

47 CFR PART 15 C - BLUETOOTH

TEST REPORT

of

ZiiO

Brand Name:

Creative

Model Name:

PMT-FL04

Report No.:

SH10090005B03

FCC ID:

IBAPMT-FL04

IC ID:

2315A-PMTFL04

prepared for

Creative Technology Ltd.

31, International Business Park Creative Resource Singapore 609921

Ceprepared by

Shenzhen Electronic Product Quality Testing Center

Morlab Laboratory

3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China

Tel: +86 755 86130398 Fax: +86 755 86130218

LAB CODE 20081223-00

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen Electronic Product Quality Testing Center Morlab Laboratory. Any objections should be raised to us within thirty workdays since the date of issue.

TABLE OF CONTENTS

1.	TEST CERTIFICATION	.4
2.	GENERAL INFORMATION	.5
2.1	EUT Description	.5
2.2	Test Standards and Results	.6
2.3	Facilities and Accreditations	.6
2.3.1	Facilities	.6
2.3.2	Test Environment Conditions	.7
2.4	EUT Setup and Operating Conditions	.7
3.	47 CFR PART 15C&RSS 210 REQUIREMENTS	.8
3.1	Number of Hopping Frequency	.8
3.1.1	Requirement	.8
3.1.2	Test Description	.8
3.1.3	Test Result	.8
3.2	Peak Output Power	10
3.2.1	Requirement	0
3.2.2	Test Description	0
3.2.3	Test Result	0
3.3	20dB Bandwidth	16
3.3.1	Definition	6
3.3.2	Test Description	6
3.3.3	Test Result	6
3.4	Carried Frequency Separation2	22
3.4.1	Definition	22
3.4.2	Test Description	22
3.4.3	Test Result	22
3.5	Time of Occupancy (Dwell time)	23
3.5.1	Requirement	23
3.5.2	Test Description	23
3.5.3	Test Result	23
3.6	Conducted Spurious Emissions	26
3.6.1	Requirement	26

2.62		26
3.6.2	Test Description	26
3.6.3	Test Result	26
3.7	Band Edge	30
3.7.1	Requirement	30
3.7.2	Test Description	30
3.7.3	Test Result	31
3.8	Conducted Emission	34
3.8.1	Requirement	34
3.8.2	Test Description	34
3.8.3	Test Result	35
3.9	Radiated Emission	37
3.9.1	Requirement	37
3.9.2	Test Description	37
3.9.3	Test Result	38
3.10	RECEIVER SPURIOUS EMISSIONS	40
3.10.1	Requirement of the standard	40
3.10.2	Test Procedure	41
3.10.3	Test Setup	41
3.10.4	Test Results	42

1. TEST CERTIFICATION

Equipment under Test: ZiiO

Brand Name: Creative
Model Name: PMT-FL04

FCC ID: IBAPMT-FL04
IC ID: 2315A-PMTFL04

Applicant: Creative Technology Ltd.

31, International Business Park, Creative Resource Singapore

609921

Manufacturer: Creative Technology Ltd.

31, International Business Park, Creative Resource Singapore

609921

Test Standards: 47 CFR Part 15 Subpart C

RSS 210; RSS-GEN

Test Date(s): Nov 25, 2010 -Dec 02, 2010

Test Result: PASS

* We Hereby Certify That:

The equipment under test was tested by Shenzhen Electronic Product Quality Testing Center Morlab Laboratory. The test data, data evaluation, test procedures and equipment configurations shown in this report were made in accordance with the requirement of related FCC rules.

The test results of this report only apply for the tested sample equipment identified above. The test report shall be invalid without all the signatures of the test engineer, the reviewer and the approver.

Tested by:

Shi Feng

Dated: 70 | 0 . | 1 > . |

Shi Feng

Zhang Jun

Certification

Wei Bei

Wei Bei

2. GENERAL INFORMATION

2.1 EUT Description

EUT Type..... ZiiO

Model Name PMT-FL04

Modulation Type.....: Frequency Hopping Spread Spectrum (FHSS)

intervals of 1MHz);

The frequency block is 2400MHz to 2483.5MHz.

Power Supply: Battery

Brand name: Creative

Mode Name.: PR-43100113N
Capacitance: 5000mAh
Rated voltage: 3.7V

Charge limited: 4.8V

Manufacturer: TCL HYPERPOWER BATTERIES INC

No.3, Hechang Dongliu Rd., Huitai Industrial

Zone, Huicheng District, Huizhou City,

Guangdong Province, China

Ancillary Equipments: AC Adapter (Charger for Battery)

Brand name: Creative

Mode Name.: GPE125-050200-Z

Rated Input: AC100~240V, 0.4A, 50/60Hz

Rated Output: DC5V, 2000mA

Manufacturer: Golden Profit Electronics Ltd.

Sha Yao Administrative District, Shijie Town, Dongguan City, Guangdong Province, P.R.

China.

Antenna Specification: -0.3dBd gain (Max)

Note 1: The EUT is a Mobile Phone, it contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies allocated for the Bluetooth Module is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) and RSS 210 for the EUT FCC ID Certification and IC ID Certification:

No.	Identity		Document Title
1	47 CFR Part 15	RSS 210	Radio Frequency Devices
	(10-1-05 Edition)		

Test detailed items/section required by FCC rules and results are as below:

No.	Sect	tion	Description	Result
1	15.247(a)	A8.1(4)	Number of Hopping Frequency	PASS
2	15.247(b)	A8.2(a)	Peak Output Power	PASS
3	15.247(a)	A8.1(1)	20dB Bandwidth	PASS
4	15.247(a)	A8.1(2)	Carrier Frequency Separation	PASS
5	15.247(a)	A8.1(4)	Time of Occupancy (Dwell time)	PASS
6	15.247(c)	A7.2.2	Conducted Spurious Emission	PASS
7	15.247(c)	A8.5	Band Edge	PASS
8	15.207	A8.5	Conducted Emission	PASS
9	15.209 15.247(c)	A8.5	Radiated Emission	PASS
8	/	Gen 7.2.3	Receiver Spurious Emissions	PASS

2.3 Facilities and Accreditations

2.3.1 Facilities

Shenzhen Electronic Product Quality Testing Center Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L1659.

All measurement facilities used to collect the measurement data are located at Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen 518055 CHINA. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 741109.

