

Portable Cellular Phone SAR Test Report

Test Report #: 22138-4F Date of Report: Sep-25-2008

Date of Test: Aug-03-2008 to Sep-03-2008

FCC ID #: IHDP56JL1

Generic Name: MCQ4-14411A11

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

Laboratory: 600 N. US Highway 45

Libertyville, Illinois 60048

Report Author: Thomas Knipple

Senior RF Engineer Knight

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

<u>Procedures:</u>

Accreditation: RSS-102 IEEE 1528 - 2003

FCC OET Bulletin 65 (*including Supplement C*) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 (2001) CENELEC EN 50361 (2001) ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these

standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2008

TESTING CERT #2518-02

Statement of

Compliance:

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	2
2. Description of the Device Under Test	3
2.1 Antenna description	3
2.2 Device description	3
3. Test Equipment Used	4
3.1 Dosimetric System	4
3.2 Additional Equipment	4
4. Electrical parameters of the tissue simulating liquid	5
5. System Accuracy Verification	6
6. Test Results	7
6.1 Head Adjacent Test Results	8
6.2 Body Worn Test Results	12
References	16
Appendix 1: SAR distribution comparison for system accuracy verification	17
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	18
Appendix 3: SAR distribution plots for Body Worn Configuration	19
Appendix 4: Probe Calibration Certificate	20
Appendix 5: Measurement Uncertainty Budget	21
Appendix 6: Dipole Characterization Certificate	23

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

For ICNIRP (10 g), the final SAR reading for this phone is 0.80 W/kg for head adjacent use and 0.98 W/kg for body worn use. For ANSI / IEEE C95.1 (1 g), the final SAR reading for this phone is 1.30 W/kg for head adjacent use and 1.54 W/kg for body worn use. These measurements were performed using a Dasy4TM v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

2.1 Antenna description

Type	Internal				
Location	Bottom Rear of Transceiver				
Dimensions	Length	21.4 mm			
Difficusions	Width 59.7 mm				
Configuration	Low Profile FICA				

2.2 Device description

Serial Number		80E14AE9, 8070424A								
Mode(s) of Operation	GSM 850	GSM 900	GSM 1800	GSM 1900	CDMA 800	CDMA 1900	Bluetooth	Wi-Fi 802.11b/g		
Modulation Mode(s)	GMSK	GMSK	GMSK	GMSK	QPSK	QPSK	GFSK	GFSK		
Maximum Output Power Setting	33.25 dBm	33.25 dBm	30.25 dBm	29.00 dBm	25.00 dBm	25.00 dBm	8.0 dBm	18.0 dBm		
Duty Cycle	1:8	1:8	1:8	1:8	1:1	1:1	1:1	1:1		
Transmitting Frequency Range(s)	824.2 - 848.8 MHz	880.2 - 914.8 MHz	1710.2 - 1784.8 MHz	1850.2 - 1909.8 MHz	824.70 – 848.31 MHz	1851.25 – 1908.75 MHz	2400.0 - 2483.5 MHz	2412 - 2462 MHz		
Production Unit or Identical Prototype (47 CFR §2.908)		Identical Prototype								
Device Category		Portable								
RF Exposure Limits			C	Seneral Population	on / Uncontrolle	d				

Mode(s) of Operation	GPRS 850					PRS 00	GPRS 1900		EV-DO Rel. A 800	EV-DO Rel. A 1900
Modulation Mode(s)	GM	ISK	GM	ISK	GM	MSK GMSK		QPSK	QPSK	
Maximum Output Power Setting	33.25 dBm	33.25 dBm	33.25 dBm	33.25 dBm	30.25 dBm	30.25 dBm	29.00 dBm	29.00 dBm	25.00 dBm	25.00 dBm
Duty Cycle	1:8	2:8	1:8	2:8	1:8	2:8	1:8	2:8	1:1	1:1
Transmitting Frequency Range(s)	84	1.2 - 8.8 Hz	91).2 - 4.8 Hz	178	0.2 - 34.8 Hz	190	0.2 - 09.8 Hz	824.70 - 848.31 MHz	1851.25 - 1908.75 MHz

 $Note: Bolded\ entries\ indicate\ data\ mode\ of\ highest\ time-average\ power\ per\ band\ and\ data\ mode\ type.$

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Due Date
DASY4™ DAE V1	661	Jan-28-2009
E-Field Probe ES3DV3	3124	Mar-17-2009
S.A.M. Phantom used for 800/900 MHz	TP-1106	
S.A.M. Phantom used for 1800/1900/2450 MHz	TP-1235	
Dipole Validation Kit, DV900V2	78	Apr-22-2009
Dipole Validation Kit, DV1800V2	281TR	Apr-22-2009
Dipole Validation Kit, DV2450V2	740	Apr-22-2009

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04844	Jan-29-2010
Power Meter E4419B	US39250622	Jun-07-2009
Power Sensor #1 - E9301A	US39211008	Jun-02-2009
Power Sensor #2 - E9301A	US39211009	Jun-02-2009
Signal Generator HP8648C	3847A04982	Jun-13-2009
Power Meter E4419B	GB39511084	Jun-17-2009
Power Sensor #1 - E9301A	US39210929	Jun-02-2009
Power Sensor #2 - E9301A	US39210930	Jun-02-2009
Signal Generator HP8648C	3847A04810	Jun-13-2009
Power Meter E4419B	GB39510961	Jan-24-2010
Power Sensor #1 - E9301A	US39210915	Jul-07-2009
Power Sensor #2 - E9301A	US39210916	Jul-07-2009
Network Analyzer HP8753ES	US39171846	Jul-05-2009
Dielectric Probe Kit HP85070C	US99360070	

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1$ $^g/_{cm^3}$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

f	Tissue		Diele	ctric Parame	tric Parameters		
(MHz)	type	Limits / Measured	ϵ_r	σ (S/m)	Temp (C)		
		Measured, Aug-30-2008	40.7	0.91	20.0		
	Head	Measured, Aug-31-2008	40.6	0.91	20.3		
835		Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25		
033		Measured, Aug-28-2008	53.7	0.99	19.9		
	Body	Measured, Aug-29-2008	53.1	0.99	20.6		
	-	Recommended Limits	55.2 ±5%	0.97 ±5%	18-25		
	Head	Measured, Aug-04-2008	40.2	1.46	19.8		
		Measured, Aug-31-2008	39.6	1.47	20.3		
1880		Recommended Limits	40.0 ±5%	$1.40 \pm 5\%$	18-25		
1990		Measured, Aug-05-2008	51.1	1.59	20.1		
	Body	Measured, Sep-02-2008	50.8	1.59	20.0		
		Recommended Limits	53.3 ±5%	1.52 ±5%	18-25		
	II	Measured, Aug-06-2008	36.1	1.87	19.9		
	Head	Recommended Limits	39.2 ±10%	1.80 ±5%	18-25		
2450		Measured, Aug-06-2008	48.4	2.00	20.1		
	Body	Measured, Sep-03-2008	47.6	1.98	19.7		
		Recommended Limits	52.7 ±10%	1.95 ±5%	18-25		

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredient	835 MHz / 900 MHz Head	835 MHz / 900 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body
Sugar	57	44.9	-		-	
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated Appendix 7. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0 cm \pm 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f (MHz)	Description	SAR (W/kg), 1 gram	Dielectric P ϵ_r	Parameters σ (S/m)	Ambient Temp (C)	Tissue Temp (C)
	Measured, Aug-03-2008	10.65	41.2	0.99	20.3	20.5
	Measured, Aug-28-2008	10.575	40.1	0.98	20.5	20.4
900	Measured, Aug-29-2008	10.825	40.4	0.98	20.5	20.2
900	Measured, Aug-30-2008	10.325	39.9	0.97	20.3	20.6
	Measured, Aug-31-2008	10.625	39.7	0.97	20.1	20.5
	Recommended Limits	11.29	41.5 ±5%	0.97 ±5%	18-25	18-25
	Measured, Aug-04-2008	39.925	40.6	1.37	20.5	19.8
	Measured, Aug-05-2008	39.675	40.9	1.38	20.5	19.7
1800	Measured, Aug-29-2008	39.05	40.1	1.38	20.5	20.1
1000	Measured, Aug-31-2008	38.025	40.0	1.38	20.3	20.2
	Measured, Sep-02-2008	41.175	40.2	1.42	20.0	18.9
	Recommended Limits	37.7	40.0 ±5%	1.4 ±5%	18-25	18-25
	Measured, Aug-06-2008	58.75	36.3	1.85	20.4	19.9
2450	Measured, Sep-03-2008	58.75	35.5	1.86	20.5	19.5
	Recommended Limits	56.5	39.2 ±10%	$1.80 \pm 5\%$	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3	3124	900	6.03	8 of 9
		1810	4.98	8 of 9
		2450	4.51	8 of 9

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was setup to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system The measured dielectric constant of the material used for the device holder is less than 2.9 and the loss tangent is less than 0.02 (\pm 30%) at 850 MHz. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15 mm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options:

Model SNN5824A - 1520 mAH Battery Model SNN5841A - 2320 mAH Battery

The battery SNN5824A was used to do most of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery. The configuration that resulted in the highest SAR values were tested using the other battery listed above.

Per the "SAR Measurement Procedures for 3G Devices" released in October, 2007, RC1, RC3 and RC3 (FCH + SCH) CDMA modes, EVDO Rev O, EVDO Rev A were considered. The conducted power measurements (per steps 3, 4 & 10 of section 4.4.5.2 of 3GPP2 C.5.011 / TIA -98-E) for each mode are shown in the table below.

	Conducted power (dBm) for CDMA modes										
	Channel	RO	C1	RC3		RC3 (FCH + SCH)					
	Chamiei	SO2	SO55	SO2	SO55	RC3 (FCH + 3CH)					
CDMA	1013	24.86	24.88	24.91	24.86	Day Matauria designs the manimum					
800	384	24.90	24.95	24.97	25.01	Per Motorola designs, the maximum power, when in a mode that allows					
800	777	25.02	25.01	24.90	24.95	supplemental channels, will always be less					
CDMA	25	24.94	24.97	24.92	24.95	than the RC3/RC1 maximum conducted					
CDMA 1900	600	25.04	25.02	25.03	25.02	power limit.					
1900	1175	25.08	25.03	24.94	25.02	power mint.					

Conducted power (dBm) for EVDO modes									
		Re	v 0	Rev A					
	Channel	FTAP	RTAP	Subtype 2	Subtype 2				
		307.2k	153.6k	RETAP	FETAP				
CDMA	1013	23.85	23.80	23.98	23.99				
800	384	23.76	23.59	23.94	24.11				
800	777	23.49	23.41	23.61	23.81				
CDMA	25	24.49	24.23	24.60	24.22				
CDMA 1900	600	24.33	23.99	24.64	24.23				
	1175	24.16	23.63	24.45	24.16				

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 6 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels for the CDMA RC3/SO55 mode, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800 MHz digital mode SAR measurements were performed in accordance with [4].

