

Radio Satellite Communication

Untertürkheimer Straße 6–10, D-66117 Saarbrücken, Telephone +49 (0) 681 598 - 0, Fax +49 (0) 681 598 – 9075

Test report No.: 2-4014-01-02/05

This test report consists of 46 pages

Page 1 of 46

Recognized by the
Federal Communications Commission and Industry Canada
Anechoic chamber registration No.: 90462 (FCC)
Anechoic chamber registration No.: 3463 (IC)
TCB ID: DE0001

Accredited by the
German Accreditation Council
DAR-Registration Number

DAT-P-176/94-D1

Independent ETSI
compliance test house

Test report No.: 2-4014-01-02/05

Applicant : DENSO Corporation

Type : DNMWR002

Test standards : FCC Part 15 (06/2005) / RSS210 Issue 6

FCC ID : HYQDNMWR002

Table of contents

1	<i>General information</i>	3
1.1	Notes	3
1.2	Testing laboratory	4
1.3	Details of applicant	4
1.4	Application details	4
1.5	Test item (EUT)	5
1.6	Technical data	5
1.6.1	Operation conditions	5
1.6.2	Test Report Cover Sheet / Performance Test Data	6
1.7	Test standards	7
2	<i>Technical test</i>	8
2.1	Summary of test results	8
2.2	Test environment	8
2.3	Measurement and test set-up	8
2.4	Test equipment utilized and test set-up	9
2.4.1	Test set-up for the measurement in the frequency range 12 GHz to 27 GHz	9
2.4.2	Test set-up for the measurement in the frequency range 27 GHz to 140 GHz	10
2.4.3	Test set-up for the measurement in the frequency range up to 12 GHz	11
2.5	Test results	12
2.5.1	Test results overview	12
2.5.2	Remarks on methods of measurements	12
2.5.3	Test results in details	16
2.5.4	Not-In-motion Mode	23
3	<i>Plots, graphs and data sheets</i>	27
4	<i>Photographs</i>	41
4.1	Photographs of the test set-up	41
4.2	Photographs of the EUT	44

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item .

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Tester :

Date	Name	Signature
2005-11-21	Manfred Paschwitz	

Technical responsibility for area of testing:

Date	Name	Signature
2005-11-21	Harro Ames	

1.2 Testing laboratory

CETECOM ICT Services GmbH
Untertürkheimerstraße 6–10
D-66117 Saarbrücken
Germany

CETECOM ICT Services GmbH
P.O. Box 65 01 55
D-66140 Saarbrücken
Germany

Telephone : + 49 (0) 681 598–0
Fax : + 49 (0) 681 598–9075
e-mail : info@ict.cetecom.de
Internet : <http://www.cetecom-ict.de>

Accredited testing laboratory

Accredited by : Regulierungsbehörde für Telekommunikation und Post (RegTP)
Listed by : Federal Communications Commission (FCC)
Industry Canada (IC)

Authority	Identification/Registration No.
RegTP	DAT-P-176/94-D1
FCC	90462
IC	3463

Testing location, if different from CETECOM ICT Services GmbH: (Not applicable)

1.3 Details of applicant

Name : DENSO Corporation
Street : 1-1, Show-cho, Kariya-shi
Town : Aichi-ken, 448-8661
Country : Japan
Telephone : + 81 (0) 566 25 5947
Fax : + 81 (0) 566 25 4548

Contact
Name : Kazuo Sakakibara
Telephone : + 81 (0) 566 25 5947
Fax : + 81 (0) 566 25 4548
mailto : KAZUO_SAKAKIBARA@denso.com

1.4 Application details

Date of test : 2005-10-17 to 2005-10-26

1.5 Test item (EUT)

Description of test item	:	76 GHz millimeter-wave radar sensor
Type identification	:	DNMWR002
S/N	:	#004
Manufacturer	:	DENSO Corporation 1-1, Show-cho, Kariya-shi Aichi-ken, 448-8661 Japan

1.6 Technical data

TX frequency range	:	76.000 – 77.000 GHz
Centre frequency	:	76.477 100 GHz
Channel	:	1
Modulation	:	Pulsed FMCW
EIRP (eirp) (measured)	:	34.9 dBm (3.133 W)
Antenna	:	Integral patch antenna +/-9deg (H), +/-2deg(V)
Extreme power supply U DC	:	10.8 – 15.6 V
Nominal power supply U DC	:	12.0 V

1.6.1 Operation conditions

The sample was set in operating and in “not-in-motion”-mode via CAN-bus and a notebook with special software to simulate a moving or standing car.

The system uses pulsed FMCW-modulation with two different modulated time slots.
You have a transmission time of 11.7 ms per 100ms. (see plot)
So the correction factor from peak to mean power is -9.3 dB.

There is a third operation mode, un-modulated CW for adjusting the antenna in the cars.
The peak output power of the un-modulated CW-signal is the same as the FMCW-signal in normal operation mode.
So we can do the RF-exposure measurement in normal operation mode.

1.6.2 Test Report Cover Sheet / Performance Test Data

Equipment Model Number:	DNMWR002
Certification Number:	1551A-DNMWR002
Manufacturer:	DENSO Corporation 1-1, Show-cho, Kariya-shi Aichi-ken, 448-8661 Japan
Tested to Radio Standards Specification (RSS) No.:	RSS210 Issue 6
Open Area Test Site Industry Canada Number:	3463
Frequency Range (or fixed frequency):	76.477 100 GHz (calculated middle frequency)
Power Density:	2.73 μ W/cm ² (Peak) @ 3m
Occupied Bandwidth (99% BW):	439.4 MHz
Type of Modulation:	FSK (FM CW)
Emission Designator (TRC-43):	439MFXD
Transmitter Spurious (worst case):	< 500 μ V/m @ 3m
Receiver Spurious (worst case):	Not applicable
Antenna Type:	Integral patch antenna +/-9deg (H), +/-2deg(V)

ATTESTATION:

DECLARATION OF COMPLIANCE: I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Signature:

Date: 2005-11-21

Test engineer: Harro Ames

1.7 Test standards

Code of Federal Regulations (CFR 47) Federal Communications Commission (FCC)

FCC Part 15 Radio Frequency Devices (06/2005)
 Section 15.253
 Operation within the band 76.0 to 77.0 GHz.

 Section 15.209
 Radiation emission limits, general requirements

 Section 15.205
 Restricted bands of operation.

Industry Canada Radio Standards Specification

RSS - 210 Low Power Licence-Exempt Radio communication Devices for Cat I
 equipment
 Annex 13
 Vehicle -Mounted Field Disturbance Sensors
 RSS210 Issue 6

2 Technical test

2.1 Summary of test results

No deviations from the technical specification (s) were ascertained in the course of the performed tests.

The deviations as specified in 2.5 were ascertained in the course of the performed tests.

This test report :

describes the first test

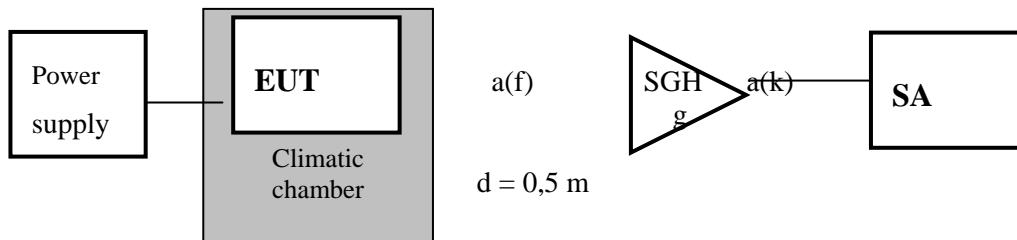
describes an additional test

is a verification of documents

is only valid with the test report no.

2.2 Test environment

The environmental conditions are documented especially for each test.


2.3 Measurement and test set-up

The measurement and test set-up is defined in the technical specification .

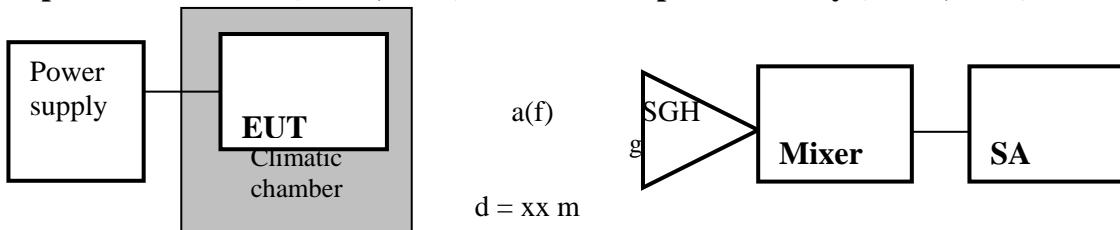
2.4 Test equipment utilized and test set-up

2.4.1 Test set-up for the measurement in the frequency range 12 GHz to 27 GHz

Spurious radiation (EIRP; PEP)

Frequency f (GHz)	Measurement distance (m)	a(sys) [dB]	a(f) [dB]	a(k) [dB]	g [dBi]
12.4 ... 18.0	0.5	34.8	51.6	1.7	18.4
18.0 ... 27.0	0.5	38.2	54.4	2.2	18.4

Calculation of system attenuation = free space attenuation + cable loss - antenna gain
 $a(\text{sys}) = a(f) + a(k) - g$


Test equipment	Manufacturer	Type	S/No. – Cetecom No.
Spectrum Analyser	HP	HP 8565E	3738A00773
SGH 12.4.. 18.0 GHz	narda	638	01005
SGH 18 ... 27 GHz	narda	638	01005
Power supply	HP	HP 6032A	2848A07227
Climatic chamber	Vötsch	VUK 04/500	522/32678
RF-cable	HP	5061-5359	P36303

Measurement uncertainty

Test parameter	Measurement uncertainty
Input power (DC)	±0.1 V
Temperature	±0.2 °C
Frequency	±0.01 ppm
eirp	±1.0 dB

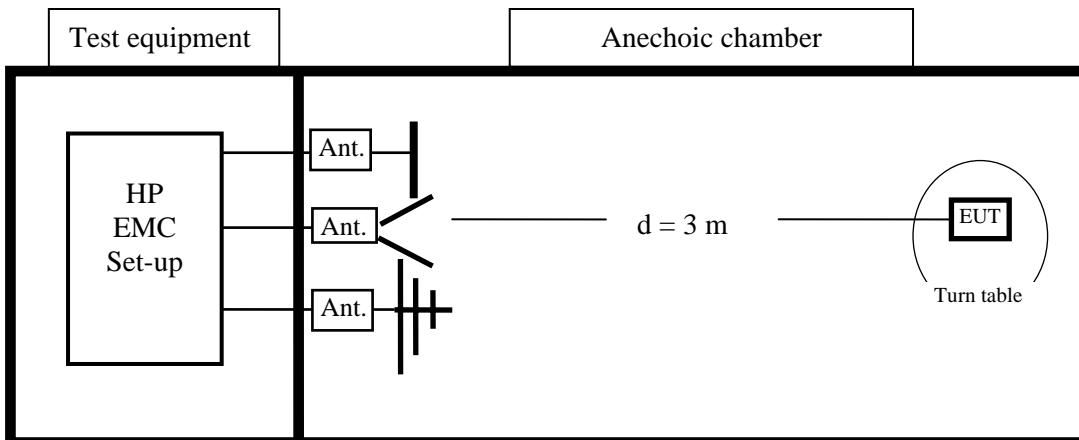
2.4.2 Test set-up for the measurement in the frequency range 27 GHz to 140 GHz

Spurious radiation (EIRP; PEP) and radiated power density (EIRP; PEP)

Frequency f (GHz)	Measurement distance xx(m)	a(sys) [dB]	a(f) [dB] at lowest freq.	g [dBi]
27.0 ... 40.0	0.5	30.0	55.0	25.0
40.0 ... 60.0	0.5	33.0	58.5	25.5
60.0 ... 90.0	0.5	38.0	62.0	24.0
76.5	3.0	53.8	79.6	25.8
90.0 ... 140.0	0.5	42.0	65.6	23.6
140.0 ... 170.0	0.5	49.4	69.4	20.0
170.0 ... 250.0	0.5	52.4	71.1	18.7