2.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	20 - 25
Relative Humidity (%):	40 - 60
Atmospheric Pressure (kPa):	96

2.4 EUT Setup and Operating Conditions

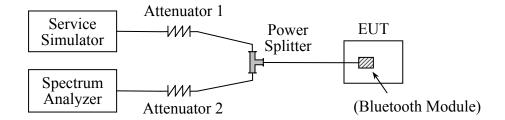
The EUT has been tested under Operating and standby condition. CMU200 was uesd to control the EUT for staying in continuous transmitting mode. Channel 0, 39 and 78 with highest data rate (DH1) (DH3) (DH5) are chosen for tested.

Mode 1: AC charge+EUT Mode; Mode 2: Battery+EUT Mode;

Worst Case:GFSK(1 Mbps) Mode 1 Channel Low (2402MHz)、Mid (2441MHz) and High (2480MHz) were chosen for full testing.

After the preliminary scan GFSK, $\pi/4$ -DQPSK,8-DPSK. we found the modulation at GFSK producing the highest emission level, so evaluated we chosen the above modes (worst case) as a representative.

3. 47 CFR PART 15C&RSS 210 REQUIREMENTS


3.1 Number of Hopping Frequency

3.1.1 Requirement

According to FCC section 15.247(a)(1)(ii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 75 hopping frequencies.

3.1.2 Test Description

A. Test Setup:

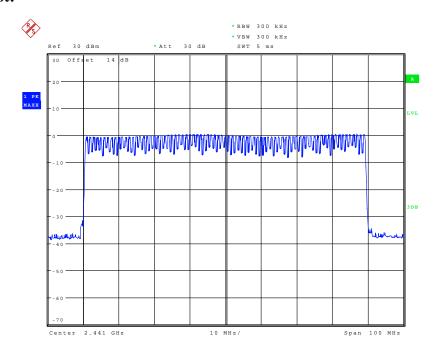
The Bluetooth Module of the EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the Bluetooth Service Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Service Simulator	Anritsu	MT8852A	6K00002788	2010.9	1year
Spectrum Analyzer	R&S	FSP30	101020	2010.9	1year
Spectrum Analyzer	Agilent	E4440A	MY46187763	2010.9	1year
Power Splitter	Weinschel	1506A	NW521	(n.a.)	(n.a.)
Attenuator 1	Resnet	10dB	(n.a.)	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)

3.1.3 Test Result

The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is



counted to verify the Module's using the number of hopping frequency. compliance to Hopping Sequence and Equal Usage of the channels

A. Test Verdict:

Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Refer to Plot	Verdict
2400 - 2483.5	79	75	Plot A	PASS

B. Test Plot:

Date: 30.NOV.2010 09:41:51

(Plot A: 2402MHz to 2480MHz)

3.2 Peak Output Power

3.2.1 Requirement

According to FCC section 15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

3.2.2 Test Description

See section 3.1.2 of this report.

3.2.3 Test Result

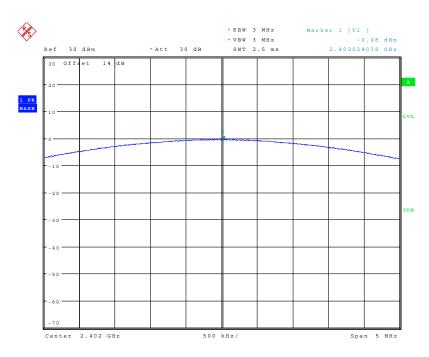
The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

A. Test Verdict:

GFSK (1Mbps)

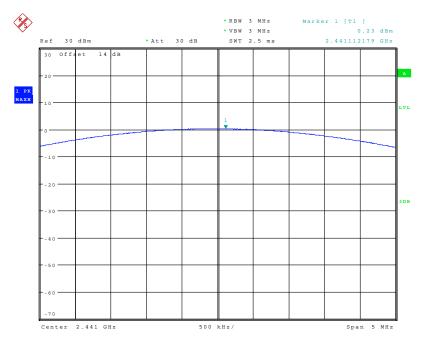
Channel	Eraguanay (MHz)	Measured Output Peak Power			Limit		Vandiat
Chamilei	Frequency (MHz)	dBm	W	Refer to Plot	dBm	W	Verdict
0	2402	-0.48	0.00090	Plot A			PASS
39	2441	0.23	0.00105	Plot B	30	1	PASS
78	2480	0.81	0.00121	Plot C			PASS

 $\pi/4$ -DQPSK (2Mbps)

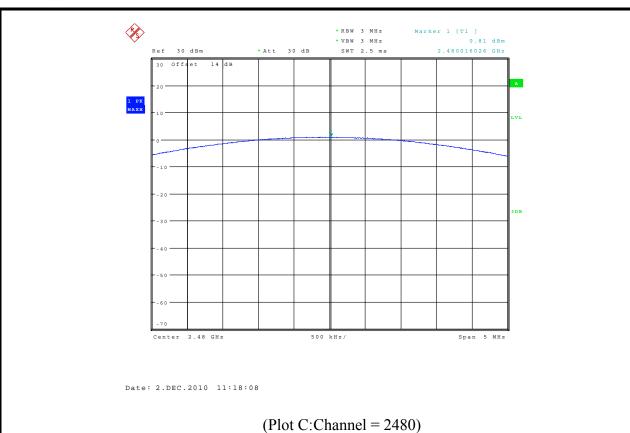

Channel Frequency (MHz)		Measured Output Peak Power			Limit		Verdict
Chainlei	Frequency (MHz)	dBm	W	Refer to Plot	dBm	W	verdict
0	2402	-0.57	0.00088	Plot D			PASS
39	2441	0.15	0.00104	Plot E	30	1	PASS
78	2480	0.38	0.00109	Plot F			PASS

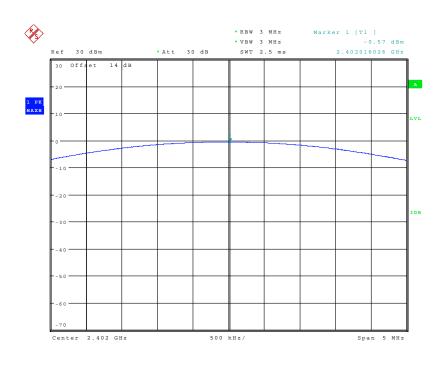
8-DPSK (3Mbps)

Channel	Fraguanay (MUz)	Measured Output Peak Power			Limit		Verdict
Channel	Frequency (MHz)	dBm	W	Refer to Plot	dBm	W	verdict
0	2402	-0.75	0.00084	Plot G			PASS
39	2441	-0.40	0.00091	Plot H	30	1	PASS
78	2480	-0.02	0.00100	Plot I			PASS