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0 cm \pm 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for head-adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
		900	6.03	8 of 9
E-Field Probe ES3DV3	3124	1810	4.98	8 of 9
		2450	4.51	8 of 9

	Left Head Cheek Position											
f		Conducted	Temp	Drift	10 g SA	R value	1 g SA	R value				
(MHz)	Description	Output Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	33.20										
GSM 850	Channel 190	33.25	20.3	0.003	0.195	0.20	0.267	0.27				
	Channel 251	33.17										
	Channel 512	28.97										
GSM 1900	Channel 661	28.92	19.5	0.003	0.164	0.16	0.260	0.26				
	Channel 810	28.98										
	Channel 1013	25.10										
CDMA 800	Channel 384	24.90	20.0	0.139	0.527	0.53	0.705	0.71				
	Channel 777	25.11										
	Channel 25	24.93	20.0	0.023	0.660	0.66	1.04	1.04				
CDMA 1900	Channel 600	24.88	20.0	-0.250	0.615	0.65	0.973	1.03				
	Channel 1175	24.98	20.0	-0.030	0.472	0.48	0.745	0.75				
	Channel 1											
Wi-Fi 2450	Channel 6	17.44	19.8	-0.077	0.073	0.07	0.148	0.15				
	Channel 11											

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Right Head Cheek Position											
f		Conducted	Temp	Drift	10 g SA	R value	1 g SA	R value				
(MHz)	Description (Output Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	33.20										
GSM 850	Channel 190	33.25	20.3	-0.011	0.216	0.22	0.295	0.30				
	Channel 251	33.17										
	Channel 512	28.97										
GSM 1900	Channel 661	28.92	19.5	-0.018	0.140	0.14	0.228	0.23				
	Channel 810	28.98										
	Channel 1013	25.10										
CDMA 800	Channel 384	24.90	20.0	0.127	0.559	0.56	0.741	0.74				
	Channel 777	25.11										
	Channel 25	24.93	20.0	-0.143	0.772	0.80	1.23	1.27				
CDMA 1900	Channel 600	24.88	20.0	0.031	0.795	0.80	1.30	1.30				
	Channel 1175	24.98	20.0	-0.077	0.633	0.64	1.05	1.07				
	Channel 1											
Wi-Fi 2450	Channel 6	17.44	19.8	0.214	0.087	0.09	0.175	0.18				
	Channel 11											

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Noted Head Cheek Position with Battery SNN5841A										
f		Conducted	Temp	Drift	10 g SA	R value	1 g SAR value				
(MHz)	Description	Outnut Power	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
CCM 050	Channel 128	33.20									
GSM 850 Right Head	Channel 190	33.25	20.3	0.044	0.208	0.21	0.284	0.28			
Right Head	Channel 251	33.17									
CC3 # 1000	Channel 512	28.97									
GSM 1900 Left Head	Channel 661	28.92	20.2	0.008	0.184	0.18	0.293	0.29			
Leji Hedd	Channel 810	28.98									
CDMA 000	Channel 1013	25.10									
CDMA 800 Right Head	Channel 384	24.90	20.5	-0.375	0.457	0.50	0.619	0.67			
Kigni Head	Channel 777	25.11									
CD344 1000	Channel 25	24.93									
CDMA 1900 Right Head	Channel 600	24.88	20.0	0.164	0.521	0.52	0.836	0.84			
Kigni Head	Channel 1175	24.98									
XX: E: 2450	Channel 1										
Wi-Fi 2450 Right Head	Channel 6	17.44	19.8	0.230	0.059	0.06	0.121	0.12			
кідні Пеаа	Channel 11										

Table 3: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

				Left H	ead 15° Tilt Posi	tion		
f		Conducted	Temp	Drift	10 g SA	R value	1 g SA	R value
(MHz)	Description	Output Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	33.20						
GSM 850	Channel 190	33.25	20.3	0.055	0.162	0.16	0.212	0.21
	Channel 251	33.17						
	Channel 512	28.97						
GSM 1900	Channel 661	28.92	19.5	0.006	0.084	0.08	0.135	0.14
	Channel 810	28.98						
	Channel 1013	25.10						
CDMA 800	Channel 384	24.90	20.0	-0.038	0.370	0.37	0.487	0.49
	Channel 777	25.11						
	Channel 25	24.93						
CDMA 1900	Channel 600	24.88	20.0	0.060	0.272	0.27	0.447	0.45
	Channel 1175	24.98						
	Channel 1							
Wi-Fi 2450	Channel 6	17.44	19.8	0.139	0.028	0.03	0.051	0.05
	Channel 11							

Table 4: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

				Right H	lead 15° Tilt Pos	ition		
f		Conducted Output Power (dBm)	Temp	Drift	10 g SA	R value	1 g SAR value	
(MHz)	Description		(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	33.20						
GSM 850	Channel 190	33.25	20.3	0.038	0.163	0.16	0.21	0.21
	Channel 251	33.17						
	Channel 512	28.97						
GSM 1900	Channel 661	28.92	19.5	-0.019	0.073	0.07	0.112	0.11
	Channel 810	28.98						
	Channel 1013	25.10						
CDMA 800	Channel 384	24.90	20.0	-0.086	0.397	0.40	0.515	0.53
	Channel 777	25.11						
	Channel 25	24.93						
CDMA 1900	Channel 600	24.88	20.0	-0.049	0.222	0.22	0.336	0.34
	Channel 1175	24.98						
	Channel 1							
Wi-Fi 2450	Channel 6	17.44	19.8	0.090	0.058	0.06	0.111	0.11
	Channel 11							

Table 5: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Noted Head 15° Tilt Position with Battery SNN5841A											
f		Conducted	Temp	Drift	10 g SA	R value	1 g SA	R value				
(MHz)	Description	Output Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
CCM 050	Channel 128	33.20										
GSM 850 Left Head	Channel 190	33.25	20.3	-0.059	0.161	0.16	0.210	0.21				
Deji Hedd	Channel 251	33.17										
CCM 1000	Channel 512	28.97										
GSM 1900 Left Head	Channel 661	28.92	20.2	-0.092	0.084	0.09	0.137	0.14				
Deji Hedd	Channel 810	28.98										
CDMA 800	Channel 1013	25.10										
Right Head	Channel 384	24.90	20.5	-0.090	0.341	0.35	0.442	0.45				
Right Head	Channel 777	25.11										
CDM 1000	Channel 25	24.93										
CDMA 1900 Left Head	Channel 600	24.88	20.3	0.028	0.578	0.58	0.655	0.66				
Liji Hedd	Channel 1175	24.98										
W: E: 2450	Channel 1											
Wi-Fi 2450 Right Head	Channel 6	17.44	19.8	0.006	0.039	0.04	0.075	0.08				
Mgm Heau	Channel 11											

Table 6: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

6.2 Body Worn Test Results

The SAR results shown in tables 7 through 13 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels for the CDMA RC3/SO55 mode, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800 MHz digital mode SAR measurements were performed in accordance with [4].

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0 mm. It measures $52.7 \text{ cm}(\log) \times 26.7 \text{ cm}(\text{wide}) \times 21.2 \text{ cm}(\text{tall})$. The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184 GHz.

The tissue stimulant depth was verified to be $15.0~\rm cm \pm 0.5~\rm cm$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. In addition to accessory testing, the cellular phone was tested with the front and back of the phone facing the phantom. For voice mode operation, the phone was placed as a distance of 15 mm from the phantom. For data mode operation, the phone was placed as a distance of 25 mm from the phantom. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There is one Body-Worn Accessories available for this phone: A Leather Pouch with Belt Clip: Model SYN1611A

The leather pouch causes closer proximity, has no metal components, and was used for the SAR measurements.

The following probe conversion factors were used on the E-Field probe(s) used for body-worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
		900	5.64	8 of 9
E-Field Probe ES3DV3	3124	1810	5.08	8 of 9
2532 13		2450	4.19	8 of 9

	Body-Worn; Front of Phone 15 mm from Phantom											
f		Conducted	Temp	Drift	10 g SA	AR value	1 g SA	AR value				
(MHz)	Description	Output Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	33.20										
GSM 850	Channel 190	33.25	20.3	-0.013	0.170	0.17	0.229	0.23				
	Channel 251	33.17										
	Channel 512	28.97										
GSM 1900	Channel 661	28.92	19.9	-0.089	0.064	0.06	0.099	0.10				
	Channel 810	28.98										
	Channel 1013	25.10										
CDMA 800	Channel 384	24.90	20.3	-0.335	0.317	0.34	0.425	0.46				
	Channel 777	25.11										
	Channel 25	24.93										
CDMA 1900	Channel 600	24.88	19.9	-0.110	0.273	0.28	0.424	0.43				
	Channel 1175	24.98										
	Channel 1											
Wi-Fi 2450	Channel 6	17.44	20.3	0.027	0.019	0.02	0.033	0.03				
	Channel 11											
	Channel 0											
Bluetooth 2450	Channel 39	6.478	19.7	-0.684	0.001	0.00	0.002	0.00				
	Channel 78											

Table 7: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

		В	ody-Wo	rn; Back	of Phone 15 mm	from Phantom		
f		Conducted	Тетр	Drift	10 g SA			R value
(MHz)	Description	Output Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	33.20						
GSM 850	Channel 190	33.25	20.3	-0.017	0.531	0.53	0.727	0.73
	Channel 251	33.17						
	Channel 512	28.97						
GSM 1900	Channel 661	28.92	19.9	-0.004	0.152	0.15	0.242	0.24
	Channel 810	28.98						
	Channel 1013	25.10	20.3	-0.132	0.654	0.67	0.891	0.92
CDMA 800	Channel 384	24.90	20.5	-0.019	0.905	0.91	1.23	1.24
	Channel 777	25.11	20.3	-0.109	0.647	0.66	0.875	0.90
	Channel 25	24.93	19.9	-0.082	0.564	0.57	0.917	0.93
CDMA 1900	Channel 600	24.88	19.9	-0.140	0.508	0.52	0.796	0.82
	Channel 1175	24.98	19.9	-0.100	0.317	0.32	0.518	0.53
	Channel 1							
Wi-Fi 2450	Channel 6	17.44	20.3	0.007	0.054	0.05	0.097	0.10
	Channel 11							
	Channel 0							
Bluetooth 2450	Channel 39	6.478	19.9	2.10	0.067	0.07	0.305	0.31
	Channel 78							

Table 8: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 25 mm from Phantom with GPRS Mode Class 10											
£		Conducted		Temp	Drift	10 g SA	R value	1 g SA	R value			
(MHz)	Description	Output Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	33.20										
GSM 850	Channel 190	33.25	20.3	-0.006	0.306	0.31	0.412	0.41				
	Channel 251	33.17										
	Channel 512	28.97										
GSM 1900	Channel 661	28.92	19.9	-0.040	0.106	0.11	0.163	0.16				
	Channel 810	28.98										

Table 9: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Highest Body Worn Configuration with Battery SNN5841A											
f D : ::		Conducted	Temp	Drift	10 g SA	AR value	1 g SA	AR value				
(MHz)	Description	Output Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	33.20										
GSM 850	Channel 190	33.25	20.3	-0.019	0.343	0.34	0.468	0.47				
	Channel 251	33.17										
	Channel 512	28.97										
GSM 1900	Channel 661	28.92	19.9	0.007	0.115	0.12	0.181	0.18				
	Channel 810	28.98										
	Channel 1013	25.10										
CDMA 800	Channel 384	24.90	20.1	-0.022	0.582	0.59	0.786	0.79				
	Channel 777	25.11										
	Channel 25	24.93	19.8	0.008	0.459	0.46	0.718	0.72				
CDMA 1900	Channel 600	24.88										
	Channel 1175	24.98										
	Channel 1											
Wi-Fi 2450	Channel 6	17.44	20.3	0.124	0.046	0.05	0.081	0.08				
	Channel 11											
	Channel 0											
Bluetooth 2450	Channel 39	6.478	19.9	-0.548	0.009	0.01	0.060	0.07				
	Channel 78											