Calculation of system attenuation = free space attenuation – antenna gain

$$a(\text{sys}) = a(f) - g$$


Test equipment	Manufacturer	Type	S/No. – Cetecom No.
Spectrum Analyser	Tektronix	TEK 2782	B020262
SGH 27 40 GHz	Flann	2224	300001976
Mixer 27 40 GHz	Tektronix	WM490A	300000493c
SGH 40 60 GHz	Flann	2424	300001200g
Mixer 40 60 GHz	Tektronix	WM490U	300000298b
SGH 60 90 GHz	Thomson	COR 60.90	300000814
Mixer 60 90 GHz	Tektronix	WM 780 W	B010127
SGH 90 140 GHz	Thomson	COR 90-140	300000181
Mixer 90 140 GHz	Tektronix	WM 780 F	B010129
SGH 140 170 GHz	Thomson	2924	300001999
Mixer 140 170 GHz	Tektronix	WM780 D	B010186
SGH 170 250 GHz	Thomson	3024	300002001
Mixer 170 250 GHz	Tektronix	WM780 J	B010241
Power supply	HP	HP 6032A	2848A07227
Climatic chamber	Vötsch	VUK 04/500	522/32678
RF-cable	HP	5061-5359	P36303

Measurement uncertainty

Test parameter	Measurement uncertainty
Input power (DC)	±0.1 V
Temperature	±0.2 °C
Frequency	±0.01 ppm
eirp up to 110 GHz	±1.5 dB
eirp up to 350 GHz	±2.5 dB

2.4.3 Test set-up for the measurement in the frequency range up to 12 GHz

Spurious radiation

Test equipment	Manufacturer	Type	S/No. – Cetecom No.
Spectrum analyser	HP	HP 85660B	2478A05306
Analyser display	HP	HP 85662A	2816A16541
Quasi peak adapter	HP	HP 85650A	2811A01131
RF-preselector	HP	HP 85685A	2833A00768
Biconical antenna	Emco	3104	3758
Log.-per.-antenna	Emco	3146	2304
Double ridge horn	Emco	3115	3007
Relay switch	R&S	RSU	375 339/002
High pass filter	FSY Microwave	HM 985955	001
Amplifier	Tron-Tech	P42-GA29	B2302
Power supply	HP	HP 6038A	2848A07027
RF-cable	HP	5061-5359	P36303

Measurement uncertainties

Test parameter	Uncertainty
Input power (DC)	±0.1 V
Temperature	±0.2 °C
Frequency	±0.01 ppm
RF-power	±1.5 dB

2.5 Test results

2.5.1 Test results overview

This test was performed :

in addition to the test report no.

Verification of EUT :

EUT is in accordance with the technical description

EUT is not in accordance with the technical description

The equipment is compliant to FCC requirement

2.5.2 Remarks on methods of measurements

The Radar head is positioned in a non-conductive fixture and can be rotated and tilted in all angles.

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 325 GHz in a semi-anechoic chamber, a fully-anechoic chamber and in our lab. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform with specifications ANSI C63.2-1996 clause 15 and ANSI C63.4-2003 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test set-ups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received.

The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths (RBW) over various frequency ranges are set according to requirement ANSI C63-4-2003 clause 4.2.

1. Measurements of the EIRP and power density (PD) at fundamental frequency

The measurements are carried out according to FCC guideline "Millimetre Wave Test Procedure" with a spectrum analyser (SA), harmonic mixer with appropriate frequency range and a rectangular standard gain horn antenna (SGH) with matching wave guide dimensions. The conversion loss of the external mixer is taken into account in the SA power level reading automatically.

The radiated power measurements are performed with resolution bandwidth filter (RBW) of 1.0 MHz and a video filter of 1 MHz. This filter setting is sufficiently broad enough to receive the peak envelope power (PEP) of the EUT. Tests are also performed with RBW 10.0 and Video bandwidth filter (VBW) 7.0 MHz. The received EIRP does not change when RBW and VBW are set to higher values.

The distance for fundamental power measurement generally is 3.0 m. The SA level scale shows the dimension dBm. With a SGH and a measured antenna aperture area the power density can be calculated from the equation:

$$\begin{array}{lll} \text{Power density} & = & \text{EIRP} \quad / \quad \text{Antenna aperture area} \quad [\text{mW/cm}^2] \\ \text{pd} & = & \text{eirp} \quad - \quad \text{a} \quad [\text{dB}(\text{mW/cm}^2)] \end{array}$$

2. Measurements of frequency stability

In order to measure the frequency stability of the EUT under normal and extreme test conditions, it is necessary to use a smaller RBW filter (here 100 kHz or 300 kHz) so that the spectral lines of the modulated signal are displayed correctly in frequency domain. This setting allows to read the occupied bandwidth and the peak frequency deviation value directly.

Frequency measurements are performed under normal test conditions (normal power supply voltage and normal temperature).

Then the test is repeated with extreme test conditions. For extreme test conditions the EUT is placed in a climatic chamber where the front door is made of stable polystyrene. The EUT can radiate through the front door without any additional path losses. The climatic chamber together with the EUT is cooled down to -20 °C for 1 hour. Then frequency and power density measurements are carried out with power supply set to minimum and maximum values.

The climatic chamber together with the EUT is warmed up at a rate of + 1°C/minute. During warming-up time the frequency stability and the EIRP is monitored constantly. After 2 hours the temperature stability at 55 °C is reached. Then frequency and power density measurements are carried out with minimum and maximum power supply.

3. Measurements of field strength and power density at spurious frequencies

Spurious frequencies are produced by transmitter and receiver when the EUT is active (vehicle is moving). When the EUT is in Not-in-motion-mode, the emissions of the TX has to be reduced more than 25 dB. According to FCC requirements 15.209 and 15.253, spurious emissions have to be investigated as maximum field strength values in the frequency range from 9 kHz to 40 GHz, and as maximum power density in the frequency range > 40 GHz up to 231 GHz. Where possible, the measurement distance shall be 3 m.

In the low frequency range (9 kHz to 30 MHz), the receiving antenna is an active loop antenna which is positioned at 3 m distance in a shielded, anechoic chamber (see page 8). In case of required measuring distances > 3 m, a distance correction factor is used to calculate the received field strength.

Spurious field strength measurements in the frequency range 30 MHz to 12 GHz are carried out in a shielded semi-anechoic test chamber. The measurement distance is 3 m.

In the frequency range 12 GHz to 40 GHz, spurious field strength measurements are performed in a shielded fully anechoic chamber with rectangular SGH's. The measurement distances are indicated underneath each plot, and a calculation for field strength is added, where all relevant factors like cable losses, antenna factors, etc are taken into account.

In the frequency range 40 GHz to 325 GHz, spurious frequencies are measured as power densities. For further remarks see section 1.). The RBW and VBW are set to such a value that spurious power levels are clearly readable above the fundamental noise level of spectrum analyzer.

4. Measurements of maximum safe level for radiated power density

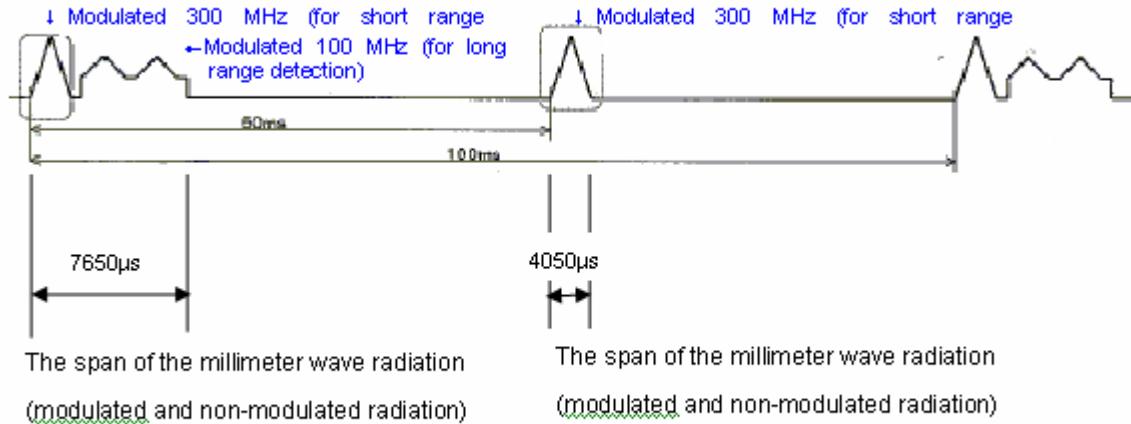
According to FCC § 1.1307, 1.1310, 2.1091, and 2.1093 and also according to ETSI/EN 301 091 measurements are carried out in order to evaluate the impact of human exposure to RF radiation. For this test the EUT is in normal operation mode.

The measurements are applicable only for far field conditions. The near field area extends to a distance of R (meters) and can be calculated from the following equation:

$$R < 2 * L^2 / \lambda$$

with R = distance in meters, L = largest dimension of either receiving or transmitting horn antenna (L = 0.02 m), and λ = wavelength in meters. In case of 76 GHz (λ = 0.0039 m), the far field starts at $R > 0.205$ m.

The peak power density is measured in 3 m distance as $2.77 \mu\text{W/cm}^2$ (-25.57 dBmW/cm^2).


Peak Power (EIRP)

$$\text{EIRP} = PD * 4\pi * R^2$$

$$\text{EIRP} = 3.13 \text{ W}$$

As the sample works with pulsed CWFM-modulation there is a difference between peak and average value of the output power.

This difference is calculated by the duty cycle of the sample.

The correction factor is calculated with $10 \log (\text{TX on} / 100 \text{ ms})$ here -9.3 dB

Recalculated average power is $(34.96 \text{ dBm} - 9.3 \text{ dB}) = 25.66 \text{ dBm} = 368 \text{ mW}$

Limit of maximum ERP for frequencies above 1.5 GHz is 3 W. See FCC § 2.1091 (EIRP = 4.91 Watt)

RF Exposure for mobile conditions at $R = 20 \text{ cm}$ distance from EUT

$$\begin{aligned} \text{PD} &= \text{EIRP} / (4\pi * R^2) \\ \text{PD} &= 0.07 \text{ mW/cm}^2 \end{aligned}$$

Limit of maximum permissible exposure (MPE) for uncontrolled environment: 1.0 mW/cm^2 . See FCC § 1.1310.