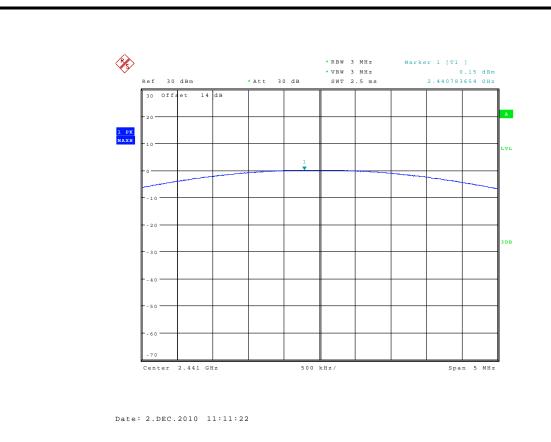
Date: 2.DEC.2010 11:06:02

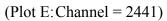

(Plot A: Channel = 2402)

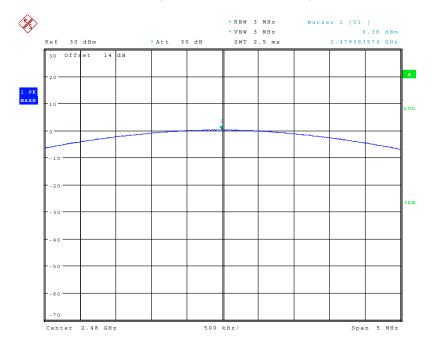


Date: 2.DEC.2010 11:09:10

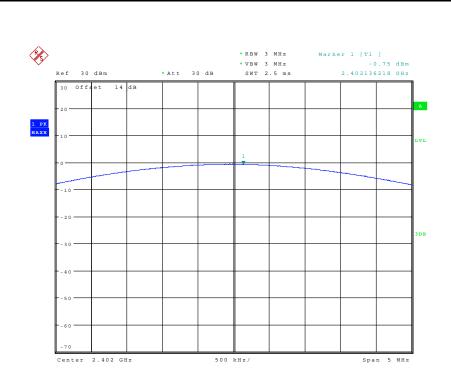
(Plot B:Channel = 2441)

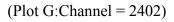


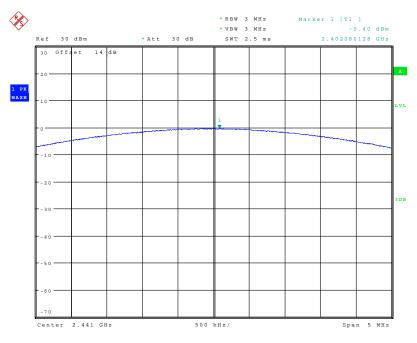



(Plot D:Channel = 2402)

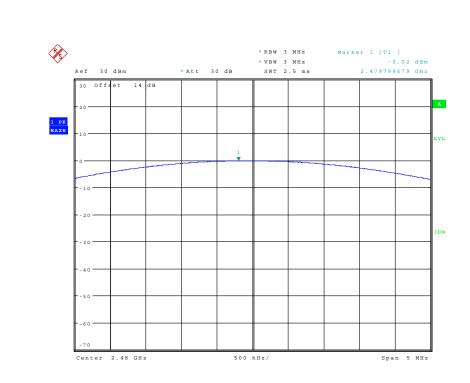
Date: 2.DEC.2010 11:00:22




Date: 2.DEC.2010 11:14:05


(Plot F: Channel = 2480)

Date: 2.DEC.2010 11:07:45



Date: 2.DEC.2010 11:06:38

(Plot H:Channel = 2441

Date: 2.DEC.2010 11:14:57

(Plot I: Channel = 2480)

3.3 20dB Bandwidth

3.3.1 Definition

The 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

3.3.2 Test Description

See section 3.1.2 of this report.

3.3.3 Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

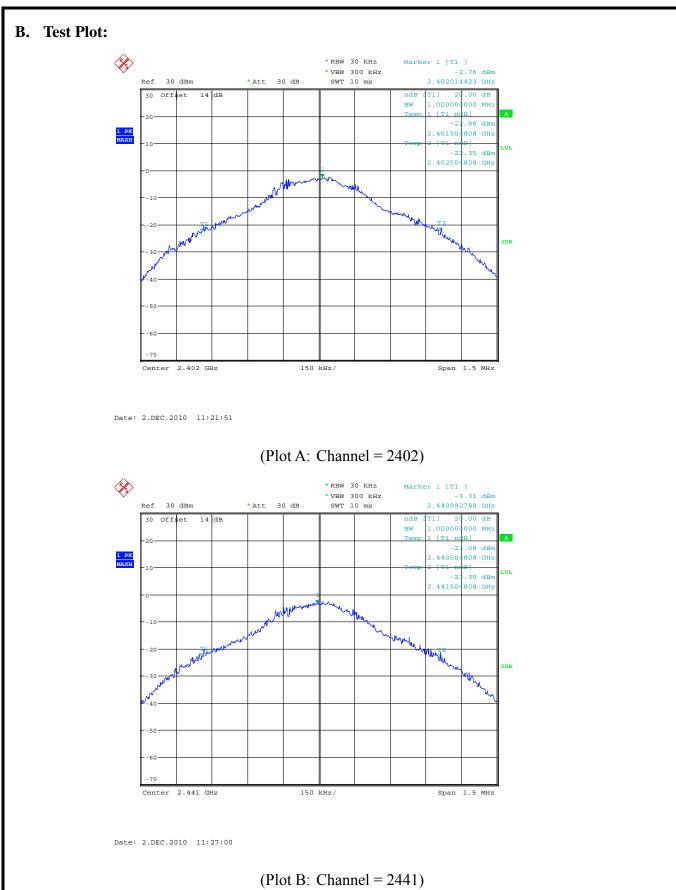
A. Test Verdict:

The maximum 20dB bandwidth measured is 1.356MHz according to the table below.