Table 10: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Body-Worn with Leather Pouch SYN1611A									
f (MHz)	Description	Conducted Output Power (dBm)	Temp (C)	Drift (dB)	10 g SA	R value	1 g SAR value		
					Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
GSM 850	Channel 128	33.20							
	Channel 190	33.25	20.3	-0.037	0.281	0.28	0.385	0.39	
	Channel 251	33.17							
GSM 1900	Channel 512	28.97							
	Channel 661	28.92	19.9	-0.05	0.109	0.11	0.169	0.17	
	Channel 810	28.98							
CDMA 800	Channel 1013	25.10							
	Channel 384	24.90	20.1	-0.088	0.508	0.52	0.683	0.70	
	Channel 777	25.11							
CDMA 1900	Channel 25	24.93	19.9	-0.090	0.436	0.45	0.676	0.69	
	Channel 600	24.88							
	Channel 1175	24.98							

Table 11: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Highest of Extrapolated SAR Values including Bluetooth summation									
			10 g SAR value		1 g SAR value				
f (MHz)	Description	Original Measurement (W/kg)	Bluetooth Measurement (W/kg)	Summation (W/kg)	Original Measurement (W/kg)	Bluetooth Measurement (W/kg)	Summation (W/kg)		
GSM 850	Body Worn, Back of Phone 15 mm from Phantom	0.53	0.07	0.60	0.73	0.31	1.04		
GSM 1900	Body Worn, Back of Phone 15 mm from Phantom	0.15	0.07	0.22	0.24	0.31	0.55		
CDMA 800	Body Worn, Back of Phone 15 mm from Phantom	0.91	0.07	0.98	1.24	0.31	1.55		
CDMA 1900	Body Worn, Back of Phone 15 mm from Phantom	0.57	0.07	0.64	0.93	0.31	1.24		

Table 12: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Highest of Extrapolated SAR Values including Wi-Fi summation									
			10 g SAR value		1 g SAR value				
f (MHz)	Description	Original Measurement (W/kg)	Wi-Fi Measurement (W/kg)	Summation (W/kg)	Original Measurement (W/kg)	Wi-Fi Measurement (W/kg)	Summation (W/kg)		
GSM 850	Body Worn, Back of Phone 15 mm from Phantom	0.53	0.05	0.58	0.73	0.10	0.83		
GSM 1900	Body Worn, Back of Phone 15 mm from Phantom	0.15	0.05	0.20	0.24	0.10	0.34		
CDMA 800	Body Worn, Back of Phone 15 mm from Phantom	0.91	0.05	0.96	1.24	0.10	1.34		
CDMA 1900	Body Worn, Back of Phone 15 mm from Phantom	0.57	0.05	0.62	0.93	0.10	1.03		

Table 13: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 8/3/2008 5:05:32 PM

Test Laboratory: Motorola - 080308 900MHz Good -5.7%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 78; FCC ID: IHDP56JL1Procedure Notes: 900 MHz System Performance Check; Dipole Sn# 78; Input Power = 200 mW Sim.Temp@meas = 20.5 C; Sim.Temp@SPC = 20.5 C; Room Temp @ SPC = 20.3 C
Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 900 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 41.2$; $\rho = 1000$ kg/m³

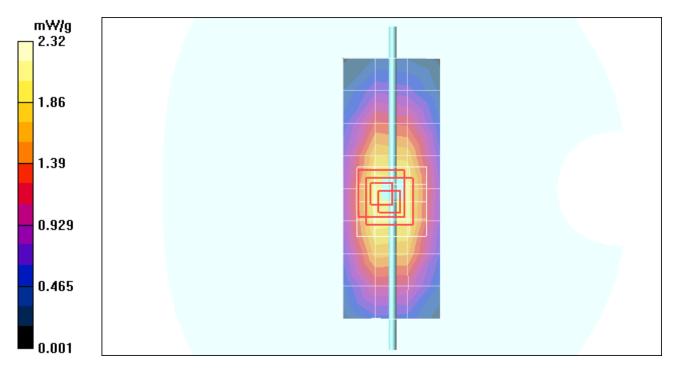
DASY4 Configuration:

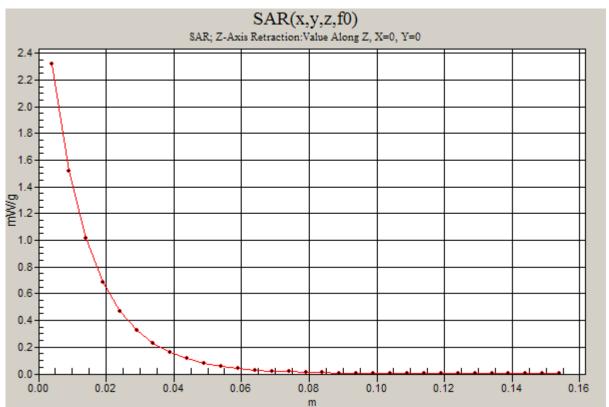
- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.98 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.6 V/m; Power Drift = 0.000 dB; Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.13 mW/g; SAR(10 g) = 1.36 mW/g; Maximum value of SAR (measured) = 2.32 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.6 V/m; Power Drift = 0.000 dB; Peak SAR (extrapolated) = 3.24 W/kg SAR(1 g) = 2.13 mW/g; SAR(10 g) = 1.36 mW/g; Maximum value of SAR (measured) = 2.25 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 8/28/2008 9:24:23 AM

Test Laboratory: Motorola - 082808 900MHz Good -6.3%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 78; FCC ID: IHDP56JL1Procedure Notes: 900 MHz System Performance Check; Dipole Sn# 078; Input Power = 200mW Sim.Temp@meas = 20.4 C; Sim.Temp@SPC = 20.4 C; Room Temp @ SPC = 20.5 C
Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 900 MHz; $\sigma = 0.98 \text{ mho/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

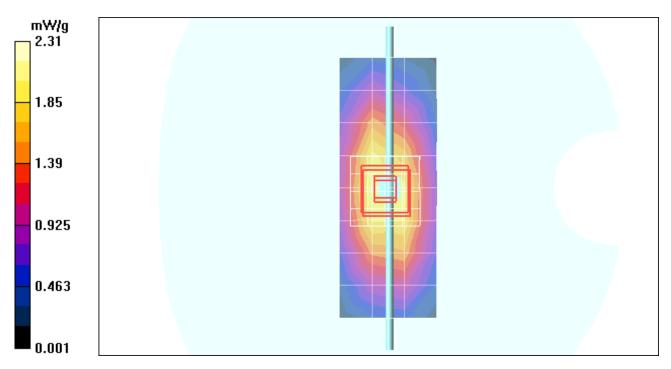
DASY4 Configuration:

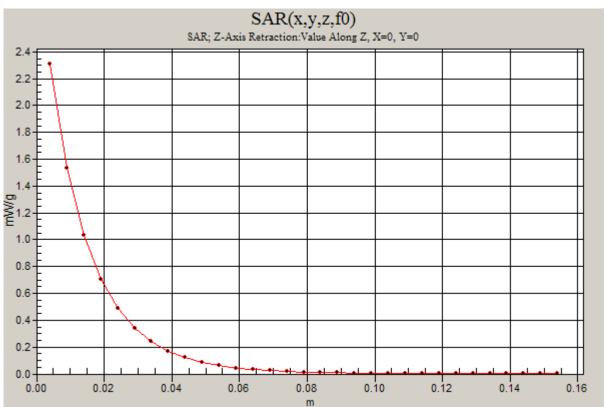
- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.06 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.3 V/m; Power Drift = -0.005 dB; Peak SAR (extrapolated) = 3.16 W/kg SAR(1 g) = 2.12 mW/g; SAR(10 g) = 1.37 mW/g; Maximum value of SAR (measured) = 2.30 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.3 V/m; Power Drift = -0.005 dB; Peak SAR (extrapolated) = 3.12 W/kg SAR(1 g) = 2.11 mW/g; SAR(10 g) = 1.36 mW/g; Maximum value of SAR (measured) = 2.29 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.31 mW/g

Date/Time: 8/29/2008 8:54:45 AM

Test Laboratory: Motorola - 082908 900MHz Good -4.1%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 78; FCC ID: IHDP56JL1Procedure Notes: 900 MHz System Performance Check; Dipole Sn# 78; Input Power = 200 mW Sim.Temp@meas = 20.6 C; Sim.Temp@SPC = 20.2 C; Room Temp @ SPC = 20.5 C
Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 900 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 40.4$; $\rho = 1000$ kg/m³

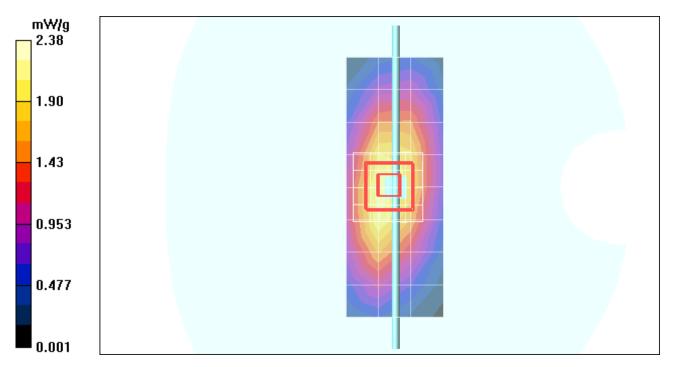
DASY4 Configuration:

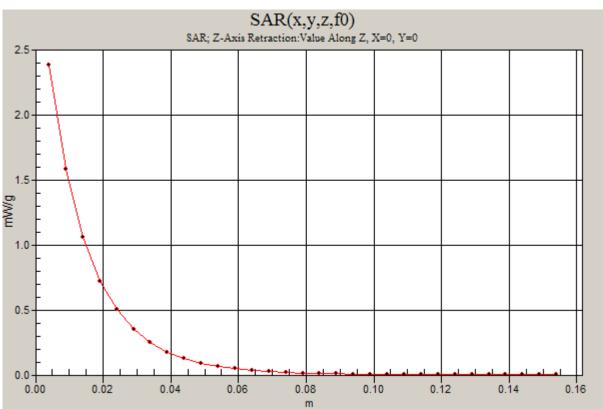
- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.20 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.4 V/m; Power Drift = 0.002 dB; Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.17 mW/g; SAR(10 g) = 1.4 mW/g; Maximum value of SAR (measured) = 2.35 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.4 V/m; Power Drift = 0.002 dB; Peak SAR (extrapolated) = 3.20 W/kg SAR(1 g) = 2.16 mW/g; SAR(10 g) = 1.39 mW/g; Maximum value of SAR (measured) = 2.34 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.38 mW/g