2.5.3 Test results in details**Equipment under test (EUT) : DNMWR002**

Ambient temperature : 23 °C

Relative humidity : 35 %

TRANSMITTER PARAMETERS**SECTION 15.253****FUNDAMENTAL FREQUENCY****Section 15.253 b (2)**

76.000 GHz to 77.000 GHz

Operation : Vehicle in motion

Antenna assembly: Fixed integral antennas

TEST CONDITIONS T = 23.0 ° C	TRANSMITTER POWER DENSITY		
EUT operating: TX on and RX on	Frequency f [GHz]	Power Density PD [μ W/cm ²]	See plot on page
U DC = 10.0 V	76.478 200	2.55	-
U DC = 11.0 V	76.477 400	2.70	-
U DC = 12.0 V	76.477 100	2.77	27
U DC = 13.0 V	76.477 300	2.75	-
U DC = 14.0 V	76.477 100	2.75	-
U DC = 15.0 V	76.476 900	2.75	-
U DC = 16.0 V	76.476 600	2.75	-

REFERENCE OF TEST EQUIPMENT USED : see test set-up on page 10

LIMITS:**Section 15.253 b (2)**

Frequency range [GHz] vehicle in motion	Measurement distance [m]	Power density pd [dBmW/cm ²]	Power Density PD [μ W/cm ²]
76.0 to 77.0	3.0	-12.2	60

Verdict : Power Density limit is kept

Equipment under test (EUT) : DNMWR002

Ambient temperature : 23 °C

Relative humidity : 35 %

TRANSMITTER PARAMETERS**SECTION 15.253****FUNDAMENTAL FREQUENCY****Section 15.253 b (2)**

76.000 GHz to 77.000 GHz

Operation : Vehicle in motion

Antenna assembly: Fixed integral antennas

TEST CONDITIONS T = - 20.0 ° C	TRANSMITTER POWER DENSITY		
EUT operating: TX on and RX on	Frequency f [GHz]	Power Density PD [μ W/cm ²]	
U DC = 10.0 V	76.476 600	2.78	
U DC = 11.0 V	76.477 100	-	
U DC = 12.0 V	76.477 600	2.80	
U DC = 13.0 V	76.477 600	-	
U DC = 14.0 V	76.477 700	-	
U DC = 15.0 V	76.478 000	-	
U DC = 16.0 V	76.478 300	2.84	

REFERENCE OF TEST EQUIPMENT USED : see test set-up on page 10

LIMITS:**Section 15.253 b (2)**

Frequency range [GHz] vehicle in motion	Measurement distance [m]	Power density pd [dBmW/cm ²]	Power Density PD [μ W/cm ²]
76.0 to 77.0	3.0	-12.2	60

Verdict : Power Density limit is kept

Equipment under test (EUT) : DNMWR002

Ambient temperature : 23 °C

Relative humidity : 35 %

TRANSMITTER PARAMETERS**SECTION 15.253****FUNDAMENTAL FREQUENCY****Section 15.253 b (2)**

76.000 GHz to 77.000 GHz

Operation : Vehicle in motion

Antenna assembly: Fixed integral antennas

TEST CONDITIONS T = + 55.0 ° C	TRANSMITTER POWER DENSITY		
EUT operating: TX on and RX on	Frequency f [GHz]	Power Density PD [μ W/cm ²]	
U DC = 10.0 V	76.488 200	1.33	
U DC = 11.0 V	76.399 810	-	
U DC = 12.0 V	76.399 800	1.89	
U DC = 13.0 V	76.399 790	-	
U DC = 14.0 V	76.399 780	-	
U DC = 15.0 V	76.399 775	-	
U DC = 16.0 V	76.482 700	2.02	

REFERENCE OF TEST EQUIPMENT USED : see test set-up on page 10

LIMITS:**Section 15.253 b (2)**

Frequency range [GHz] vehicle in motion	Measurement distance [m]	Power density pd [dBmW/cm ²]	Power Density PD [μ W/cm ²]
76.0 to 77.0	3.0	-12.2	60

Verdict : Power Density limit is kept

Equipment under test (EUT) : DNMWR002

Ambient temperature : 23 °C

Relative humidity : 35 %

TRANSMITTER PARAMETERS**SECTION 15.253**

Frequency over temperature

TEST CONDITIONS T = -20° TO +55°C 12V DC		TRANSMITTER POWER DENSITY AND FREQUENCY	
EUT operating:		Frequency f [GHz]	Power Density PD [μ W/cm ²]
T = -20°		76.397 545	2.80
T = -10°		76.397 712	2.80
T = 0°		76.397 916	2.79
T = +10°		76.398 355	2.75
T = +20°		76.398 667	2.73
T = +30°		76.398 812	2.54
T = +40°		76.399 134	2.23
T = +50°		76.399 532	2.04
T = +55°		76.399 800	1.89

EUT : **DNMWR002**

Ambient temperature : 23 °C

Relative humidity : 35 %

TRANSMITTER PARAMETERS**SECTION 15.253****SPURIOUS FREQUENCIES****Section 15.253 c (1)**

In the frequency range 9 kHz to 12 GHz

Operation : Vehicle in motion

Antenna assembly: Fixed integral antennas

TEST CONDITIONS		TRANSMITTER SPURIOUS FIELD STRENGTH		
Frequency range [MHz]	Spurious frequencies [MHz]	S A e [dB μ V/m]	E [μ V/m]	See plot on page
0.009 – 30.000 (h + v) horizontal and vertical plane	Noise	< limit	< limit	28
30.000 – 4.0 GHz (vert.)	Noise	< limit	< limit	29
4.0 – 12.0 GHz (h + v)	Noise	< limit	< limit	30

REFERENCE OF TEST EQUIPMENT USED : see test set-up on pages 9, 10 and 11

LIMITS:**SECTION 15.253 / 15.205 / 15.209**

Frequency range (MHz)	Measurement distance [m]	Field strength e [dB μ V/m] @ 3 m	Field strength E [μ V/m]
0.009 – 0.490	300	88.5 ... 53.8	2400/F(kHz)
0.490 – 1.705	30	53.8 ... 43.0	24000/F(kHz)
1.705 – 30.0	30	49.5	30
30.0 – 88.0	3	40.0	100
88.0 – 216.0	3	43.5	150
216.0 – 960.0	3	46.0	200
960.0 MHz – 40.0 GHz	3	54.0	500

Verdict : Field strength limits are kept

EUT : **DNMWR002**

Ambient temperature : 23 °C

Relative humidity : 35 %

TRANSMITTER PARAMETERS**SECTION 15.253****SPURIOUS FREQUENCIES****Section 15.253 c (1)**

In the frequency range 12 GHz to 40 GHz

Operation : Vehicle in motion

Antenna assembly: Integral patch antenna

TEST CONDITIONS		TRANSMITTER SPURIOUS FIELD STRENGTH		
Frequency range [GHz]	Spurious frequencies [GHz]	S A e [dB μ V/m]	E [μ V/m]	See plot on page
12.0 – 18.0 (h + v)	Noise	< limit	< limit	31
18.0 – 27.0 (h + v)	Noise	< limit	< limit	32
26.5 – 40.0 (h + v)	Noise	< limit	< limit	33

REFERENCE OF TEST EQUIPMENT USED : see test set-up on page 9, 10 and 11

LIMITS:**SECTION 15.253 / 15.205 / 15.209**

Frequency range (MHz)	Measurement distance [m]	Field strength e [dB μ V/m] @ 3 m	Field strength E [μ V/m]
0.009 – 0.490	300	88.5 ... 53.8	2400/F(kHz)
0.490 – 1.705	30	53.8 ... 43.0	24000/F(kHz)
1.705 – 30.0	30	49.5	30
30.0 – 88.0	3	40.0	100
88.0 – 216.0	3	43.5	150
216.0 – 960.0	3	46.0	200
960.0 MHz – 40.0 GHz	3	54.0	500

Verdict : Field strength limits are kept

EUT : **DNMWR002**

Ambient temperature : 23 °C

Relative humidity : 35 %

TRANSMITTER PARAMETERS**SECTION 15.253****SPURIOUS FREQUENCIES****Section 15.253 c (2) + (3)**

In the frequency range 40 GHz to 325 GHz

Operation : Vehicle in motion

Antenna assembly: Fixed integral antenna

TEST CONDITIONS		TRANSMITTER SPURIOUS POWER DENSITY		
Frequency range [GHz]	Spurious frequencies [GHz]	S A pd [dBm/cm ²]	PD [pW/cm ²]	See plot on page
40.0 – 60.0 (h + v)	Noise	-74.44	35.97	34
60.0 – 90.0 (h + v)	Noise	-67.18	108.4	35
90.0 - 140.0 (h + v)	Noise	-64.19	< 300	36
140.0 - 170.0 (h + v)	Noise	-71.63	68.7	37
170.0 - 250.0 (h + v)	Noise	-76.16	24.2	38

REFERENCE OF TEST EQUIPMENT USED : see test set-up on page 9, 10 and 11

LIMITS:**SECTION 15.253 / 15.205 / 15.209**

Frequency range (MHz)	Measurement distance [m]	pd [dBmW/cm ²]	Power density PD [pW/cm ²]
40.0 GHz - 200 GHz	3.0	-62.2	600
200 GHz - 231 GHz	3.0	-60.0	1000