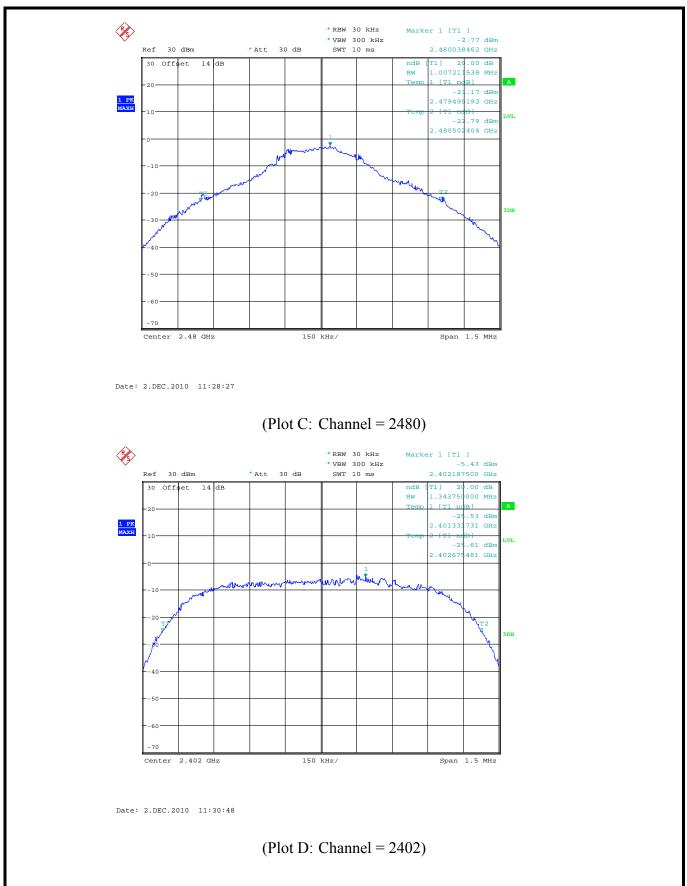
GFSK (1Mbps)

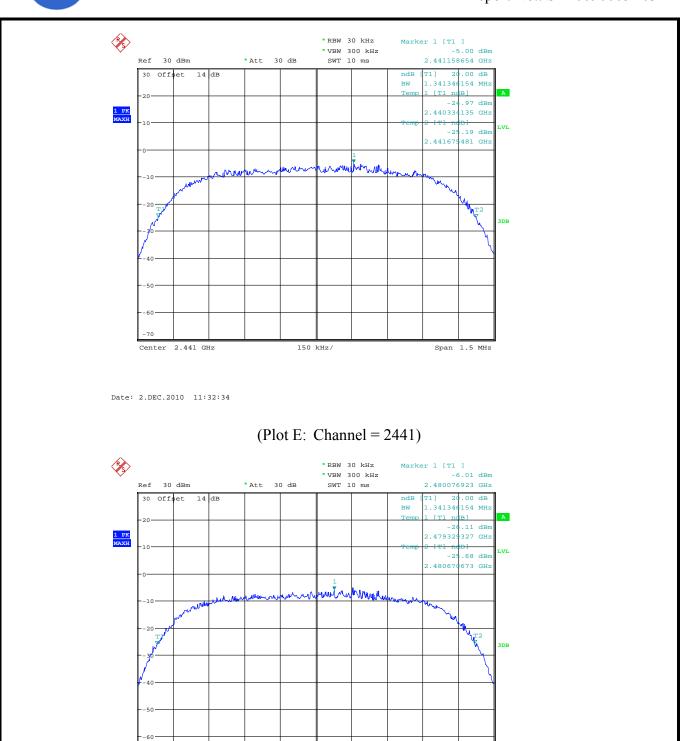
Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.000	Plot A
39	2441	1.000	Plot B
78	2480	1.007	Plot C

$\pi/4$ -DQPSK (2Mbps)

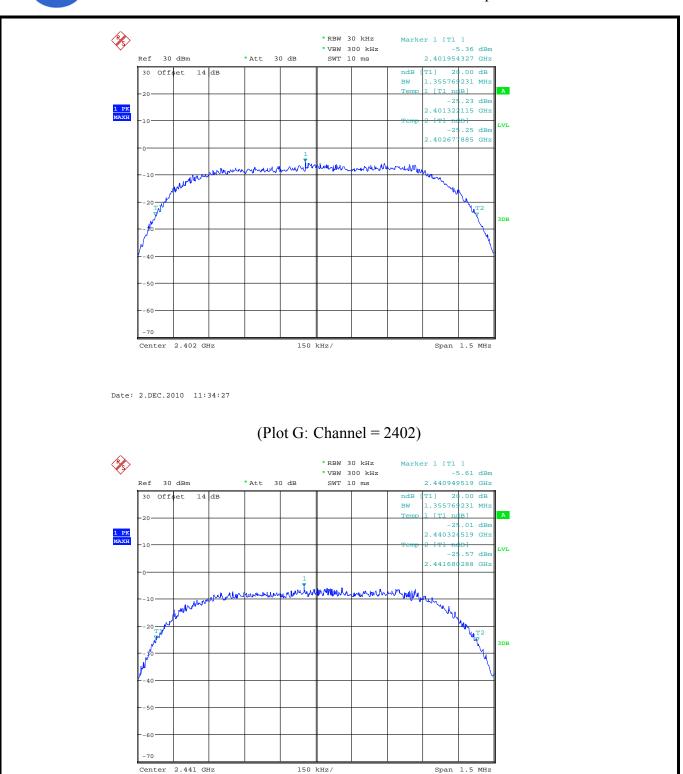

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.344	PlotD
39	2441	1.341	Plot E
78	2480	1.341	Plot F

8-DPSK (3Mbps)


Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.356	Plot G
39	2441	1.356	Plot H
78	2480	1.351	Plot I



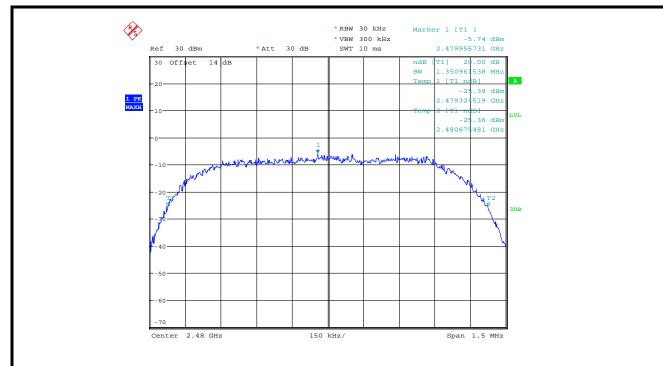
Date: 2.DEC.2010 11:32:58


Center 2.48 GHz

(Plot F: Channel = 2480)

Span 1.5 MHz

150 kHz/



Date: 2.DEC.2010 11:34:58

(Plot H: Channel = 2441)

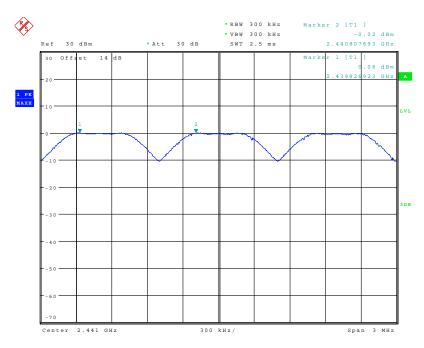
Date: 2.DEC.2010 11:35:47

(Plot I: Channel = 2480)

3.4 Carried Frequency Separation

3.4.1 Definition

According to FCC section 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.