Date/Time: 8/30/2008 5:28:37 PM

Test Laboratory: Motorola - 083008 900MHz Good -8.5%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 78; FCC ID: IHDP56JL1Procedure Notes: 900 MHz System Performance Check; Dipole Sn# 78; Input Power = 200 mW Sim.Temp@meas = 20.6 C; Sim.Temp@SPC = 20.6 C; Room Temp @ SPC = 20.3 C Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 900 MHz; σ = 0.97 mho/m; $\epsilon_{\rm r}$ = 39.9; ρ = 1000 kg/m³

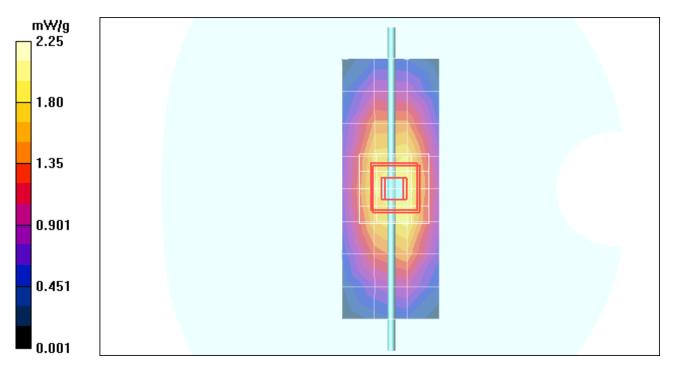
DASY4 Configuration:

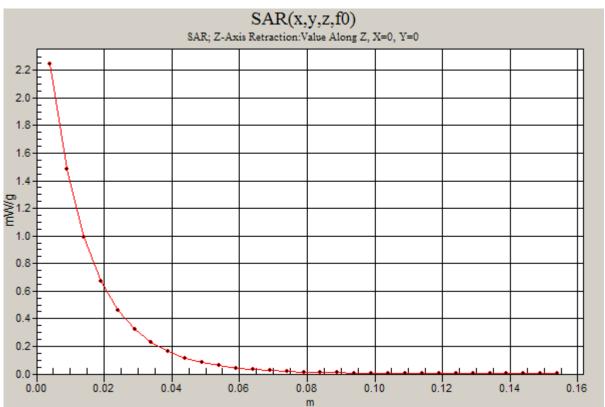
- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.01 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.7 V/m; Power Drift = 0.030 dB; Peak SAR (extrapolated) = 3.08 W/kg SAR(1 g) = 2.07 mW/g; SAR(10 g) = 1.33 mW/g; Maximum value of SAR (measured) = 2.25 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.7 V/m; Power Drift = 0.030 dB; Peak SAR (extrapolated) = 3.05 W/kg SAR(1 g) = 2.06 mW/g; SAR(10 g) = 1.32 mW/g; Maximum value of SAR (measured) = 2.23 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 8/31/2008 8:01:57 AM

Test Laboratory: Motorola - 083108 900MHz GOOD -5.9%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 78; FCC ID: IHDP56JL1 Procedure Notes: 900 MHz System Performance Check; Dipole Sn# 078; Input Power = 200mW Sim.Temp@meas = 20.5 C; Sim.Temp@SPC = 20.5 C; Room Temp @ SPC = 20.1 C Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 900 MHz; σ = 0.97 mho/m; ϵ_r = 39.7; ρ = 1000 kg/m³

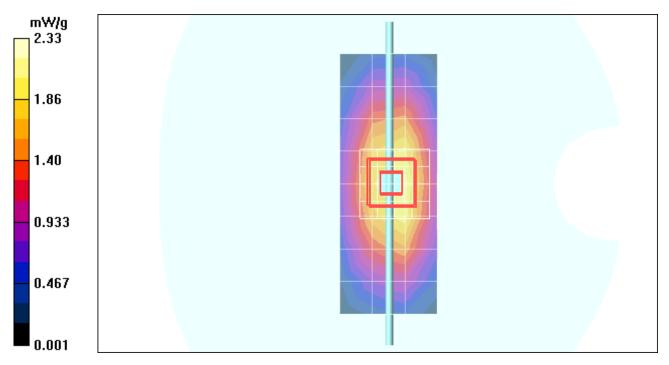
DASY4 Configuration:

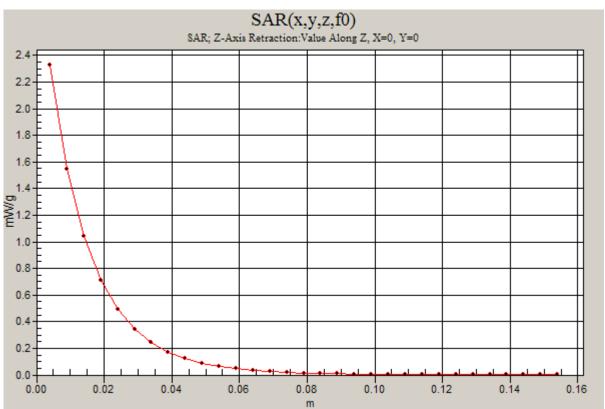
- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 2.12 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.4 V/m; Power Drift = -0.011 dB; Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.14 mW/g; SAR(10 g) = 1.38 mW/g; Maximum value of SAR (measured) = 2.30 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.4 V/m; Power Drift = -0.011 dB; Peak SAR (extrapolated) = 3.12 W/kg SAR(1 g) = 2.11 mW/g; SAR(10 g) = 1.36 mW/g; Maximum value of SAR (measured) = 2.27 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.33 mW/g

Date/Time: 8/4/2008 7:16:50 AM

Test Laboratory: Motorola - 080408 1800MHz Good +5.9%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 281TR; FCC ID: IHDP56JL1 Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 281tr; Input Power = 200 mW Sim.Temp@meas = 19.8 C; Sim.Temp@SPC = 19.8 C; Room Temp @ SPC = 20.5 C Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

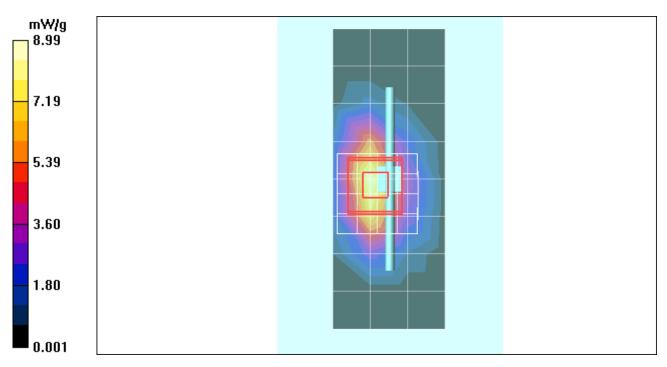
DASY4 Configuration:

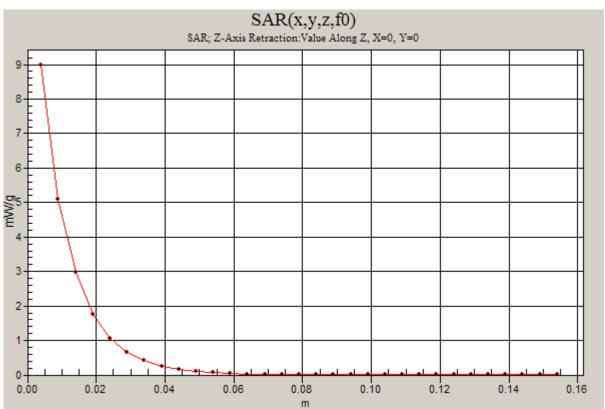
- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 8.65 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 74.5 V/m; Power Drift = -0.018 dB; Peak SAR (extrapolated) = 14.4 W/kg SAR(1 g) = 8.02 mW/g; SAR(10 g) = 4.23 mW/g; Maximum value of SAR (measured) = 8.88 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 74.5 V/m; Power Drift = -0.018 dB; Peak SAR (extrapolated) = 14.3 W/kg SAR(1 g) = 7.95 mW/g; SAR(10 g) = 4.2 mW/g; Maximum value of SAR (measured) = 8.73 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.99 mW/g

Date/Time: 8/5/2008 6:38:00 AM

Test Laboratory: Motorola - 080508 1800MHz Good +5.2%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 281TR; FCC ID: IHDP56JL1Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 281tr; Input Power = 200 mW Sim.Temp@meas = 19.9 C; Sim.Temp@SPC = 19.7 C; Room Temp @ SPC = 20.5 C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

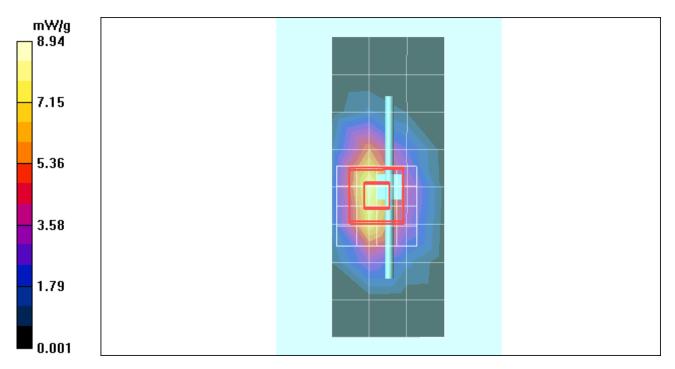
DASY4 Configuration:

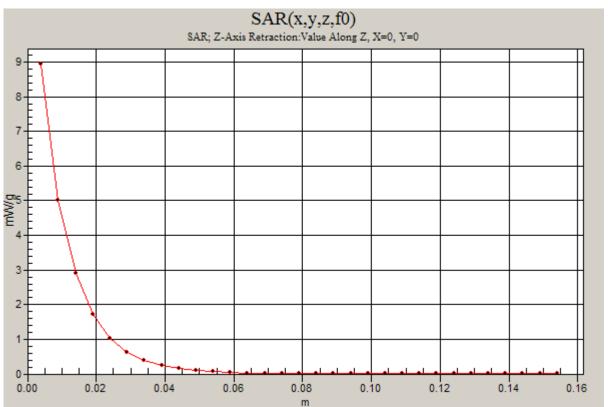
- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 8.26 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 75.4 V/m; Power Drift = -0.007 dB; Peak SAR (extrapolated) = 14.4 W/kg SAR(1 g) = 7.97 mW/g; SAR(10 g) = 4.21 mW/g; Maximum value of SAR (measured) = 8.78 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 75.4 V/m; Power Drift = -0.007 dB; Peak SAR (extrapolated) = 14.3 W/kg SAR(1 g) = 7.9 mW/g; SAR(10 g) = 4.18 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.94 mW/g

Date/Time: 8/29/2008 8:17:58 AM

Test Laboratory: Motorola - 082908 1800MHz Good +3.6%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 281TR; FCC ID: IHDP56JL1 Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 281tr; Input Power = 200 mW Sim.Temp@meas = 20.0 C; Sim.Temp@SPC = 20.1 C; Room Temp @ SPC = 20.5 C Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