Verdict : Power density limits are kept

EUT : **DNMWR002**

Ambient temperature : 23 °C

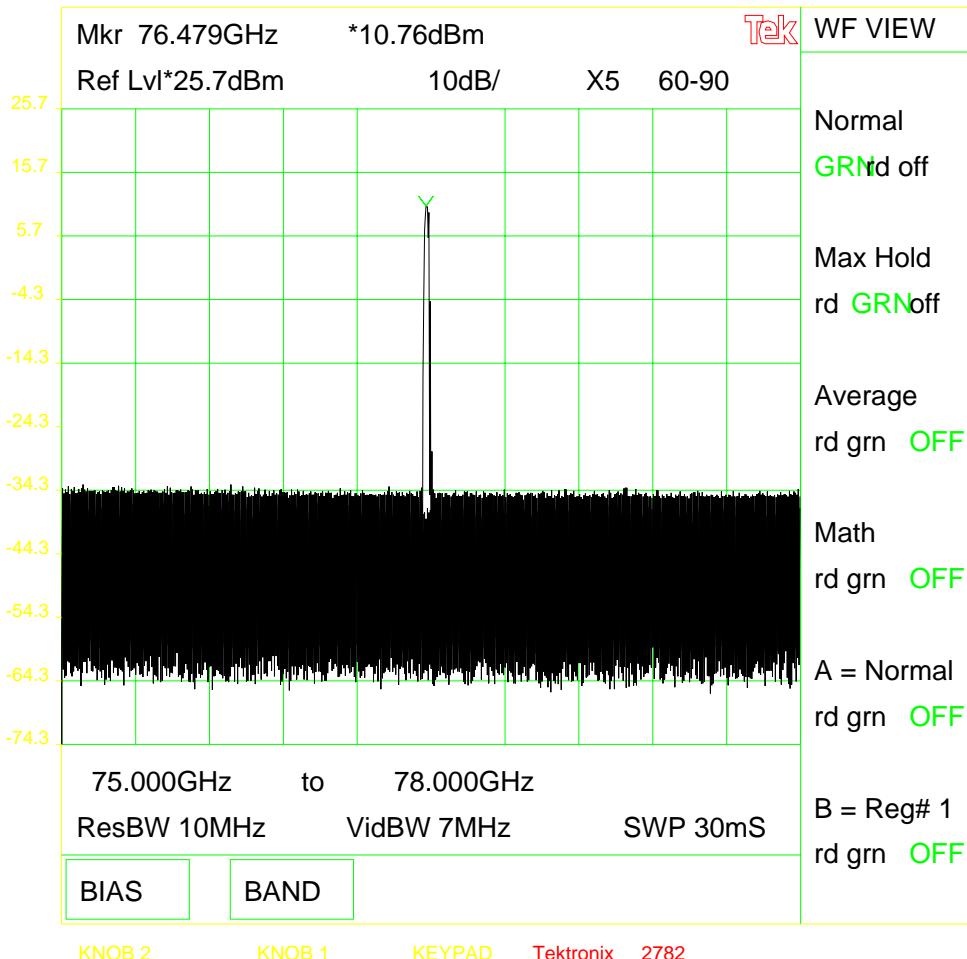
Relative humidity : 38 %

2.5.4 Not-In-motion Mode

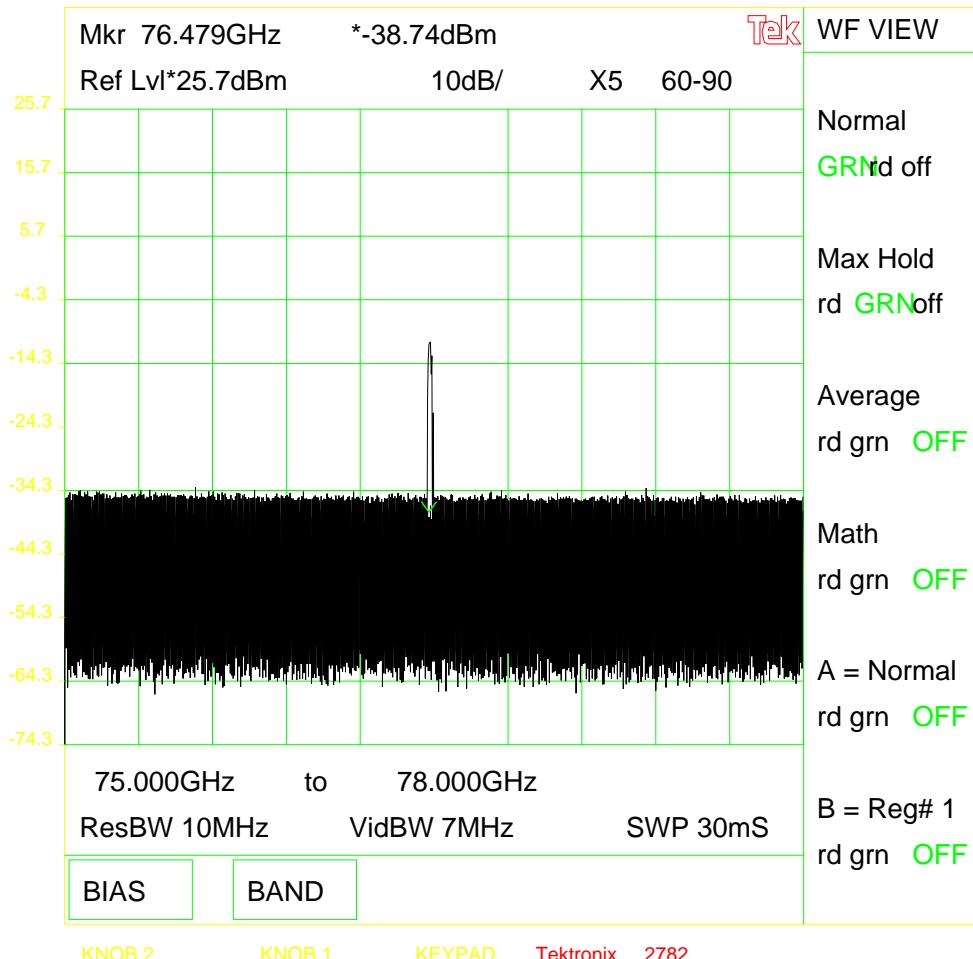
Section 15.253 (b) (1)

To show compliance with the requirements of Part 15.253 (b) (1) – Not-In-Motion mode, we tested with a can-bus interface on a laptop with special software to simulate moving or not-moving of the car.

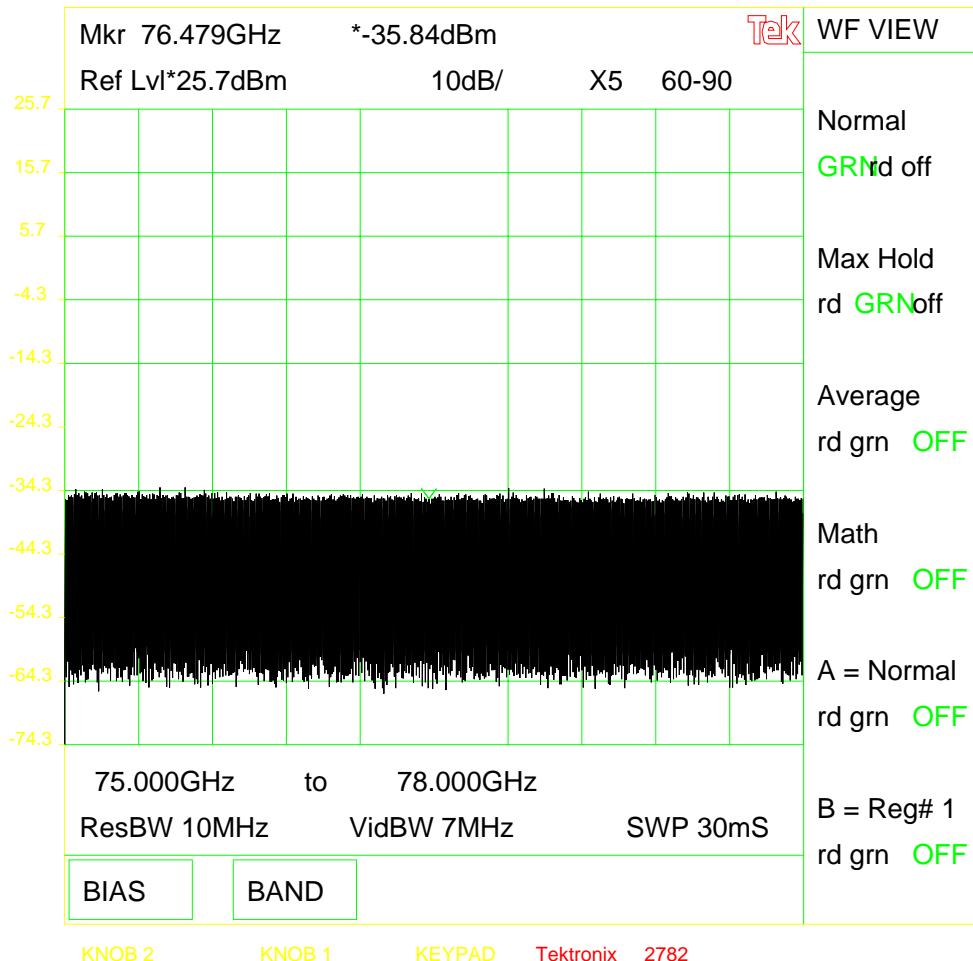
Description of the test:

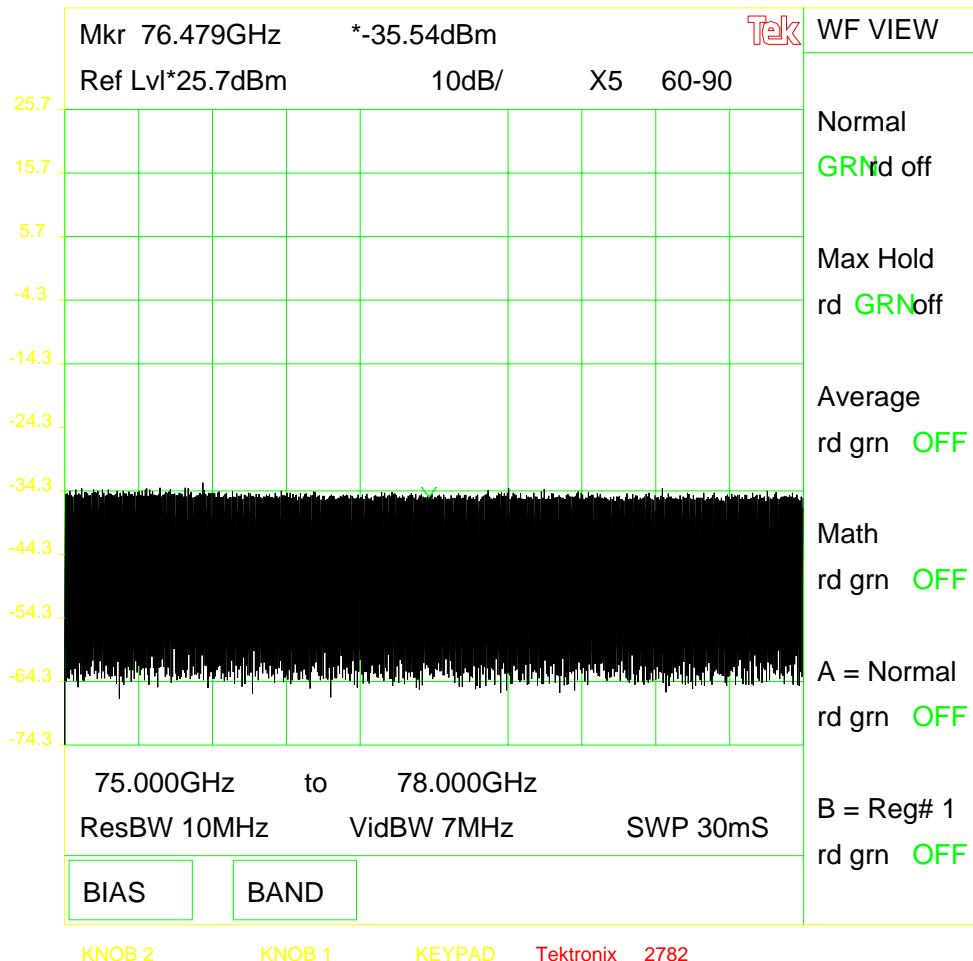

We placed the antenna 25 cm in front of the radar equipment.

We started the simulation on the PC. The software starts with not-moving car.


Then we set the velocity of the car to 30 km/h and the radar starts transmitting.

The following plots show first the In-Motion mode and than the Not-in-motion mode.


Plot 1: Transmitted Power / Antenna Vertical


Plot 2: Transmitted Power / Antenna Horizontal

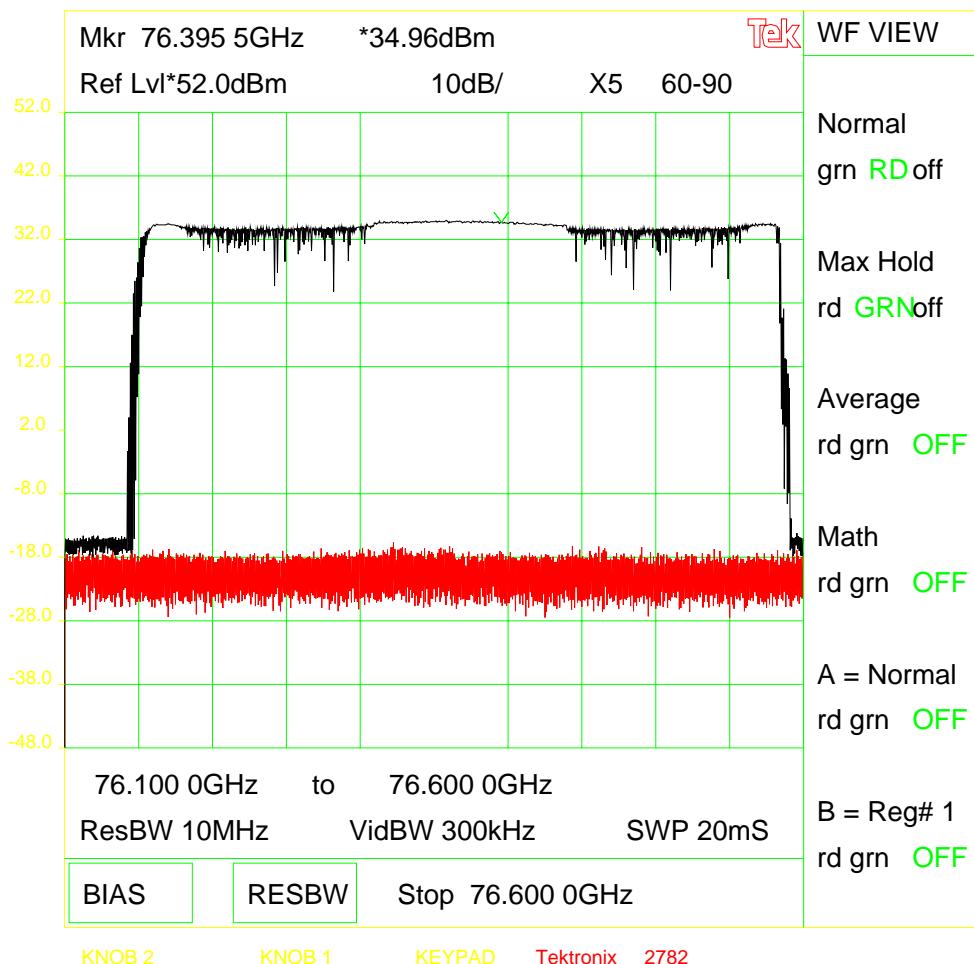
Plot 3: NOT IN MOTION MODE / Antenna Horizontal

Plot 4: NOT IN MOTION MODE / Antenna Vertical

The measured difference between in-motion and not-in-motion is > 45 dB.