3.4.2 Test Description

See section 3.1.2 of this report.

3.4.3 Test Result

The Bluetooth Module operates at hopping-on test mode.

For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (refer to section 3.3.3), whichever is greater. So, the verdict is PASS.

Date: 30.NOV.2010 08:29:22

(Plot A: Carried Frequency Separation)

3.5 Time of Occupancy (Dwell time)

3.5.1 Requirement

According to FCC section 15.247(a)(1)(iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

3.5.2 Test Description

See section 3.1.2 of this report.

3.5.3 Test Result

The average time of occupancy on any channel within the Period can be calculated with formulas (for DH1 DH3 and DH5 package type):

```
{Total of Dwell} = {Pulse Time} * (1600 / 6) / {Number of Hopping Frequency} * {Period} 
{Period} = 0.4s * {Number of Hopping Frequency}
```

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

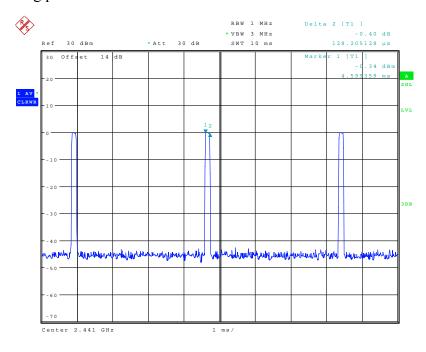
A. Test Verdict:

DH₁

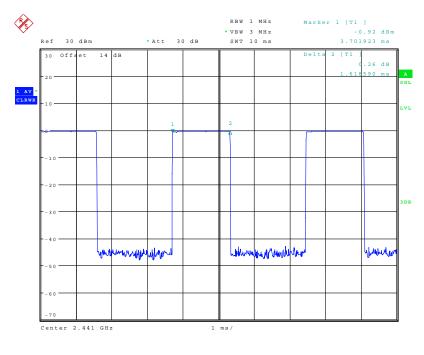
Channel	Frequency	Pulse Time		Total of Dwell	Limit (ms)	Verdict
Channel	(MHz)	ms	Refer to Plot	(ms)	Limit (ms)	verdict
39	2441	0.128	Plot A	13.65	400	PASS

DH₃

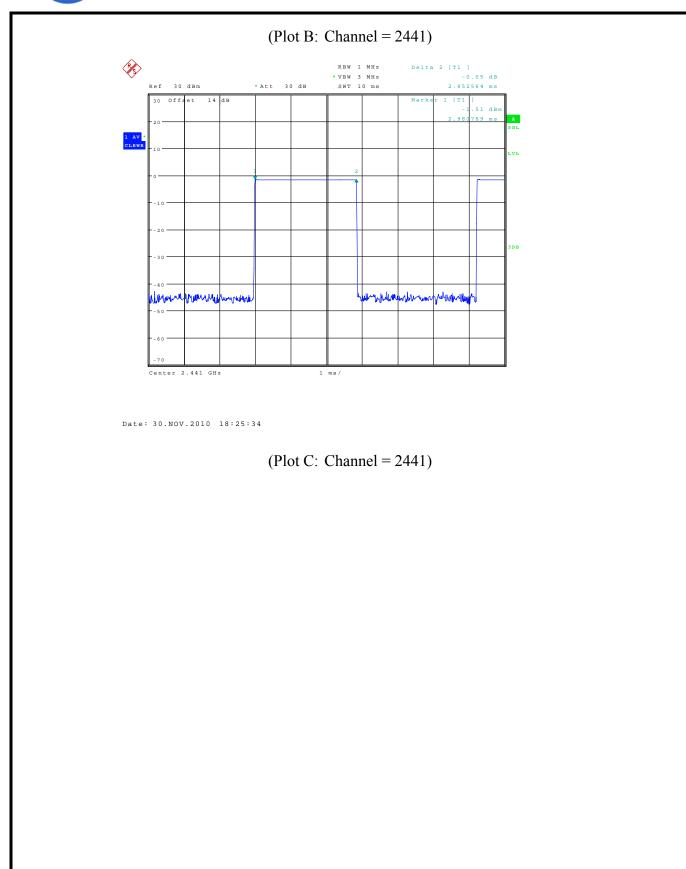
Channel	Frequency	Pulse Time		Total of Dwell	Limit (ms)	Verdict
Chaimei	(MHz)	ms	Refer to Plot	(ms)	Lillit (ills)	verdict
39	2441	1.619	Plot B	172.69	400	PASS


DH5

Channel	Frequency	Pulse Time		Total of Dwell	Limit (ms)	Verdict
Channel	(MHz)	ms	Refer to Plot	(ms)	Limit (ms)	verdict
39	2441	2.853	Plot C	304.32	400	PASS


B. Test Plot:

Note: the following plots record the Pulse Time of the Module carrier.


Date: 30.NOV.2010 18:04:12

(Plot A: Channel = 2441)

Date: 30.NOV.2010 18:22:01

3.6 Conducted Spurious Emissions

3.6.1 Requirement

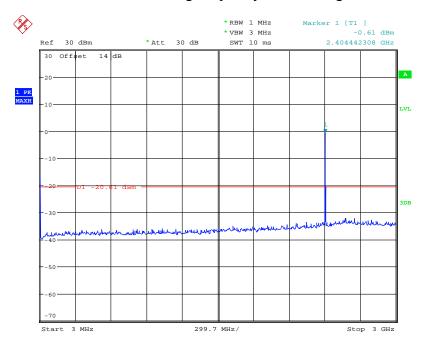
According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

3.6.2 Test Description

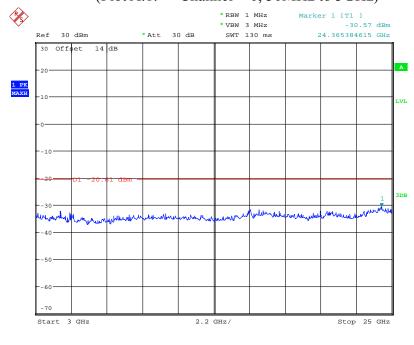
See section 3.1.2 of this report.

