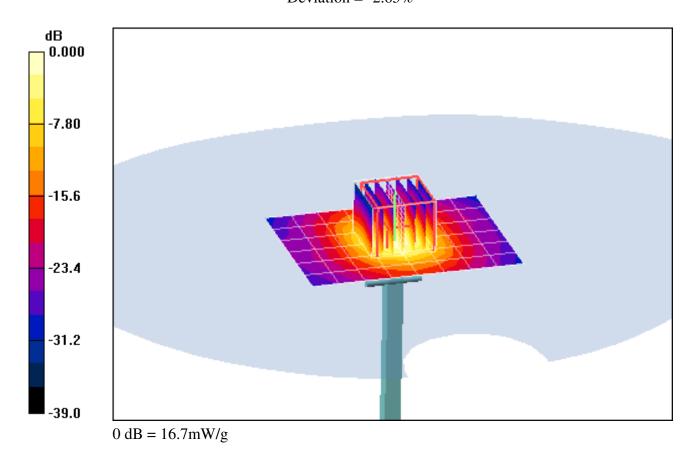
Test Date: 11-19-2011; Ambient Temp: 24.4°C; Tissue Temp: 23.6°C

Probe: EX3DV4 - SN3550; ConvF(4.06, 4.06, 4.06); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5200MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 20 dBm (100 mW)

SAR(1 g) = 8.09 mW/g; SAR(10 g) = 2.3 mW/g

Deviation = -2.65%

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used:

 $f = 5200 \text{ MHz}; \ \sigma = 4.702 \text{ mho/m}; \ \epsilon_r = 36.15; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-19-2011; Ambient Temp: 24.4° C; Tissue Temp: 23.6 °C

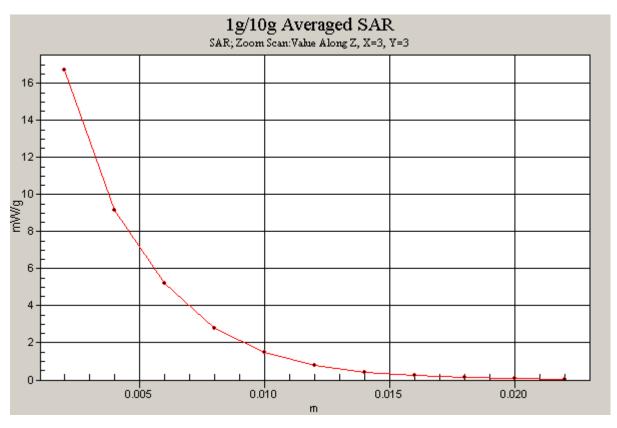
Probe: EX3DV4 - SN3550; ConvF(4.06, 4.06, 4.06); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5200MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 20 dBm (100 mW)

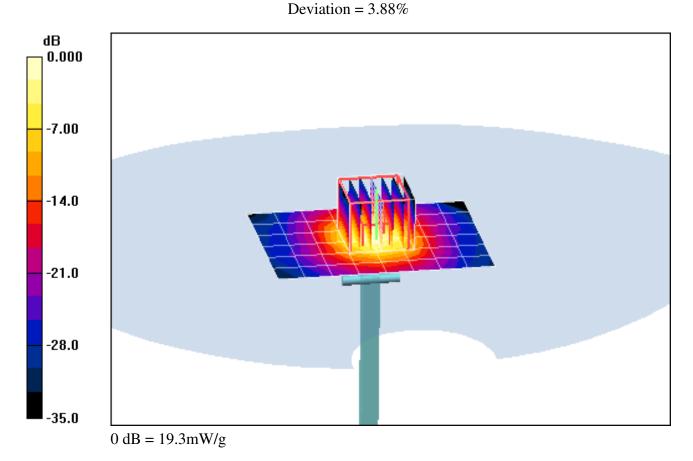
SAR(1 g) = 8.09 mW/g; SAR(10 g) = 2.3 mW/g

Deviation = -2.65%

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: $f = 5500 \text{ MHz}; \ \sigma = 5.004 \text{ mho/m}; \ \epsilon_r = 35.56; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-19-2011; Ambient Temp: 24.6°C; Tissue Temp: 23.7°C


Probe: EX3DV4 - SN3550; ConvF(3.77, 3.77, 3.77); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5500MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mmInput Power = 20 dBm (100 mW) SAR(1 g) = 9.36 mW/g; SAR(10 g) = 2.63 mW/g