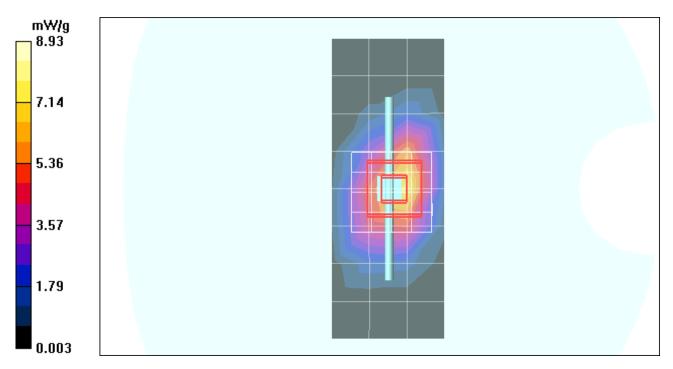
DASY4 Configuration:

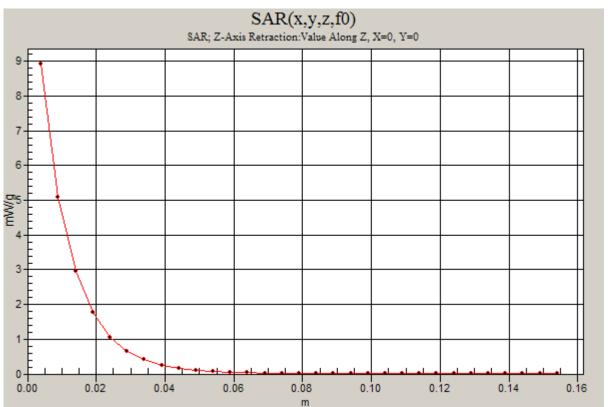
- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 7.52 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 80.9 V/m; Power Drift = -0.025 dB; Peak SAR (extrapolated) = 13.9 W/kg SAR(1 g) = 7.85 mW/g; SAR(10 g) = 4.19 mW/g; Maximum value of SAR (measured) = 8.81 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 80.9 V/m; Power Drift = -0.025 dB; Peak SAR (extrapolated) = 13.7 W/kg SAR(1 g) = 7.77 mW/g; SAR(10 g) = 4.15 mW/g; Maximum value of SAR (measured) = 8.73 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.93 mW/g

Date/Time: 8/31/2008 8:52:13 PM

Test Laboratory: Motorola - 083108 1800MHz Good +.9%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 281TR; FCC ID: IHDP56JL1

Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 281tr; Input Power = 200 mW

Sim.Temp@meas = 20.2 C; Sim.Temp@SPC = 20.2 C; Room Temp @ SPC = 20.3 C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 7.90 mW/g

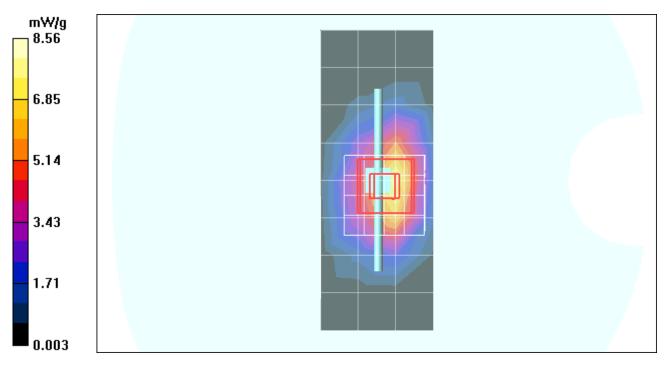
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

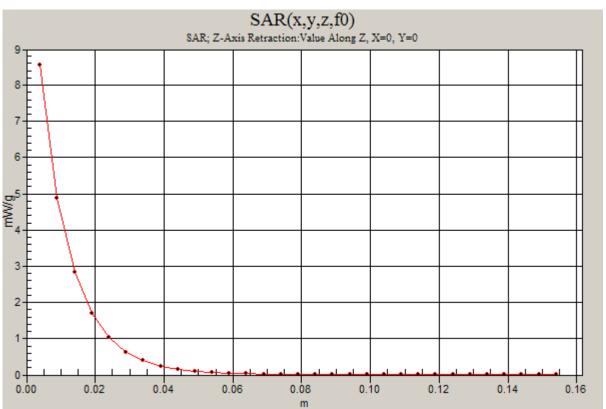
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.5 V/m; Power Drift = -0.069 dB; Peak SAR (extrapolated) = 13.4 W/kg

SAR(1 g) = 7.61 mW/g; SAR(10 g) = 4.09 mW/g; Maximum value of SAR (measured) = 8.39 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 77.5 V/m; Power Drift = -0.069 dB; Peak SAR (extrapolated) = 13.4 W/kg

SAR(1 g) = 7.6 mW/g; SAR(10 g) = 4.06 mW/g; Maximum value of SAR (measured) = 8.37 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.56 mW/g

Date/Time: 9/2/2008 9:18:42 AM

Test Laboratory: Motorola - 090208 1800MHz Good +.9.2%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 281TR; FCC ID: IHDP56JL1 Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 281TR; Input Power = 200mW Sim.Temp@meas = 18.9 C; Sim.Temp@SPC = 18.9 C; Room Temp @ SPC = 20 C Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$

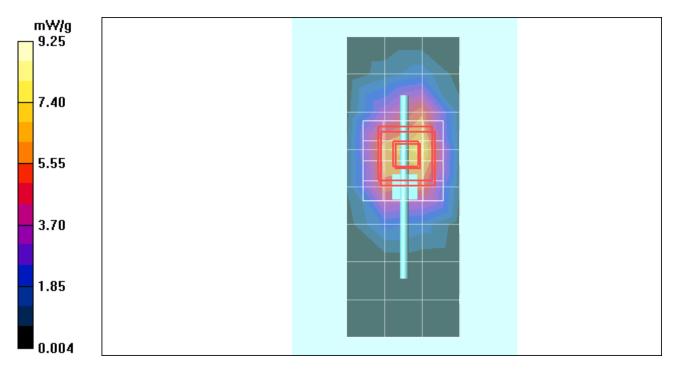
DASY4 Configuration:

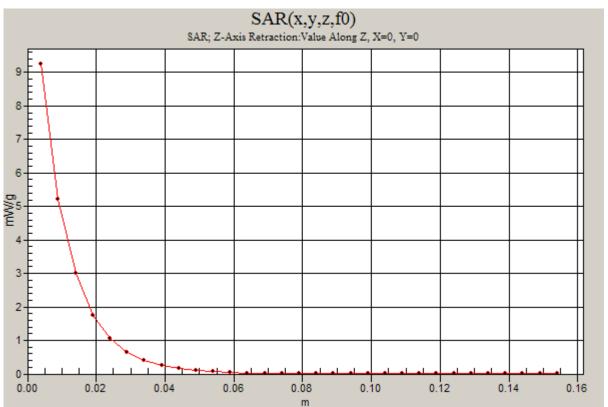
- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 7.18 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 73.9 V/m; Power Drift = -0.053 dB; Peak SAR (extrapolated) = 14.8 W/kg SAR(1 g) = 8.27 mW/g; SAR(10 g) = 4.36 mW/g; Maximum value of SAR (measured) = 9.21 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 73.9 V/m; Power Drift = -0.053 dB; Peak SAR (extrapolated) = 14.7 W/kg SAR(1 g) = 8.2 mW/g; SAR(10 g) = 4.34 mW/g; Maximum value of SAR (measured) = 9.10 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 9.25 mW/g

Date/Time: 8/6/2008 2:44:15 PM

Test Laboratory: Motorola - 080608 2450MHz Good 4%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 740; FCC ID: IHDP56JL1 Procedure Notes: 2450 MHz System Performance Check; Dipole Sn# 740; Input Power = 200 mW Sim.Temp@meas = 19.6 C; Sim.Temp@SPC = 19.9 C; Room Temp @ SPC = 20.4 C Communication System: CW - Dipole; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 36.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

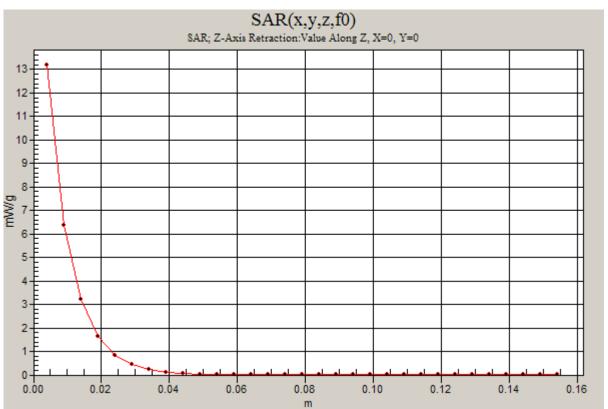
- Probe: ES3DV3 SN3124; ConvF(4.51, 4.51, 4.51); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 11.0 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 79.7 V/m; Power Drift = -0.020 dB; Peak SAR (extrapolated) = 25.0 W/kg SAR(1 g) = 11.7 mW/g; SAR(10 g) = 5.33 mW/g; Maximum value of SAR (measured) = 13.2 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 79.7 V/m; Power Drift = -0.020 dB; Peak SAR (extrapolated) = 25.5 W/kg SAR(1 g) = 11.8 mW/g; SAR(10 g) = 5.34 mW/g; Maximum value of SAR (measured) = 13.0 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 9/3/2008 10:27:45 AM

Test Laboratory: Motorola - 090308 2450 MHz Good 4.0%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 740; FCC ID: IHDP56JL1 Procedure Notes: 2450 MHz System Performance Check; Dipole Sn# 740; Input Power = 200 mW Sim.Temp@meas = 19.5 C; Sim.Temp@SPC = 19.5 C; Room Temp @ SPC = 20.5 C Communication System: CW - Dipole; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ mho/m}$; $\varepsilon_r = 35.5$; $\rho = 1000 \text{ kg/m}^3$

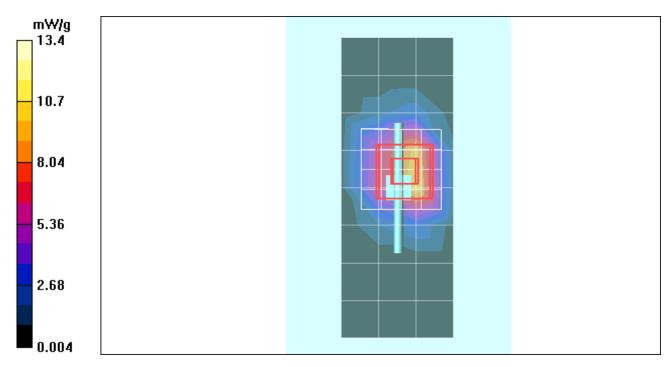
DASY4 Configuration:

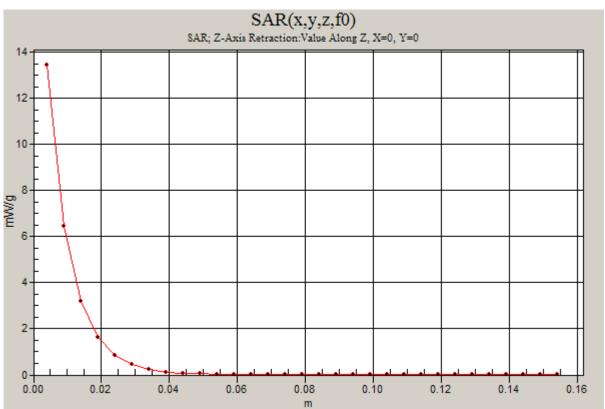
- Probe: ES3DV3 SN3124; ConvF(4.51, 4.51, 4.51); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 10.0 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 81.1 V/m; Power Drift = -0.013 dB; Peak SAR (extrapolated) = 25.3 W/kg SAR(1 g) = 11.8 mW/g; SAR(10 g) = 5.41 mW/g; Maximum value of SAR (measured) = 13.3 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 81.1 V/m; Power Drift = -0.013 dB; Peak SAR (extrapolated) = 25.1 W/kg SAR(1 g) = 11.7 mW/g; SAR(10 g) = 5.39 mW/g; Maximum value of SAR (measured) = 12.9 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 13.4 mW/g