3.6.3 Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

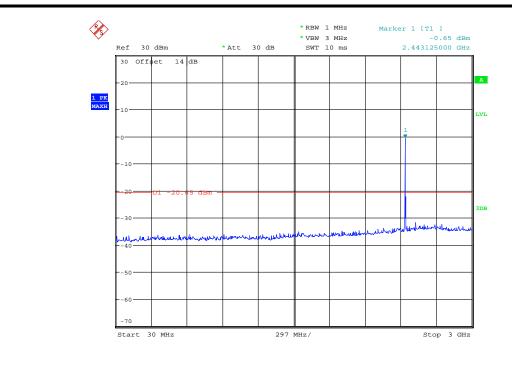

A. Test Verdict:

	Eroguanav	Measured Max.		Limi	t (dBm)	
Channel	Frequency	Out of Band	Refer to Plot	Carrier	Calculated	Verdict
	(MHz)	Emission (dBm)		Level	-20dBc Limit	
0	2402	-30.57	Plot A.1/A.2	-0.61	-20.61	PASS
39	2441	-30.05	Plot B.1/B.2	-0.65	-20.65	PASS
78	2480	-30.26	Plot C.1/C.2	-1.09	-21.09	PASS

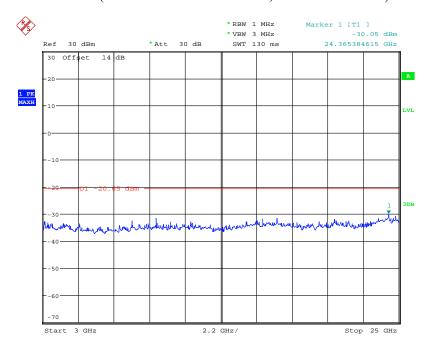

B. Test Plot:

Note: the power of the Module transmitting frequency should be ignored.

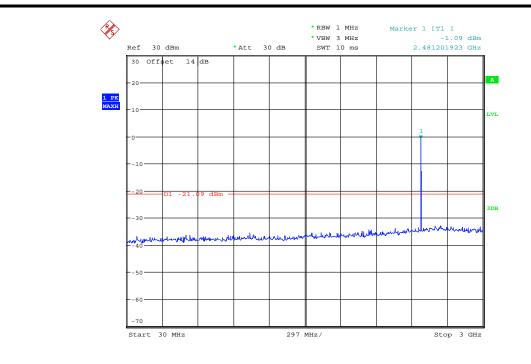
Date: 2.DEC.2010 11:39:38


(Plot A.1: Channel = 0, 30MHz to 3GHz)

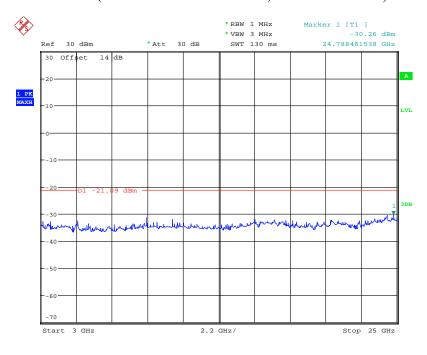
Date: 2.DEC.2010 11:40:09


(Plot A.2: Channel = 0, 3GHz to 25GHz)

Date: 2.DEC.2010 11:41:19


(Plot B.1: Channel = 39, 30MHz to 3GHz)

Date: 2.DEC.2010 11:41:33

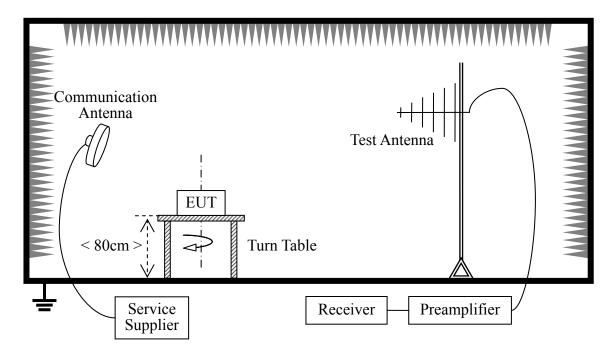

(Plot B.2: Channel = 39, 3GHz to 25GHz)

Date: 2.DEC.2010 11:42:52

(Plot C.1: Channel = 78, 30MHz to 3GHz)

Date: 2.DEC.2010 11:43:13

(Plot C.2: Channel = 78, 3GHz to 25GHz)


3.7 Band Edge

3.7.1 Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

3.7.2 Test Description

A. Test Setup:

The Bluetooth Module of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

For the Test Antenna:

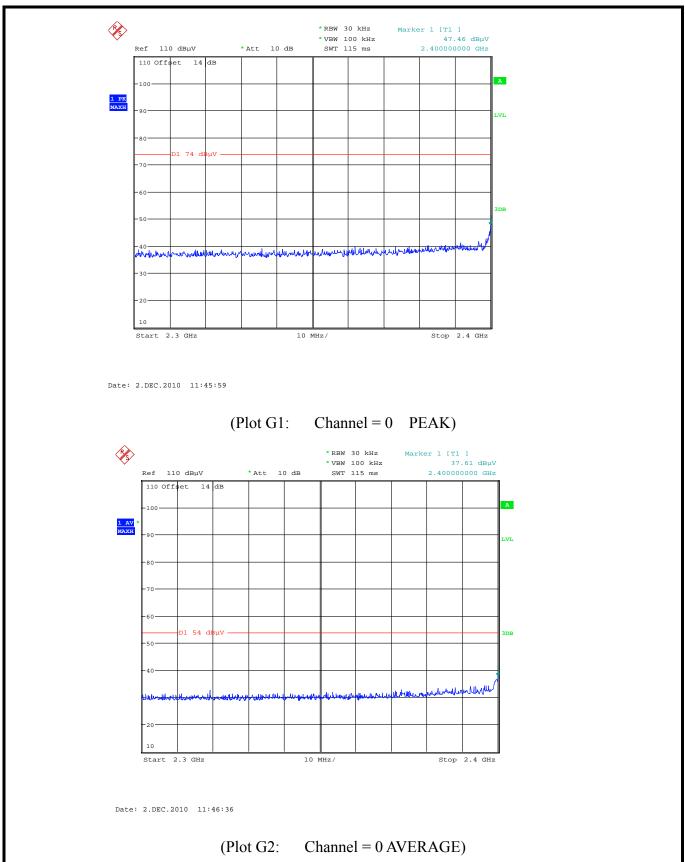
Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength..