Power in-motion is -25.5 dBm/cm 2 , power not-in motion is maximum $-25.5 - 45.0 = -70.5$ dBm/cm 2
 So the sample fulfils the requirements.

LIMITS:


SECTION 15.253 (B) (1)

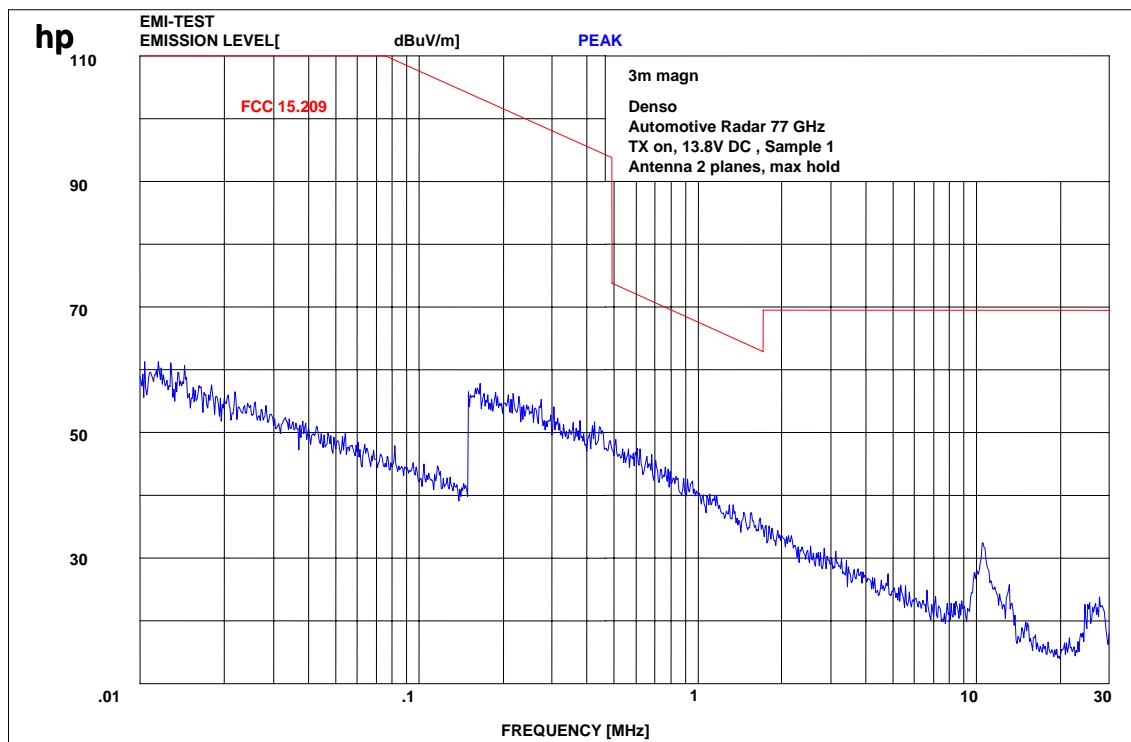
Frequency range [GHz]	Measurement distance [m]	In-motion [dBm/cm 2]	Not-in-motion [dBm/cm 2]	Delta [dB]
76.0 – 77.0	3.0	-12	-37	25

Verdict :	pass
-----------	------

3 Plots, graphs and data sheets

Plot 1 (23 C)

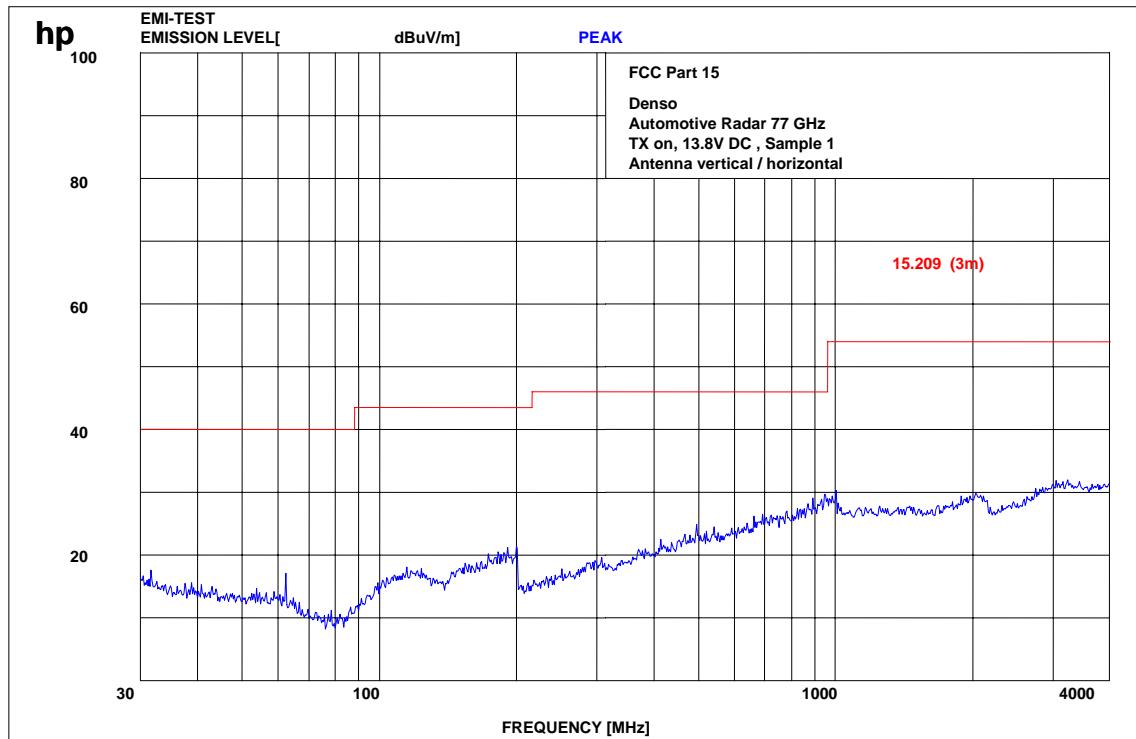
Measurement distance d = 3.0 m


Calculation : **Power density** = EIRP (mW) / $4\pi \times 300\text{cm} \times 300\text{cm}$

pd = 3133mW (34.9 dBm) / 1130973.4 cm^2

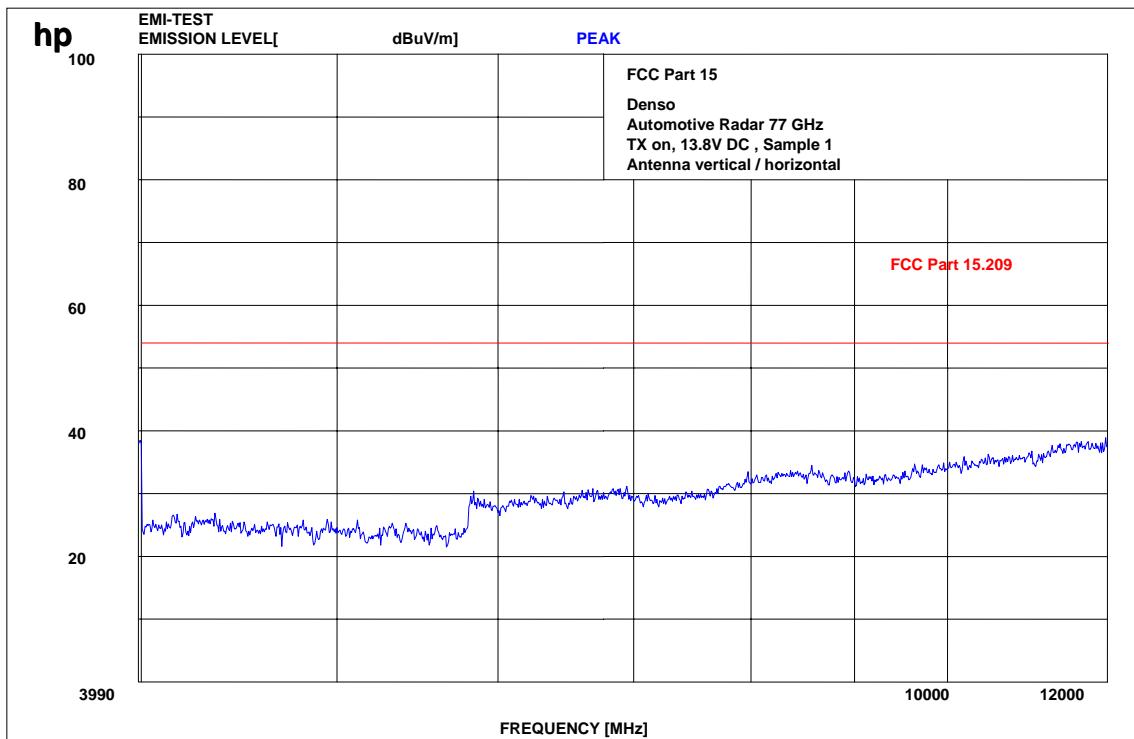
PD = $2.77 \mu\text{W/cm}^2$

Plot 2


Radiated emissions 9 kHz to 30 MHz

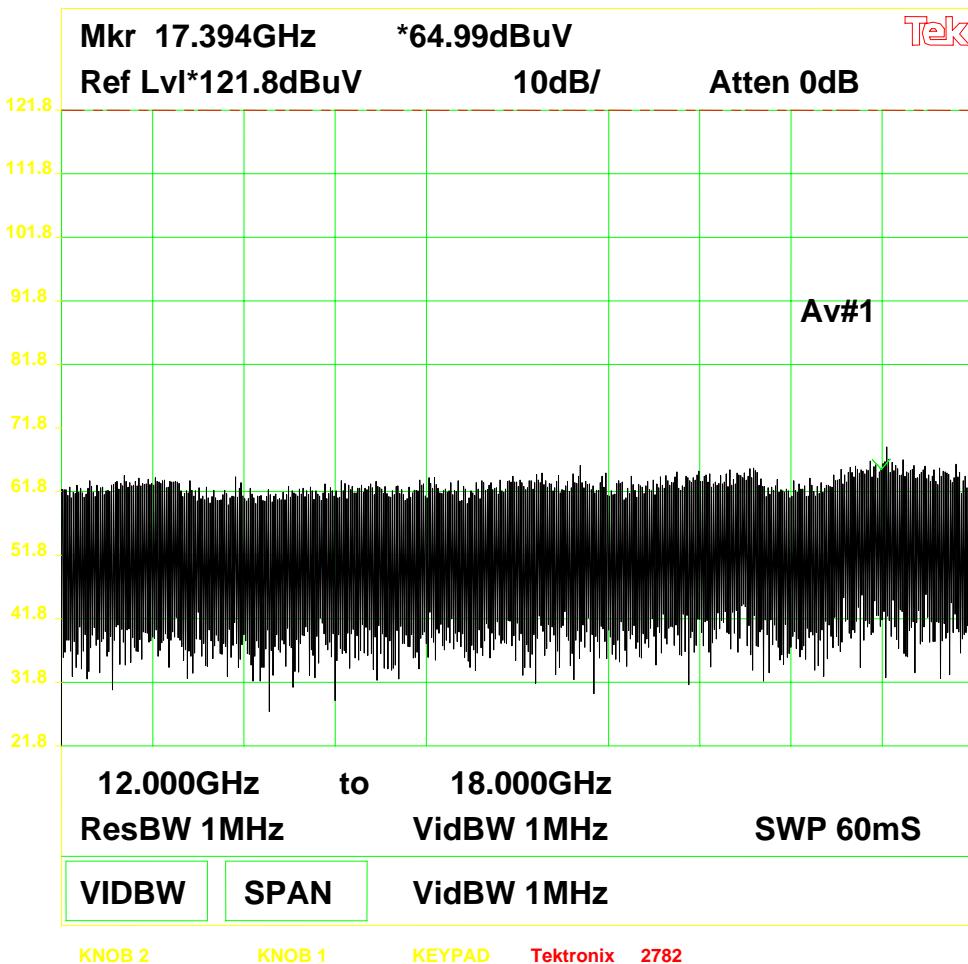
RBW/VBW : 200 Hz up to 150 kHz, 9 kHz up to 30 MHz, 120 kHz up to 1 GHz