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: f = 5500 MHz; $\sigma = 5.004$ mho/m; $\varepsilon_r = 35.56$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

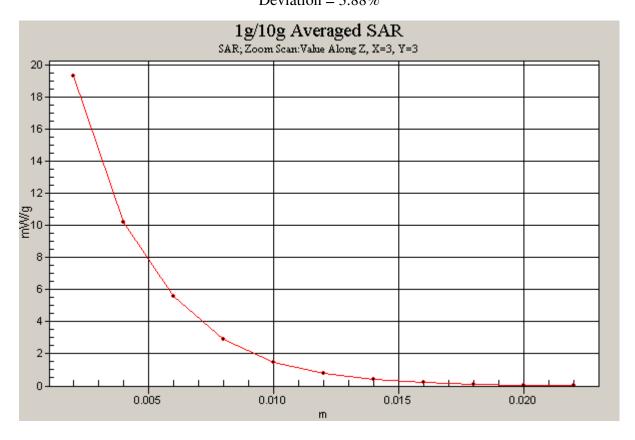
Test Date: 11-19-2011; Ambient Temp: 24.6°C; Tissue Temp: 23.7°C

Probe: EX3DV4 - SN3550; ConvF(3.77, 3.77, 3.77); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5500MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 20 dBm (100 mW)

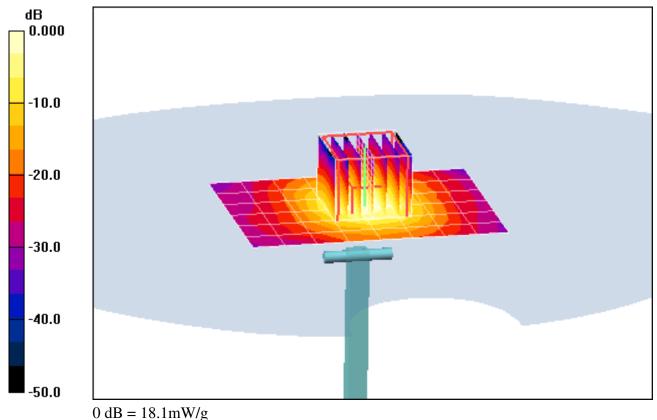
SAR(1 g) = 9.36 mW/g; SAR(10 g) = 2.63 mW/g

Deviation = 3.88%

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: f = 5800 MHz; σ = 5.354 mho/m; ε_r = 35.2; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-19-2011; Ambient Temp: 24.7°C; Tissue Temp: 23.8°C


Probe: EX3DV4 - SN3550; ConvF(3.64, 3.64, 3.64); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5800MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm **Zoom Scan (7x7x11)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Input Power = 20 dBm (100 mW)SAR(1 g) = 8.52 mW/g; SAR(10 g) = 2.41 mW/gDeviation = 2.77%

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: $f = 5800 \text{ MHz}; \ \sigma = 5.354 \text{ mho/m}; \ \epsilon_r = 35.2; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

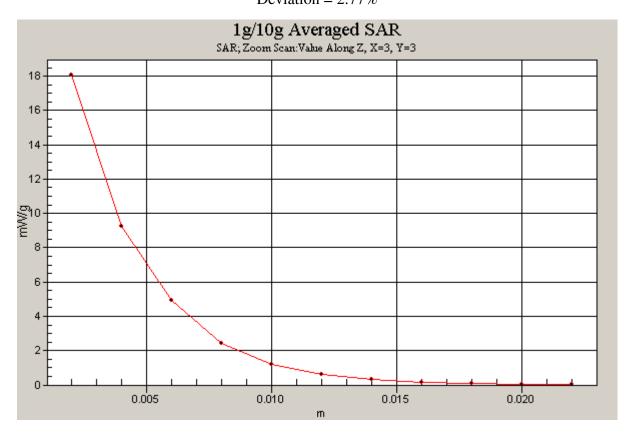
Test Date: 11-19-2011; Ambient Temp: 24.7°C; Tissue Temp: 23.8°C

Probe: EX3DV4 - SN3550; ConvF(3.64, 3.64, 3.64); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/21/2011 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5800MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 20 dBm (100 mW)