B. Equipments List:

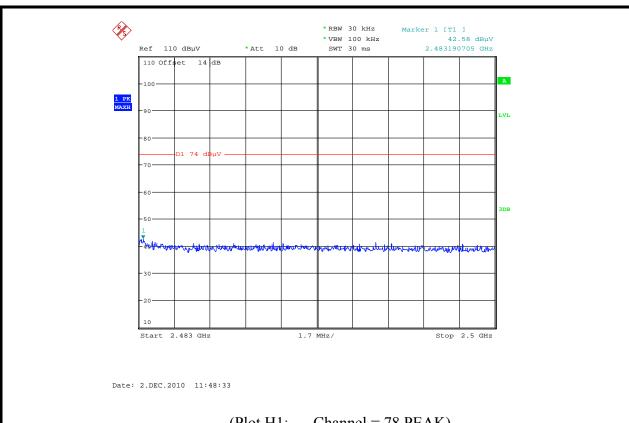
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Anritsu	MT8852A	6K00002788	2010.9	1year
Receiver	Agilent	E4440A	MY46187763	2010.9	1year
Spectrum Analyzer	R&S	FSP30	101020	2010.9	1year
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2009.10	2year
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2010.9	1year

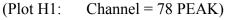
3.7.3 Test Result

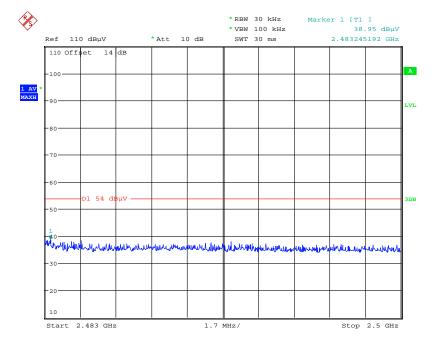
The Bluetooth Module operates at hopping-off test mode. The lowest and highest channels are tested to verify the band edge emissions.


A. Test Verdict:.

Channel	Frequenc y (MHz)	Max. Emission in the Restricted Bands (dBμV/m)		Refer to Plot		mit V/m)	Verdict
		PK	AV		PK	AV	
0	2402	47.46	37.61	Plot G.1/G.2	74	54	PASS
78	2480	42.58	38.95	Plot H.1/H.2	74	54	PASS


B. Test Plot:





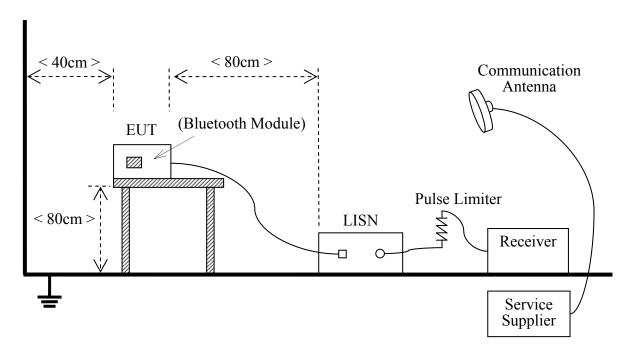
Date: 2.DEC.2010 11:49:45

(Plot H2: Channel = 78 AVERAGE)

3.8 Conducted Emission

3.8.1 Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).


Eraguanay ranga (MIIa)	Conducted Limit (dBµV)				
Frequency range (MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
0.50 - 30	60	50			

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

3.8.2 Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.4:2003

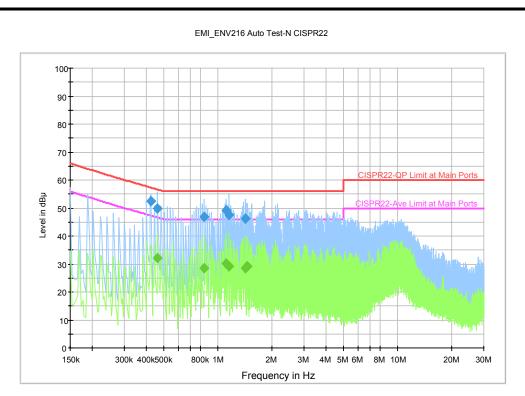
The Bluetooth Module of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The factors of the site are calibrated to correct the reading. During the measurement, the Bluetooth Module is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2010.9	1year
LISN	Schwarzbeck	NSLK 8127	812744	2010.9	1year
Service Supplier	R&S	CMU200	100448	2010.9	1year
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	(n.a.)	(n.a.)

3.8.3 **Test Result**

The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.


100 90 80 70 60 evel in dBu 30 150k 300k 400k500k 800k 1M 2M 4M 5M 6M Frequency in Hz

EMI_ENV216 Auto Test-L CISPR22

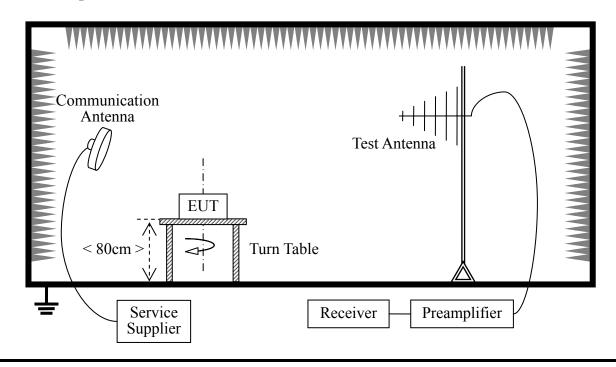
(Plot A: L Phase)

(Plot B: N Phase)

3.9 Radiated Emission

3.9.1 Requirement

According to FCC section 15.247(c), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).


According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)	Detector
30 - 88	100	3	QP
88 - 216	150	3	QP
216 - 960	200	3	QP
960 - 1000	500	3	QP
Above 1000	500	3	AV

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

3.9.2 Test Description

A. Test Setup:

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.4 (2003). The EUT was set-up on insulator 80cm above the Ground Plane. The set-up and test methods were according to ANSI C63.4.