Plot 3


Radiated emissions 30 MHz to 4 GHz

RBW/VBW : 200 Hz up to 150 kHz, 9 kHz up to 30 MHz, 120 kHz up to 1 GHz ,
1 MHz above 1 GHz

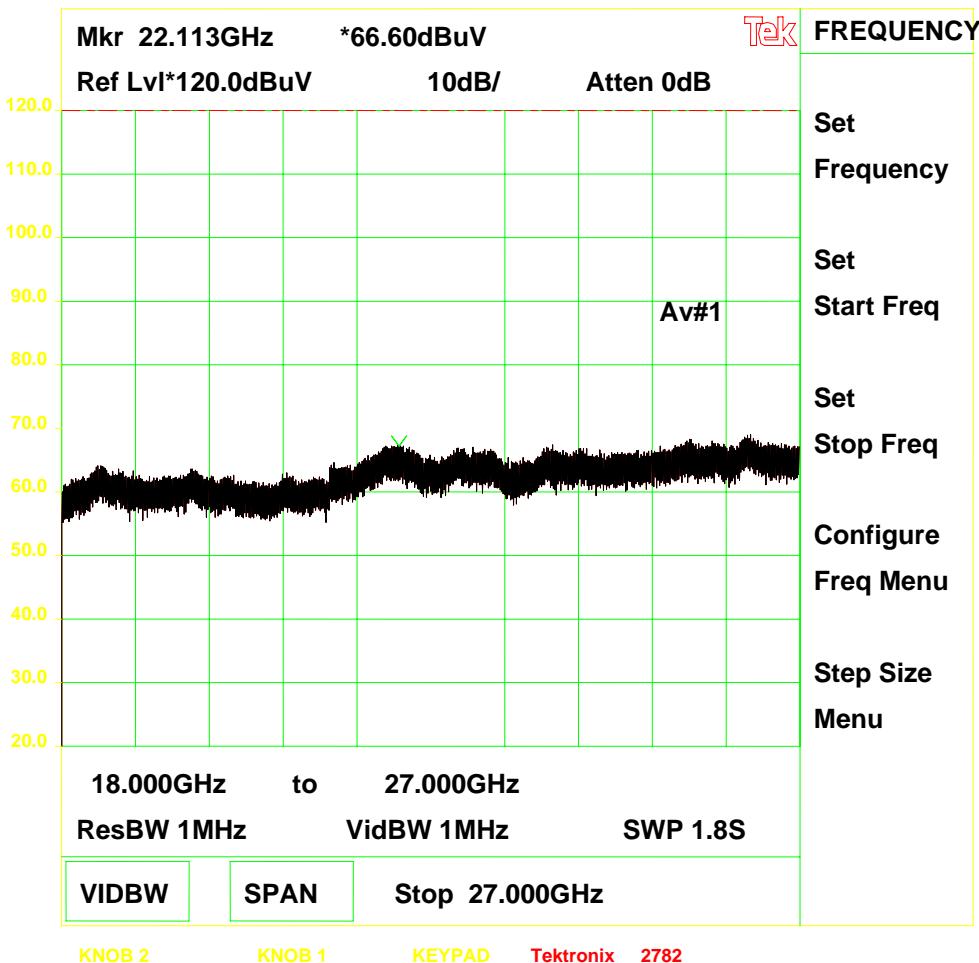
Plot 4


Radiated emissions 4 GHz to 12 GHz

RBW/VBW : 200 Hz up to 150 kHz, 9 kHz up to 30 MHz, 120 kHz up to 1 GHz ,
1 MHz above 1 GHz

Plot 5

Radiated emissions 12 GHz to 18 GHz


Measurement distance $d = 0.5 \text{ m}$

Calculation :

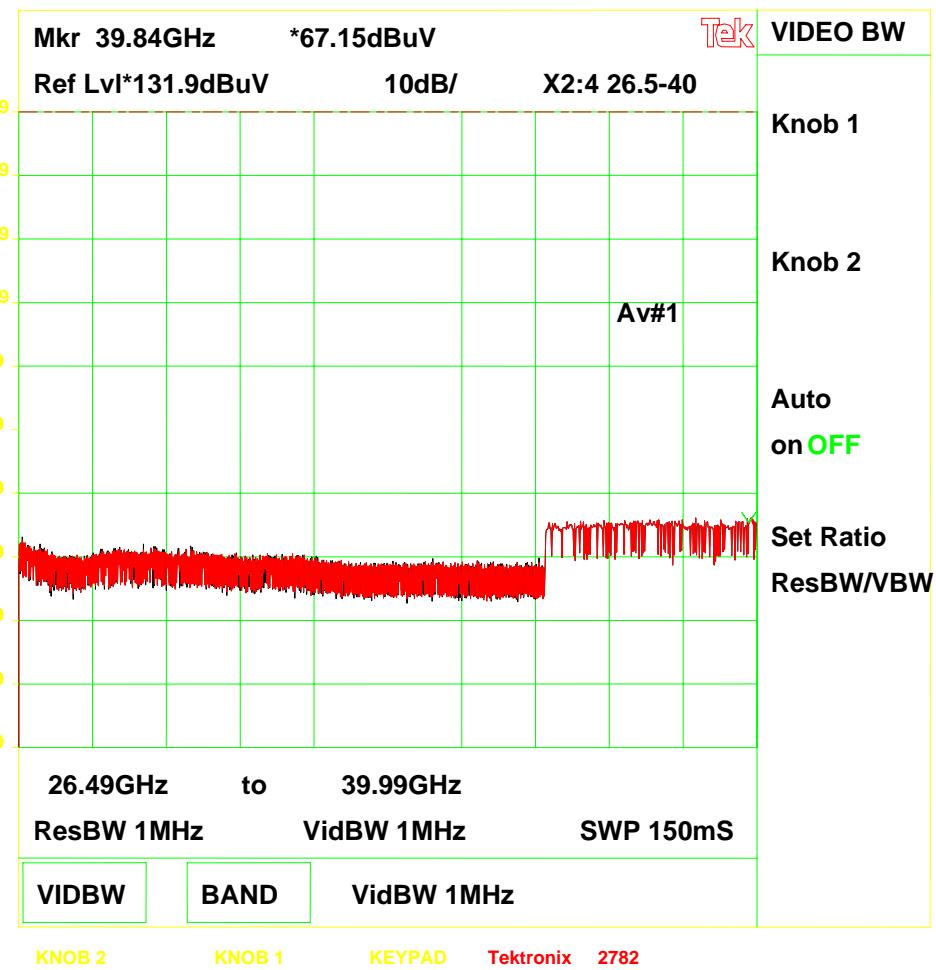
Distance correction $3 \Rightarrow 0.5\text{m} = 15.5 \text{ dB}$

Limit at 0.5m $= 54.0 \text{ dB}\mu\text{V/m} + 15.5 \text{ dB} = 69.5 \text{ dB}\mu\text{V/m}$

Field strength $= 64.99 \text{ dB}\mu\text{V/m at 0.5m}$

Plot 6

Measurement distance $d = 0.5 \text{ m}$

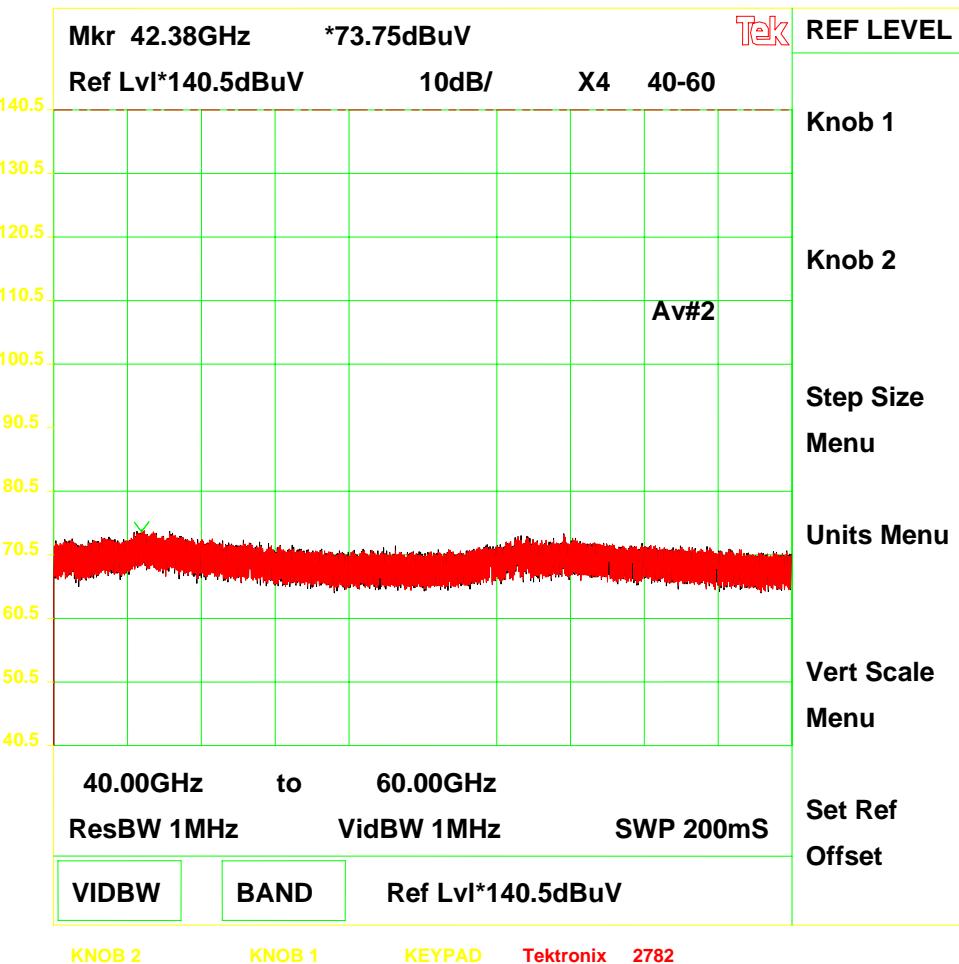

Calculation :

Distance correction $3 \Rightarrow 0.5\text{m} = 15.5 \text{ dB}$

Limit at 0.5m $= 54.0 \text{ dB}\mu\text{V/m} + 15.5 \text{ dB} = 69.5 \text{ dB}\mu\text{V/m}$

Field strength $= 66.6 \text{ dB}\mu\text{V/m at 0.5m}$

Plot 7


Measurement distance d = 0.5 m

Calculation :