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

Exhibit 11 Page 18

Date/Time: 8/31/2008 6:34:49 PM

Test Laboratory: Motorola - GSM 850 Cheek

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: N/A Battery Model #: SNN5824A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

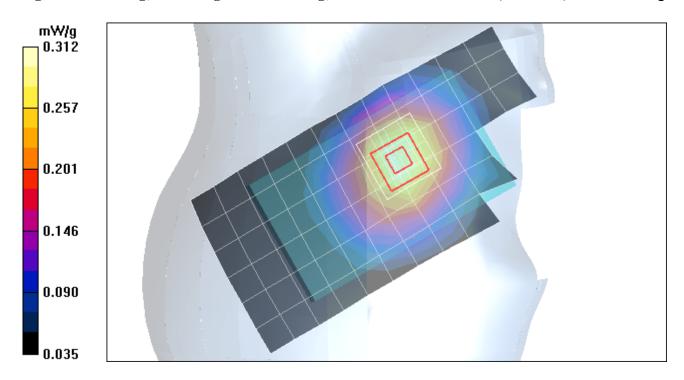
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.299 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.6 V/m; Power Drift = -0.011 dB; Peak SAR (extrapolated) = 0.375 W/kg

SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.216 mW/g; Maximum value of SAR (measured) = 0.312 mW/g

Date/Time: 8/31/2008 9:19:26 PM

Test Laboratory: Motorola - GSM 1900 Cheek

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: N/A Battery Model #: SNN5841A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

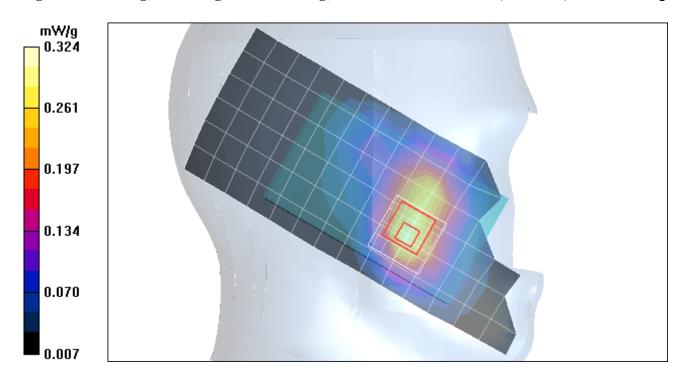
Medium: Regular Glycol Head 1750/1880

Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.316 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.2 V/m; Power Drift = 0.008 dB; Peak SAR (extrapolated) = 0.421 W/kg

SAR(1 g) = 0.293 mW/g; SAR(10 g) = 0.184 mW/g; Maximum value of SAR (measured) = 0.324 mW/g

Date/Time: 8/30/2008 11:25:37 PM

Test Laboratory: Motorola - CDMA 800 Cheek

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

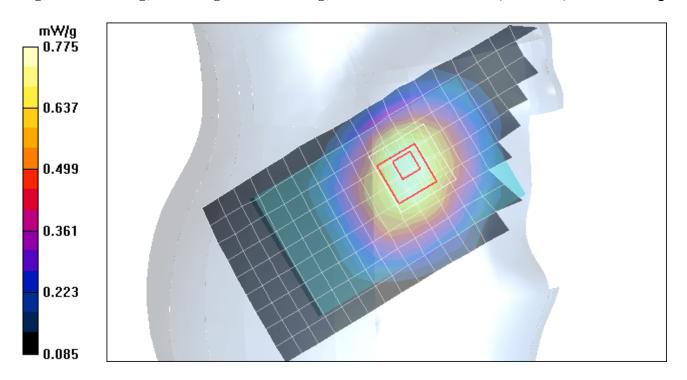
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Right Head Template/Area Scan - Normal (10mm) (10x25x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.813 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.6 V/m; Power Drift = 0.127 dB; Peak SAR (extrapolated) = 0.943 W/kg

SAR(1 g) = 0.741 mW/g; SAR(10 g) = 0.559 mW/g; Maximum value of SAR (measured) = 0.775 mW/g

Date/Time: 8/4/2008 4:04:39 PM

Test Laboratory: Motorola - CDMA 1900 Cheek

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

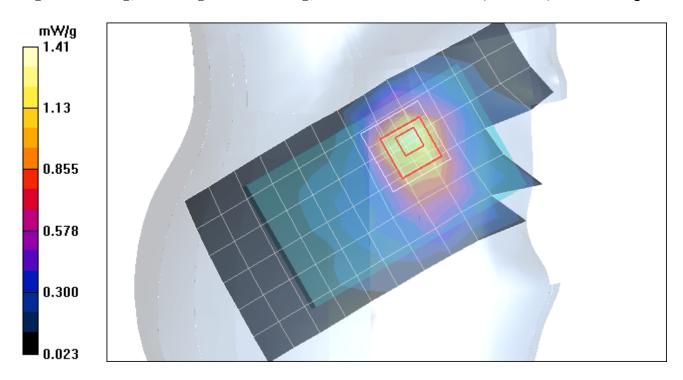
Medium: Backup Glycol Head 1750/1880

Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 40.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.34 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.5 V/m; Power Drift = 0.031 dB; Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 1.3 mW/g; SAR(10 g) = 0.795 mW/g; Maximum value of SAR (measured) = 1.41 mW/g

Date/Time: 8/6/2008 10:46:45 PM

Test Laboratory: Motorola - Wi-Fi Cheek

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Channel Number: 6; Duty Cycle: 1:1

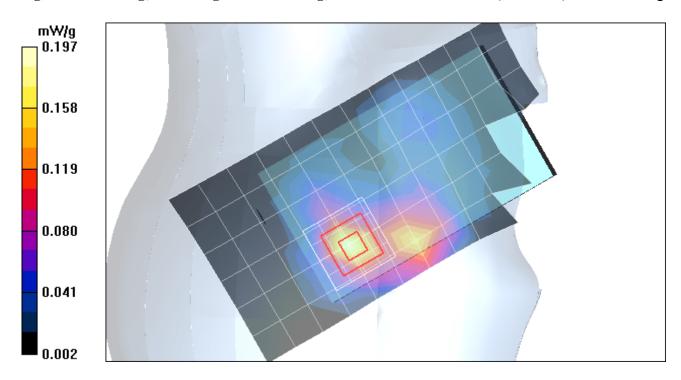
Medium: 2450 Glycol Head

Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ mho/m}$; $\varepsilon_r = 36.1$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.51, 4.51, 4.51); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.190 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.59 V/m; Power Drift = 0.214 dB; Peak SAR (extrapolated) = 0.338 W/kg

SAR(1 g) = 0.175 mW/g; SAR(10 g) = 0.087 mW/g; Maximum value of SAR (measured) = 0.197 mW/g

Date/Time: 8/31/2008 8:11:29 PM

Test Laboratory: Motorola - GSM 850 Tilt

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: N/A Battery Model #: SNN5841A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

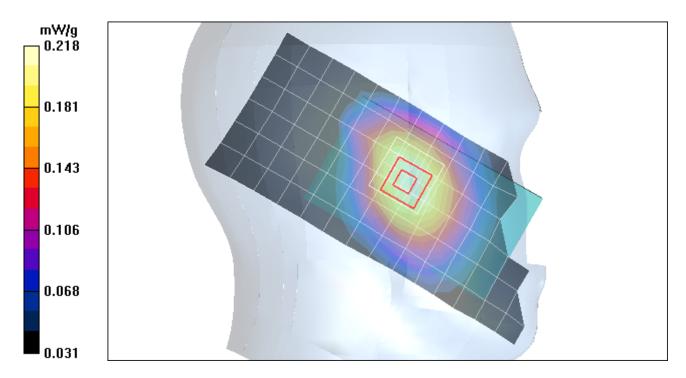
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.216 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.6 V/m; Power Drift = -0.059 dB; Peak SAR (extrapolated) = 0.253 W/kg

SAR(1 g) = 0.210 mW/g; SAR(10 g) = 0.161 mW/g; Maximum value of SAR (measured) = 0.218 mW/g

Date/Time: 8/31/2008 10:54:25 PM

Test Laboratory: Motorola - GSM 1900 Tilt

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: N/A Battery Model #: SNN5841A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

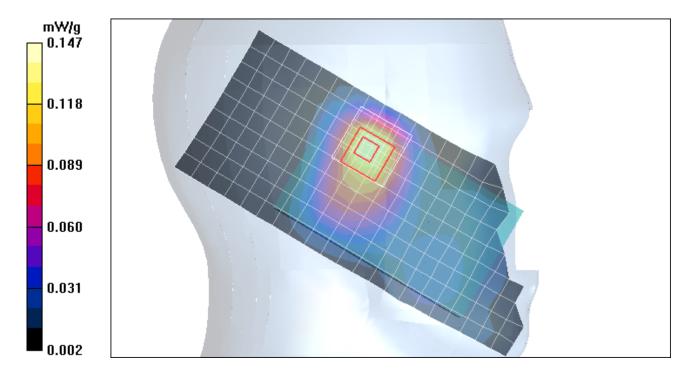
Medium: Regular Glycol Head 1750/1880

Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Left Head Template/Area Scan - Normal (10mm) (10x25x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.139 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.63 V/m; Power Drift = -0.092 dB; Peak SAR (extrapolated) = 0.211 W/kg

SAR(1 g) = 0.137 mW/g; SAR(10 g) = 0.084 mW/g; Maximum value of SAR (measured) = 0.147 mW/g

Date/Time: 8/30/2008 10:21:25 PM

Test Laboratory: Motorola - CDMA 800 Tilt

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

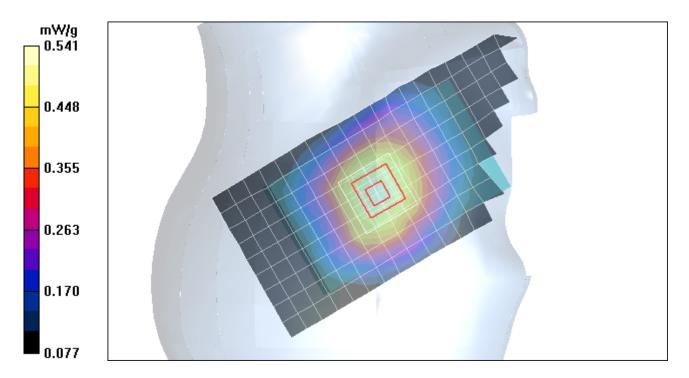
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Right Head Template/Area Scan - Normal (10mm) (10x25x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.526 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.8 V/m; Power Drift = -0.086 dB; Peak SAR (extrapolated) = 0.656 W/kg