SAR(1 g) = 8.52 mW/g; SAR(10 g) = 2.41 mW/g

Deviation = 2.77%

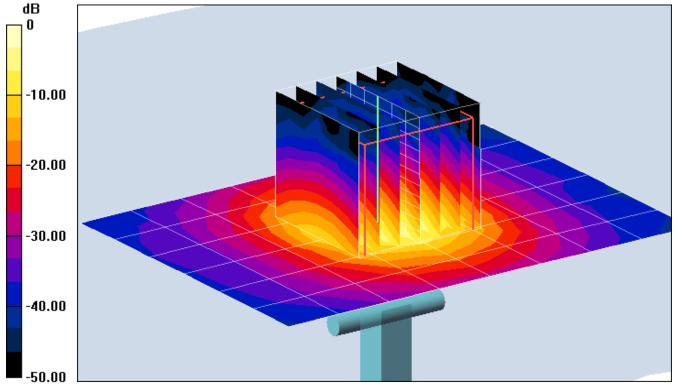
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5200 \text{ MHz}; \ \sigma = 5.198 \text{ mho/m}; \ \epsilon_r = 49.48; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-17-2011; Ambient Temp: 23.2°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN3550; ConvF(3.58, 3.58, 3.58); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 9/16/2011 Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646 Measurement SW: DASY5 PRO V52.6.2.482; SEMCAD X Version 14.4.5 (3634)

Mode: 5200MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 14.0 dBm (25 mW)

SAR(1 g) = 1.99 mW/g; SAR(10 g) = 0.565 mW/g

Deviation = 2.45 %

0 dB = 4.150 mW/g

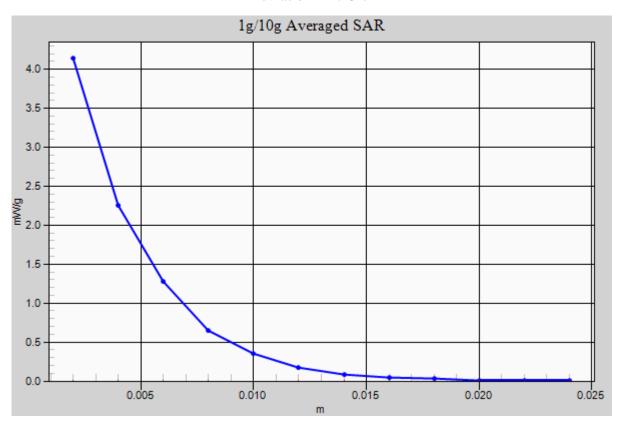
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5200 \text{ MHz}; \ \sigma = 5.198 \text{ mho/m}; \ \epsilon_r = 49.48; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-17-2011; Ambient Temp: 23.2°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN3550; ConvF(3.58, 3.58, 3.58); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 9/16/2011 Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646 Measurement SW: DASY5 PRO V52.6.2.482; SEMCAD X Version 14.4.5 (3634)

Mode: 5200MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 14.0 dBm (25 mW)

SAR(1 g) = 1.99 mW/g; SAR(10 g) = 0.565 mW/g

Deviation = 2.45 %

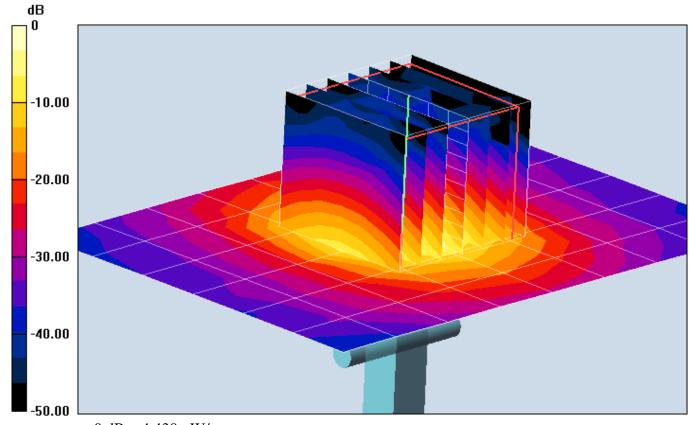
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5500 \text{ MHz}; \ \sigma = 5.794 \text{ mho/m}; \ \epsilon_r = 48.70; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-17-2011; Ambient Temp: 23.4°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.21, 3.21, 3.21); Calibrated: 2/14/2011
Sensor-Surface: 2mm (Mechanical Surface Detection)
Electronics: DAE4 Sn704; Calibrated: 9/16/2011
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

Mode: 5500MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 14.0 dBm (25 mW)