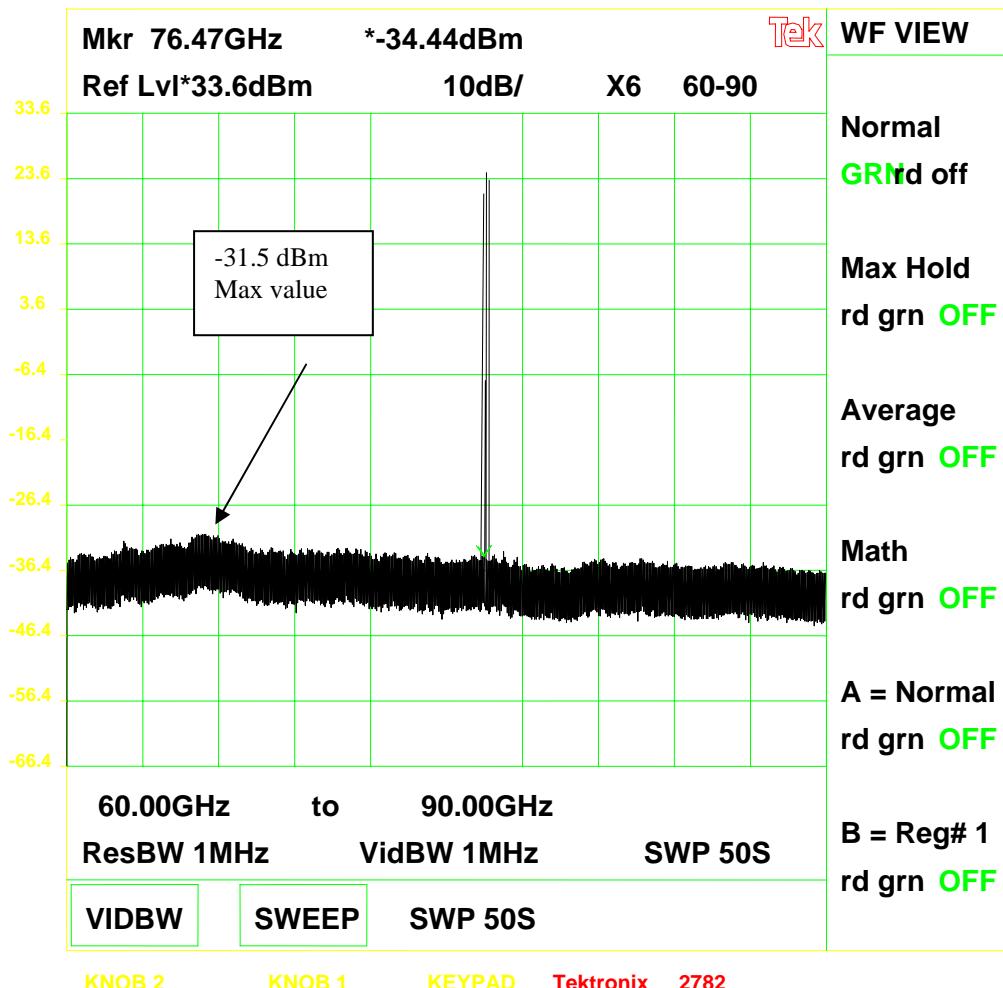
Distance correction 3 => 0.5m = 15.5 dB

Limit at 0.5m = 54.0 dB μ V/m + 15.5 dB = 69.5 dB μ V/m

Field strength = 67.2 dB μ V/m at 0.5m

Plot 8

Measurement distance $d = 0.5 \text{ m}$
 Formula: $\text{PD} (\text{mW/cm}^2) = \text{EIRP} / (4 * \pi * d * d)$ $d=300 \text{ cm}$


Calculation :

Distance correction $0.5 \Rightarrow 3 \text{ m} = -15.5 \text{ dB}$

Limit at 3m $= 600 \text{ pW/cm}^2 = 0.678 \text{ mW} = -1.7 \text{ dBm EIRP}$

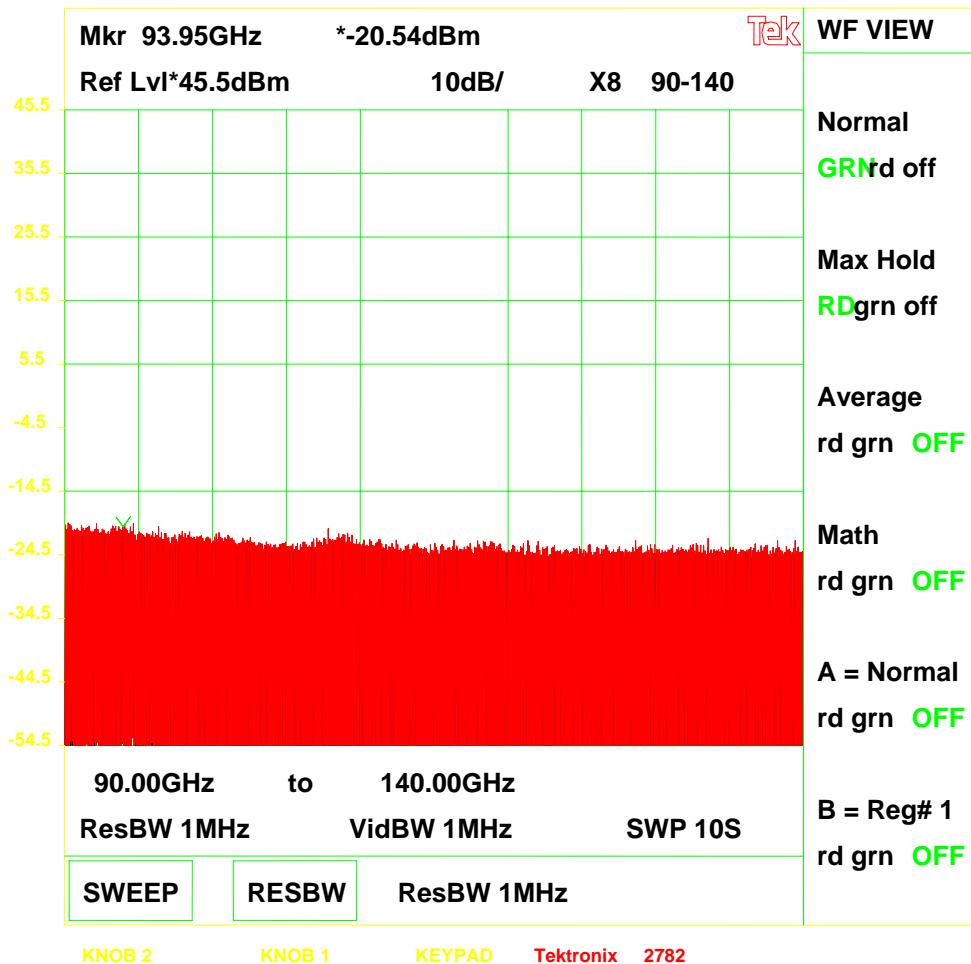
Field strength at 3m $= 73.75 \text{ dBuV/m} - 15.5 \text{ dB} = 58.25 \text{ dBuV/m} = -39.25 \text{ dBm EIRP}$

Verdikt = Pass

Plot 9

Measurement distance $d = 0.5$ m

Limit at 3m $= 600\text{pW/cm}^2 = 0.678\text{ mW} = -1.7\text{ dBm EIRP}$


Distance correction factor from 3m to 0.5m = 15.5 dB

\Rightarrow Limit at 0.5 m = $-1.7\text{ dBm} + 15.5\text{ dB}$ correction = 13.8 dBm

Maximum spurious = -31.5 dBm

Verdikt = Pass

Plot 10

Measurement distance d = 0.5 m


Limit at 3m = $600\text{pW/cm}^2 = 0.678\text{ mW} = -1.7\text{ dBm EIRP}$

Distance correction factor from 3m to 0.5m = 15.5 dB

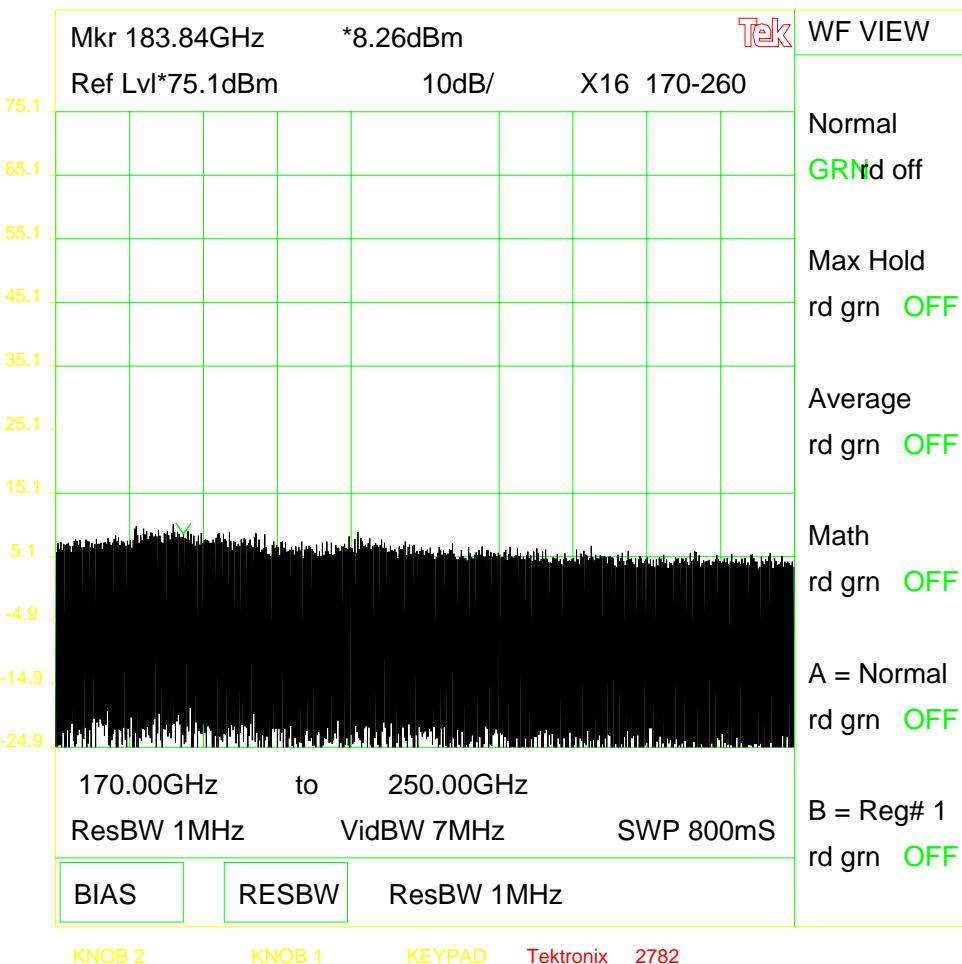
⇒ Limit at 0.5 m = $-1.7\text{ dBm} + 15.5\text{ dB correction} = 13.8\text{ dBm}$

Maximum spurious = -20.5 dBm

Verdikt = Pass

Plot 11

Measurement distance $d = 0.5 \text{ m}$


Limit at 3m $= 600 \text{ pW/cm}^2 = 0.678 \text{ mW} = -1.7 \text{ dBm EIRP}$

Distance correction factor from 3m to 0.5m = 15.5 dB

\Rightarrow Limit at 0.5 m = $-1.7 \text{ dBm} + 15.5 \text{ dB}$ correction = 13.8 dBm