SAR(1 g) = 0.515 mW/g; SAR(10 g) = 0.397 mW/g; Maximum value of SAR (measured) = 0.541 mW/g

Date/Time: 9/1/2008 2:19:00 AM

Test Laboratory: Motorola - CDMA 1900 Tilt

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5841A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

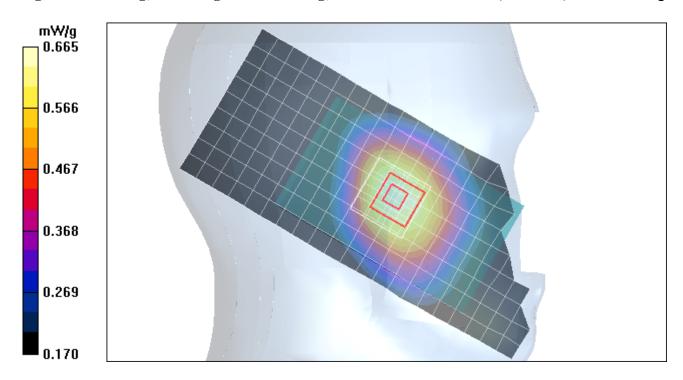
Medium: Regular Glycol Head 1750/1880

Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Left Head Template/Area Scan - Normal (10mm) (10x25x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.657 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.1 V/m; Power Drift = 0.028 dB; Peak SAR (extrapolated) = 0.674 W/kg

SAR(1 g) = 0.655 mW/g; SAR(10 g) = 0.578 mW/g; Maximum value of SAR (measured) = 0.665 mW/g

Date/Time: 8/6/2008 11:06:30 PM

Test Laboratory: Motorola - Wi-Fi Tilt

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Channel Number: 6; Duty Cycle: 1:1

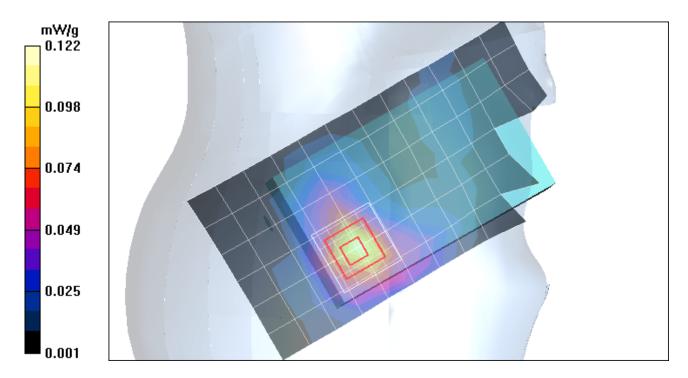
Medium: 2450 Glycol Head

Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ mho/m; $\varepsilon_r = 36.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.51, 4.51, 4.51); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.117 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.77 V/m; Power Drift = 0.090 dB; Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.111 mW/g; SAR(10 g) = 0.058 mW/g; Maximum value of SAR (measured) = 0.122 mW/g

Appendix 3

SAR distribution plots for Body Worn Configuration

Exhibit 11 Page 19

Date/Time: 8/29/2008 12:27:13 AM

Test Laboratory: Motorola - GSM 850 Body Worn

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Battery Model #: SNN5824A

Device Position: Body Worn, Back of Phone 15mm From Phantom

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

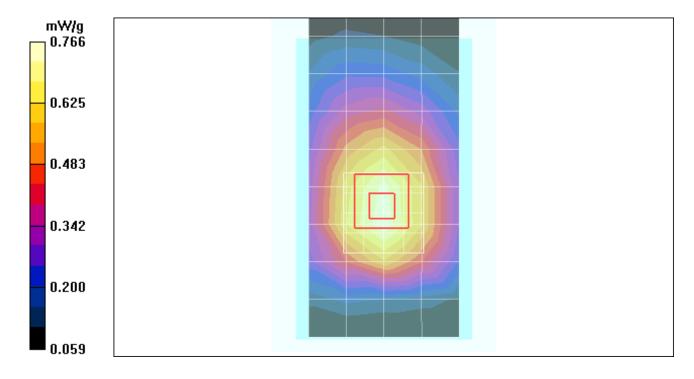
Medium: Low Freq Body

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.64, 5.64, 5.64); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.759 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.2 V/m; Power Drift = -0.017 dB; Peak SAR (extrapolated) = 0.924 W/kg

SAR(1 g) = 0.727 mW/g; SAR(10 g) = 0.531 mW/g; Maximum value of SAR (measured) = 0.766 mW/g

Date/Time: 9/2/2008 7:46:48 PM

Test Laboratory: Motorola - GSM 1900 Body

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Battery Model #: SNN5824A

Device Position: Body Worn, Back of Phone 15mm From Phantom

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

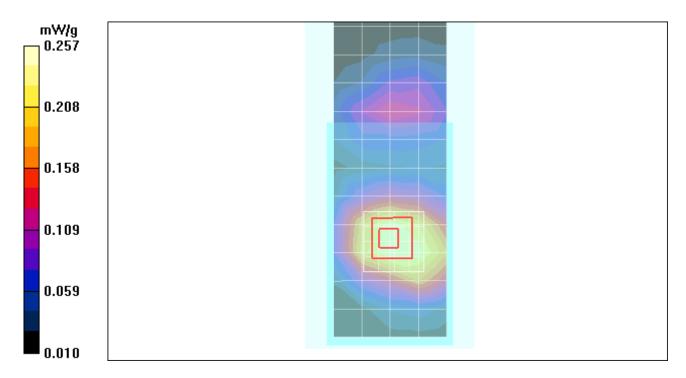
Medium: Regular Glycol Body 1750/1880

Medium parameters used: f = 1880 MHz; $\sigma = 1.59 \text{ mho/m}$; $\varepsilon_r = 50.8$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.08, 5.08, 5.08); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.243 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.8 V/m; Power Drift = -0.004 dB; Peak SAR (extrapolated) = 0.372 W/kg

SAR(1 g) = 0.242 mW/g; SAR(10 g) = 0.152 mW/g; Maximum value of SAR (measured) = 0.257 mW/g

Date/Time: 8/29/2008 9:54:43 AM

Test Laboratory: Motorola - CDMA 800 Body Worn

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Battery Model #: SNN5824A

Device Position: Body Worn, Back of Phone 15mm From Phantom

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

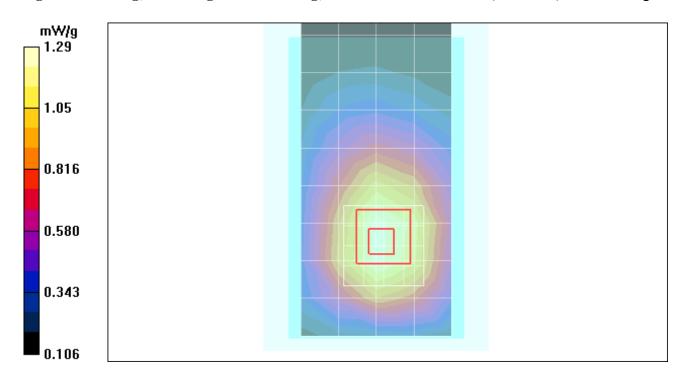
Medium: Low Freq Body

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.64, 5.64, 5.64); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 1.26 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 36.7 V/m; Power Drift = -0.019 dB; Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.905 mW/g; Maximum value of SAR (measured) = 1.29 mW/g

Date/Time: 8/5/2008 10:24:13 AM

Test Laboratory: Motorola - CDMA 1900 Body Worn

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Battery Model #: SNN5824A

Device Position: Body Worn, Back of Phone 15mm From Phantom

Communication System: CDMA 1900; Frequency: 1851.25 MHz; Channel Number: 25; Duty Cycle: 1:1

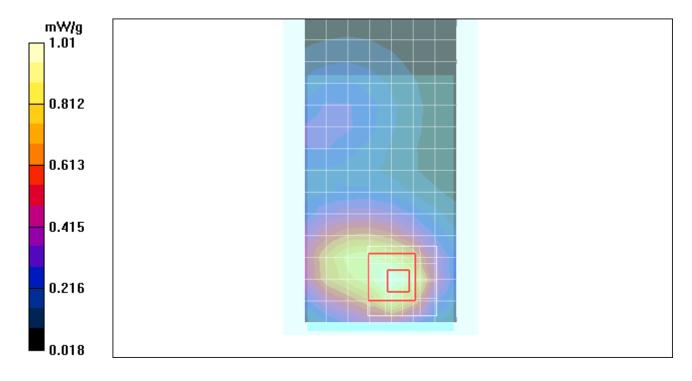
Medium: Regular Glycol Body 1750/1880

Medium parameters used: f = 1880 MHz; $\sigma = 1.59 \text{ mho/m}$; $\varepsilon_r = 51.1$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.08, 5.08, 5.08); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Amy Twin Phone Template/Area Scan - Normal Body (10mm) (19x10x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.00 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.6 V/m; Power Drift = -0.082 dB; Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.917 mW/g; SAR(10 g) = 0.564 mW/g; Maximum value of SAR (measured) = 1.01 mW/g

Date/Time: 8/7/2008 1:07:57 AM

Test Laboratory: Motorola - Wi-Fi Body Worn

Serial: 80E14AE9; FCC ID: IHDP756JL1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: SNN5824A

Device Position: Body Worn, Back of Phone 15mm From Phantom

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Channel Number: 6; Duty Cycle: 1:1

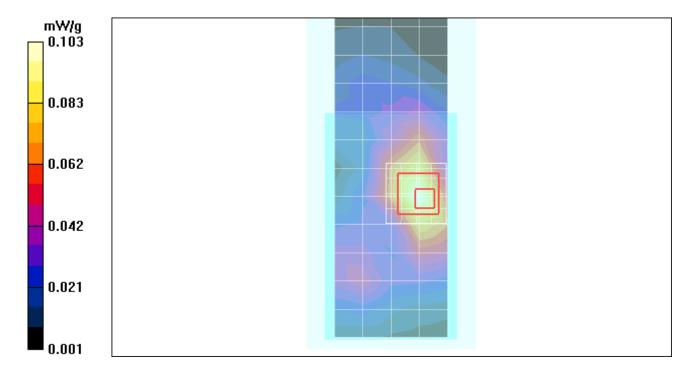
Medium: 2450 Glycol Body

Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ mho/m}$; $\varepsilon_r = 48.4$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.19, 4.19, 4.19); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.105 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.89 V/m; Power Drift = 0.007 dB; Peak SAR (extrapolated) = 0.179 W/kg

SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.054 mW/g; Maximum value of SAR (measured) = 0.103 mW/g