SAR(1 g) = 2.14 mW/g; SAR(10 g) = 0.589 mW/g

Deviation = 1.42 %

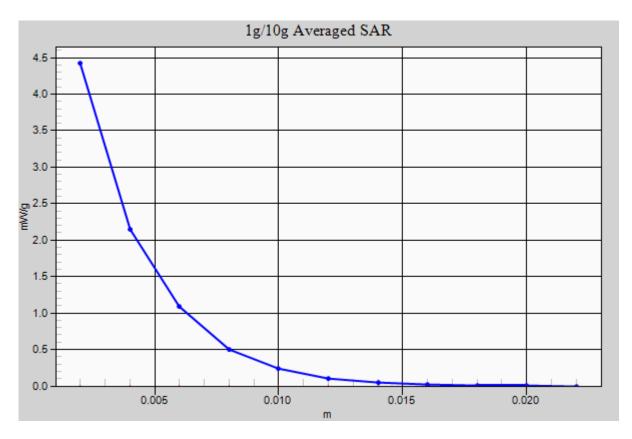
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5500 MHz; $\sigma = 5.794$ mho/m; $\varepsilon_r = 48.70$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-17-2011; Ambient Temp: 23.4°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.21, 3.21, 3.21); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 9/16/2011 Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646 Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

Mode: 5500MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 14.0 dBm (25 mW)

SAR(1 g) = 2.14 mW/g; SAR(10 g) = 0.589 mW/g

Deviation = 1.42 %

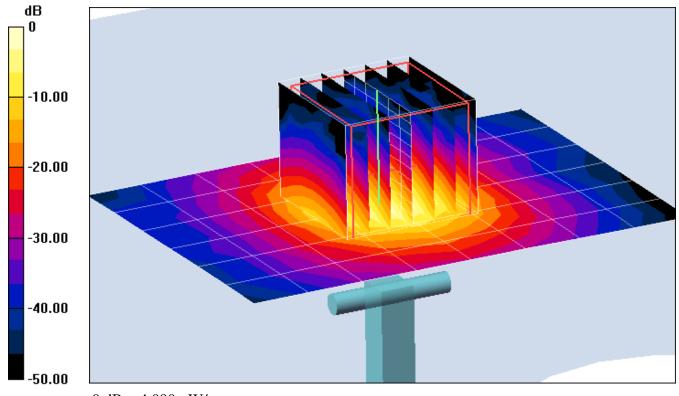
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5800 \text{ MHz}; \ \sigma = 6.242 \text{ mho/m}; \ \epsilon_r = 47.79; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-17-2011; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN3550; ConvF(3.29, 3.29, 3.29); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 9/16/2011 Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646 Measurement SW: DASY5 PRO V52.6.2.482; SEMCAD X Version 14.4.5 (3634)

Mode: 5800MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Deviation = 14.0 dBm (25 mW)

SAR(1 g) = 1.9 mW/g; SAR(10 g) = 0.528 mW/g

Deviation = 1.33 %

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1057

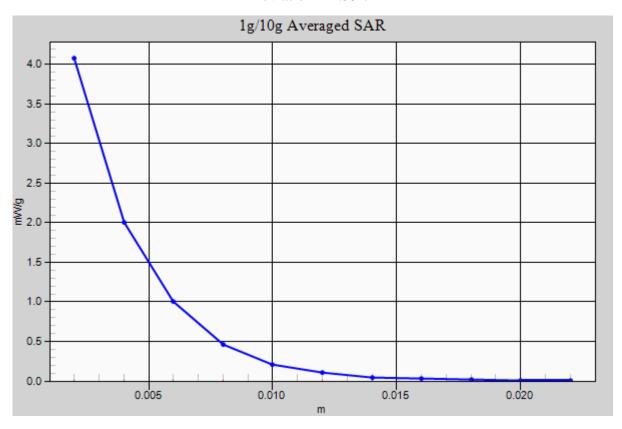
Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5800 \text{ MHz}; \ \sigma = 6.242 \text{ mho/m}; \ \epsilon_r = 47.79; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-17-2011; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN3550; ConvF(3.29, 3.29, 3.29); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 9/16/2011 Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY5 PRO V52.6.2.482; SEMCAD X Version 14.4.5 (3634)

Mode: 5800MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Deviation = 14.0 dBm (25 mW)

SAR(1 g) = 1.9 mW/g; SAR(10 g) = 0.528 mW/g

Deviation = 1.33 %