The Bluetooth Module of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

For the Test Antenna: In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength, the azimuth range of turntable was 0° to 360°, the receive antenna has two polarizations horizontal and vertical. When doing measurements above 1GHz, the EUT was placed within the 3dB beam width range of the horn antenna, and the EUT was tested in 3 orthogonal positions as recommended in ANSI C63.4 for Radiated Emissions and the worst-case data was presented.

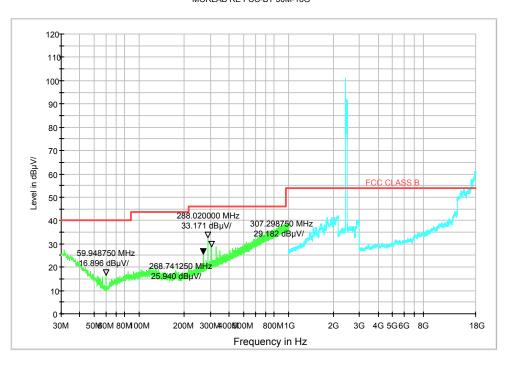
B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Anritsu	MT8852A	6K00002788	2010.9	1year
Spectrum Analyzer	R&S	FSP30	101020	2010.9	1year
Receiver	Agilent	E7405A	US44210471	2010.9	1year
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2009.10	2year
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2010.9	1year
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2010.9	1year
Test Antenna - circular	R&S	AC004R1	0749.3000.03	2010.9	1year

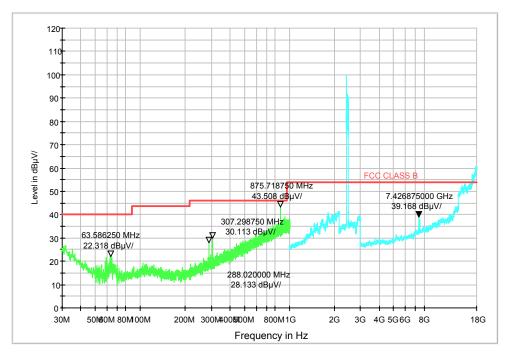
3.9.3 Test Result

A. Test Mode:

Channel 0: Frequency 2402MHz
 Channel 39: Frequency 2441MHz
 Channel 78: Frequency 2480Mhz


NOTE:

All test modes are performed, only the worst cases are recorded in this report.


B. Test Plots for the Whole Measurement Frequency Range:

MORLAB RE FCC-BT 30M-18G

(Plot A.1: Antenna Horizonta)

MORLAB RE FCC-BT 30M-18G

(Plot A.2: Antenna Vertical)

3.10 RECEIVER SPURIOUS EMISSIONS

3.10.1 Requirement of the standard

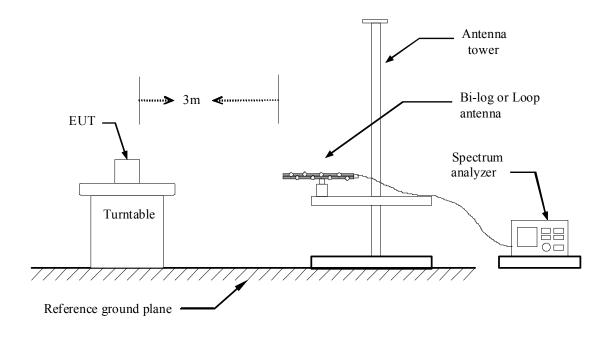
According to RSS-GEN 4.10, the receiver shall be operated in the normal receive mode near the mid-point of the band over which the receiver is designed to operate. The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tuneable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz. According to RSS-GEN 7.2.3.1, If the device has a detachable antenna of known antenna impedance, then the antenna conducted method is permitted in lieu of a radiated measurement.

Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

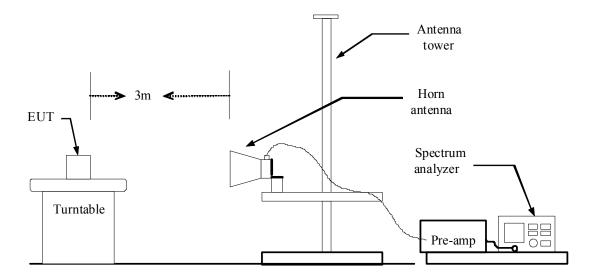
Limits for Conducted Receiver Spurious Emissions				
Frequency(MHz)	Limit			
30 – 1000	2nW			
Above 1000	5nW			

According to RSS-GEN 7.2.3.2, for Radiated Measurement, all spurious emissions shall comply with the limits of Table below:

Limits for Rradiated Receiver Spurious Emissions				
Frequency(MHz)	Field Strength(µ V/m at 3metres)			
30 - 88	100			
88 - 216	150			
216 - 960	200			
Above 960	500			



3.10.2 Test Procedure


Please refer to RSS-GEN section 4.10 and section 7.2.3 for the measurement methods.

3.10.3 Test Setup

Below 1GHz

Above 1GHz

3.10.4 Test Results

Conducted Receiver Spurious Emissions

1. TEST MODE: GFSK Transmitter Rx Mode

Frequency(MHz)	Measure Result(nW)	Limit (nW)	
30 - 1000	-	2	
Above 1000		5	

Rradiated Receiver Spurious Emissions

2. TEST MODE: GFSK Transmitter Rx Mode

No.	Frequency (MHz)	Antenna Polarization	Detector mode	Level ERP(dBµV)	Limit (dBµV)	Margin (dB)
1	30 - 88	Vertical	Peak		40	>10
2	88 – 216	Vertical	Peak		43.5	>10
3	216 – 960	Vertical	Peak		46	>10
4	960 - 1000	Vertical	Peak		54	>10
5	1000 - 10000	Vertical	Average		54	>10
6	30 - 88	Horizontal	Peak		40	>10
7	88 – 216	Horizontal	Peak		43.5	>10
8	216 – 960	Horizontal	Peak		46	>10
9	960 - 1000	Horizontal	Peak		54	>10
10	1000 - 10000	Horizontal	Average		54	>10

Notes:

- 1) Both radiated measurement method and conducted measurement method were used. For the radiated method, the antenna polarization was set to vertical and horizontal respectively.
- 2) The measurement was performed at the mid operating frequencies.
- 3) "--" in the table above means that the emissions are too small to be measured and are at least 10 dB below the limit.

** END OF REPORT **