Date/Time: 9/3/2008 2:24:56 PM

Test Laboratory: Motorola - Bluetooth Body Worn

Serial: 80E14AE9; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: SNN5824A

Device Position: Body Worn, Back of Phone 15mm From Phantom

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

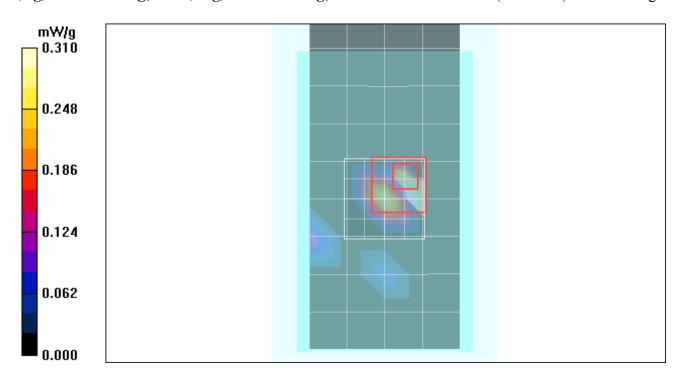
Medium: 2450 Glycol Body

Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ mho/m}$; $\varepsilon_r = 47.6$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.19, 4.19, 4.19); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.297 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.812 V/m; Power Drift = 2.10 dB; Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 0.305 mW/g; SAR(10 g) = 0.067 mW/g; Maximum value of SAR (measured) = 2.11 mW/g

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

Certificate No: ES3-3124_Mar08

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3124

Calibration procedure(s)

QA CAL-01.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

March 17, 2008

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (METAS, No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (METAS, No. 217-00720)	Aug-08
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (SPEAG, No. ES3-3013_Jan08)	Jan-09
DAE4	SN: 654	20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Apr-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Ela- Ul
Approved by:	Niels Kuster	Quality Managar	11 1
Approved by.	Meis Kuster	Quality Manager	1.120

Issued: March 17, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3124_Mar08

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z

DCP sensitivity in TSL / NORMX,y,2

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3124 Mar08 Page 2 of 9

Probe ES3DV3

SN:3124

Manufactured:

July 11, 2006

Last calibrated:

March 20, 2007

Recalibrated:

March 17, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV3 SN:3124 March 17, 2008

DASY - Parameters of Probe: ES3DV3 SN:3124

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.25 ± 10.1%	$\mu V/(V/m)^2$	DCP X	97 mV
NormY	1.32 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	94 mV
NormZ	1.33 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	10.1	5.9
SAR _{be} [%]	With Correction Algorithm	0.9	0.8

TSL

1810 MHz

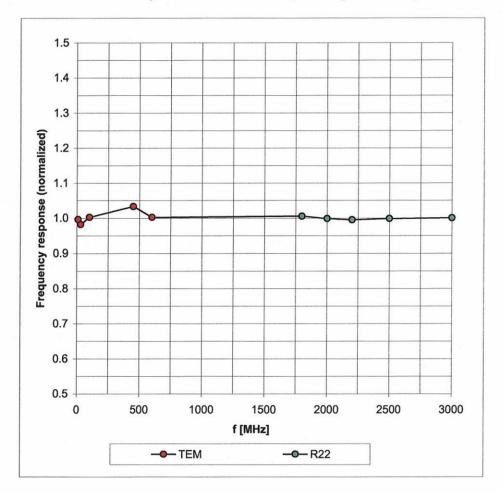
Typical SAR gradient: 10 % per mm

Sensor Center t	o Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	11.0	6.0
SAR _{be} [%]	With Correction Algorithm	8.0	0.7

Sensor Offset

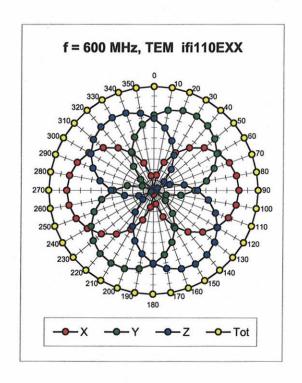
Probe Tip to Sensor Center

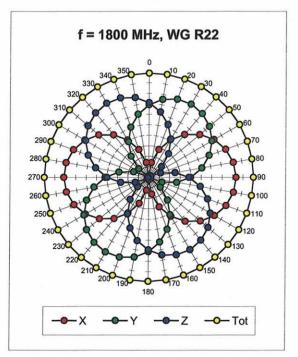
2.0 mm

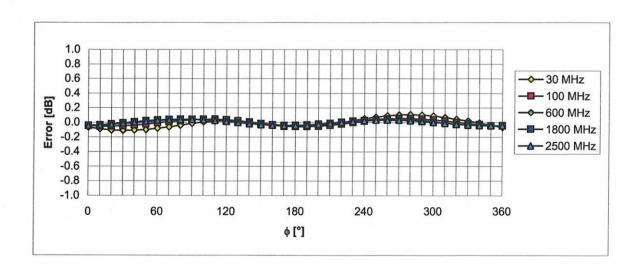

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

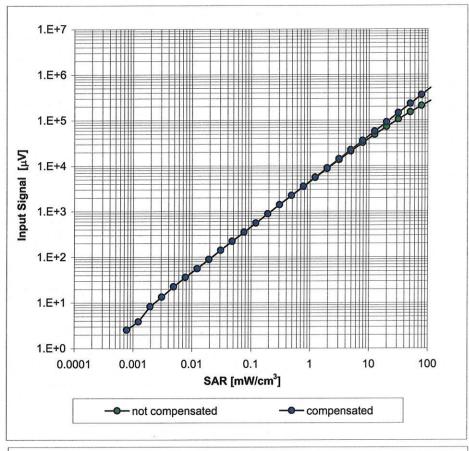

Frequency Response of E-Field

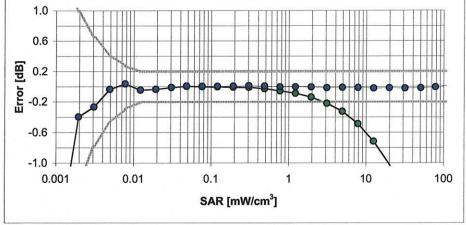

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

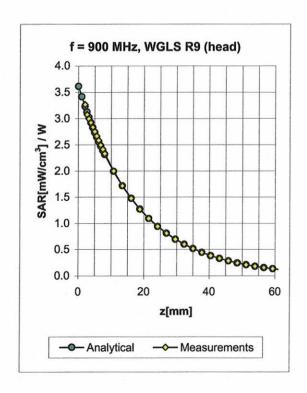
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

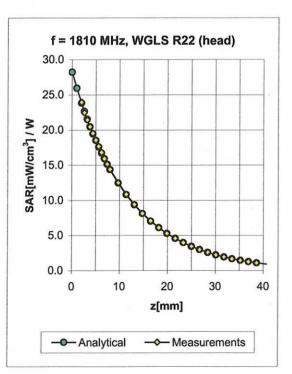




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

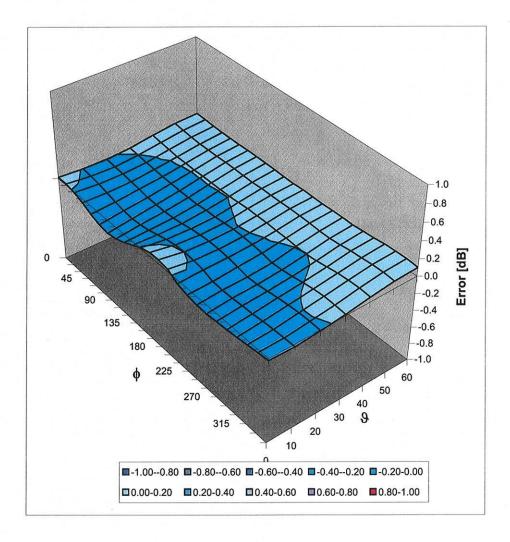
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.95	1.18	6.03 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.84	1.31	4.98 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.81	1.33	4.80 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.95	1.18	4.51 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.95	1.20	5.64 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.69	1.44	5.08 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.92	1.22	4.88 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.85	1.26	4.19 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

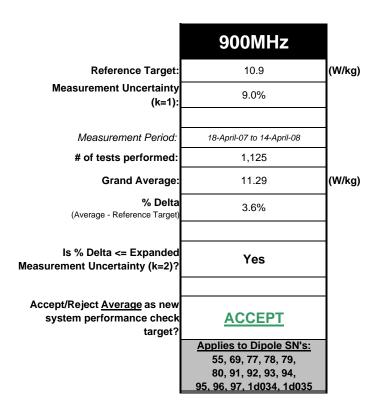
Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5

Measurement Uncertainty Budget

Exhibit 11 Page 21

				e =			h= cxf	i= cxg	
а	b	С	d	f(d,k)	f	g	/e	/e	k
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528 section	(± %)	Dist		(1 g)	(10 g)	u _i	u _i	
Uncertainty Component	section			Div.			(±%)	(±%)	Vi
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.									
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t	E.6.3	4.4	D	4 70	4	4	0.0	0.0	
Phantom Max. SAR Evaluation (ext.,	E.0.3	1.4	R	1.73	1	1	0.8	0.8	∞
int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related	<u> </u>	0.4	1	1.70		1	2.0	2.0	30
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue	0.0.2	0.0	1.	1.70	,		2.0	2.0	30
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity									
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity				·					7
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard			DOC				44.4	40.0	444
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty			1. 0				22.0	04.0	
(95% CONFIDENCE LEVEL)			<i>k</i> =2				22.2	21.6	


Exhibit 11 Page 22

Appendix 6

Dipole Characterization Certificate

Certification of System Performance Check Targets Based on WI-0396

-Historical Data-

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
900MHz	11.29	41.5 ± 5%	0.97 ± 5%

-Approvals-		
Submitted by:	Marge Kaunas	Date: 16-Apr-08
Signed:	Marge Kawas	
Comments:	Spreadsheet detailing referenced historical measurements	is available upon request.
Approved by:	Mark Douglas	Date: 22-Apr-08
Signed:	Mark Porglas	
Comments:		

Certification of System Performance Check Targets

Based on WI-0396

-Historical Data-

	1800MHz	
Reference Target:	38.4	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	18-April-07 to 14-April-08	
# of tests performed:	1,028	
Grand Average:	37.7	(W/kg)
% Delta (Average - Reference Target)	-1.7%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 246tr, 250tr, 251tr, 259tr, 263tr, 271tr, 272tr, 276tr, 277tr, 279tr, 280tr, 281tr, 283tr, 284tr, 2d128, 2d129	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
1800MHz	37.7	40.0 ± 5%	1.40 ± 5%

-Approvals-				-
• •	bmitted by:	Marge Kaunas	Date:	16-Apr-08
	Signed:	Marge Kawas		
C	Comments:	Spreadsheet detailing referenced historical measurement	nts is available upon reques	st.
Apr	proved by:	Mark Douglas	Date:	22-Apr-08
	Signed:	Mark Pouglas		
C	omments:			

Certification of System Performance Check Targets Based on WI-0396

-Historical Data-

	2450MHz	
Reference Target:	52.4	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	18-April-07 to 14-April-08	
# of tests performed:	77	
Grand Average:	56.5	(W/kg)
% Delta (Average - IEEE1528 Target)	7.8%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	-
	Applies to Dipole SN's: 740, 766, 767, 788, 789	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
2450MHz	56.5	39.2 ± 5%	1.80 ± 5%

-Approvals-		
Submitted by:	Marge Kaunas	Date: 16-Apr-08
Signed:	Marge Kawas	
Comments:	Spreadsheet detailing referenced historical measurement	ents is available upon request.
Approved by:	Mark Douglas	Date: 22-Apr-08
Signed:	Mark Monglas	
Comments:		