Maximum spurious = 4.7 dBm

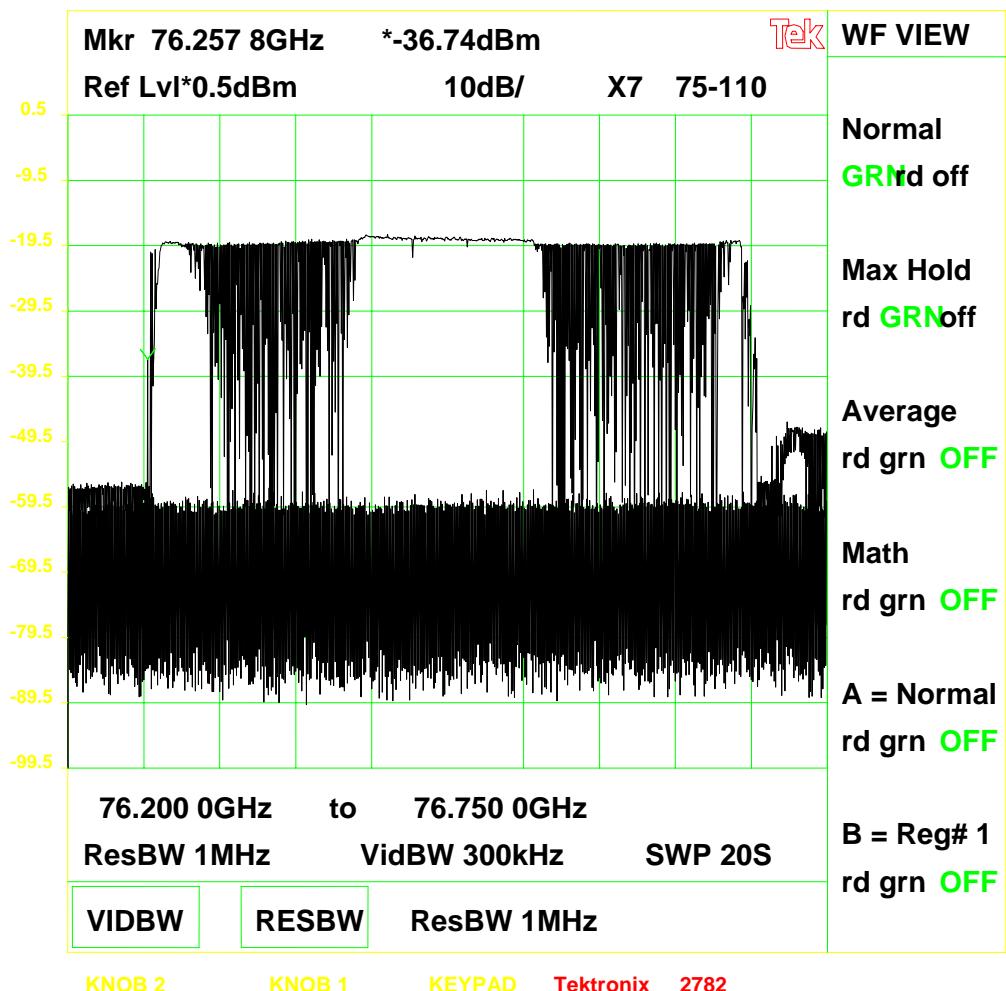
Verdikt = Pass

Plot 12

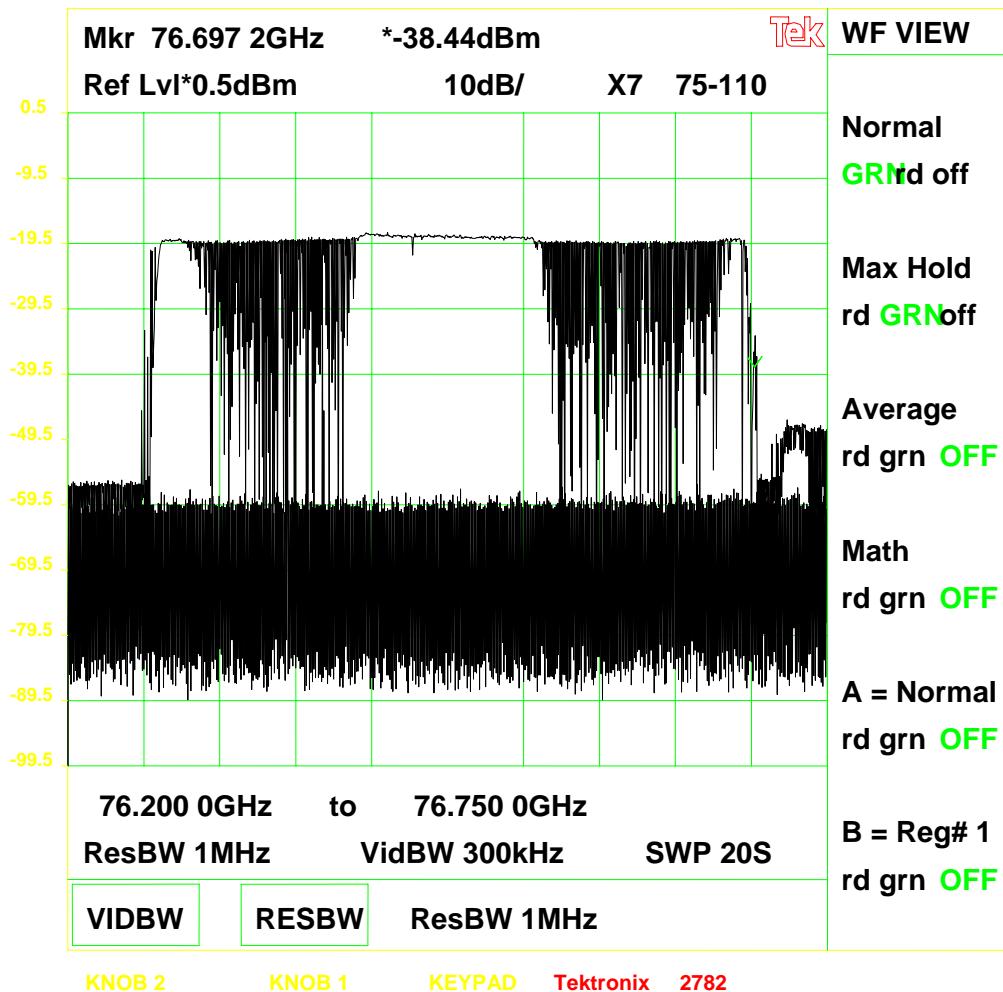
Measurement distance d = 0.5 m

Limit at 3m = $600\text{pW/cm}^2 = 0.678\text{ mW} = -1.7\text{ dBm EIRP}$

Distance correction factor from 3m to 0.5m = 15.5 dB


⇒ Limit at 0.5 m = $-1.7\text{ dBm} + 15.5\text{ dB correction} = 13.8\text{ dBm}$

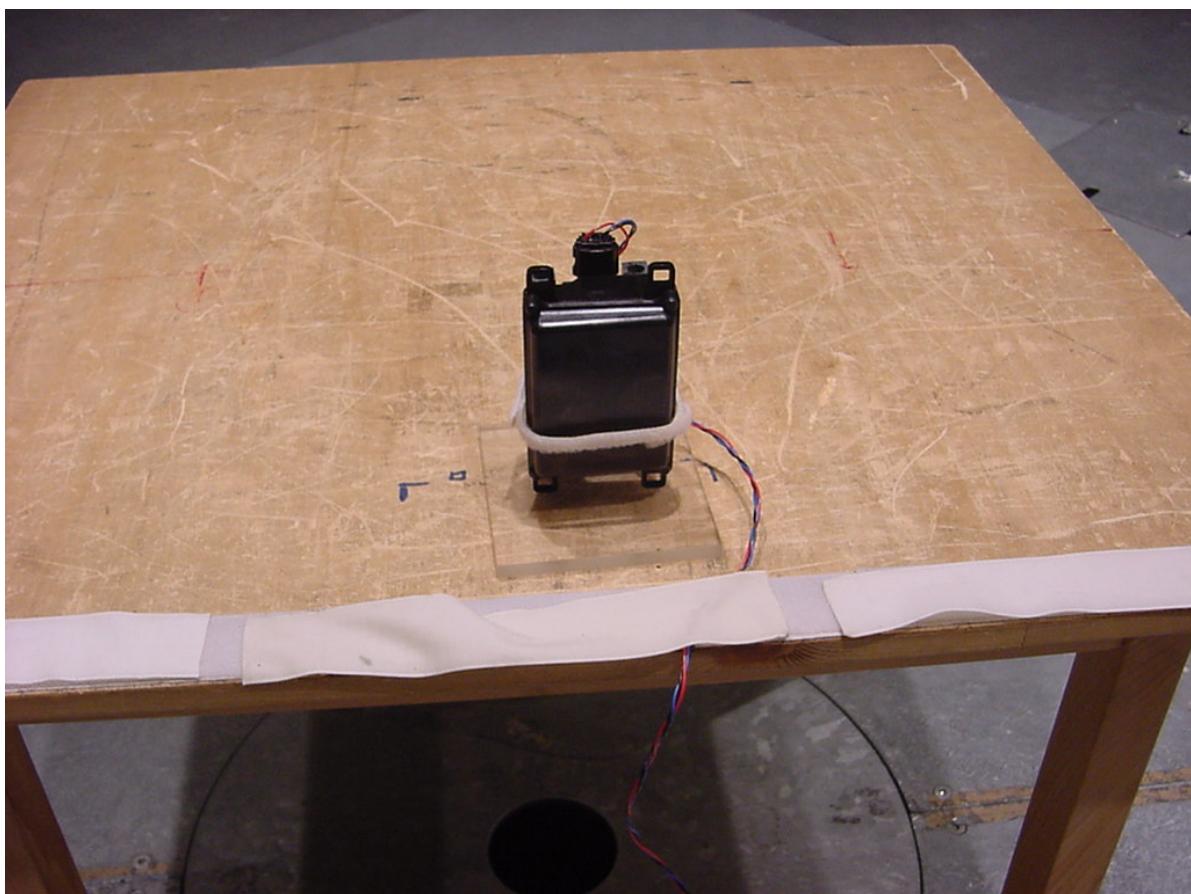
Maximum spurious = 8.3 dBm


Verdikt = Pass

Occupied frequency range:

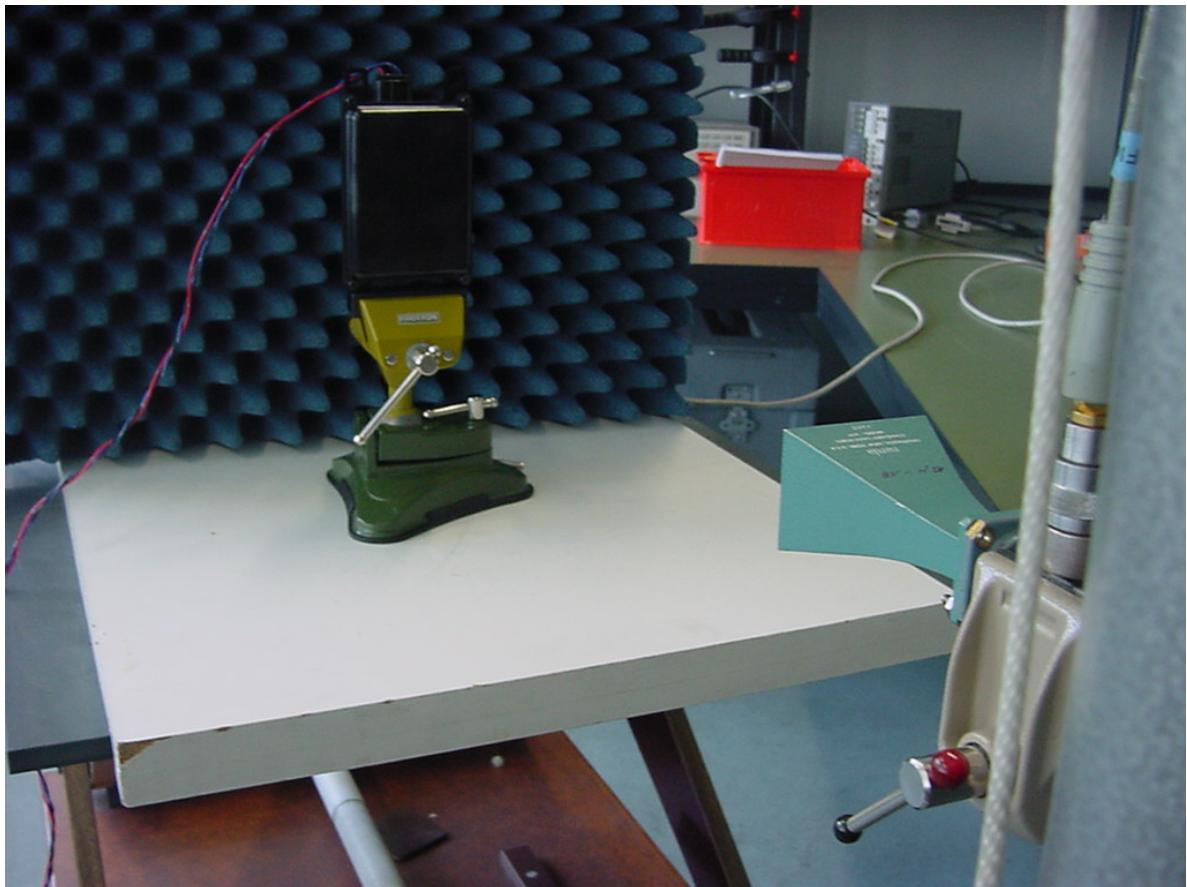
Plot No.: 13

Plot No.: 14

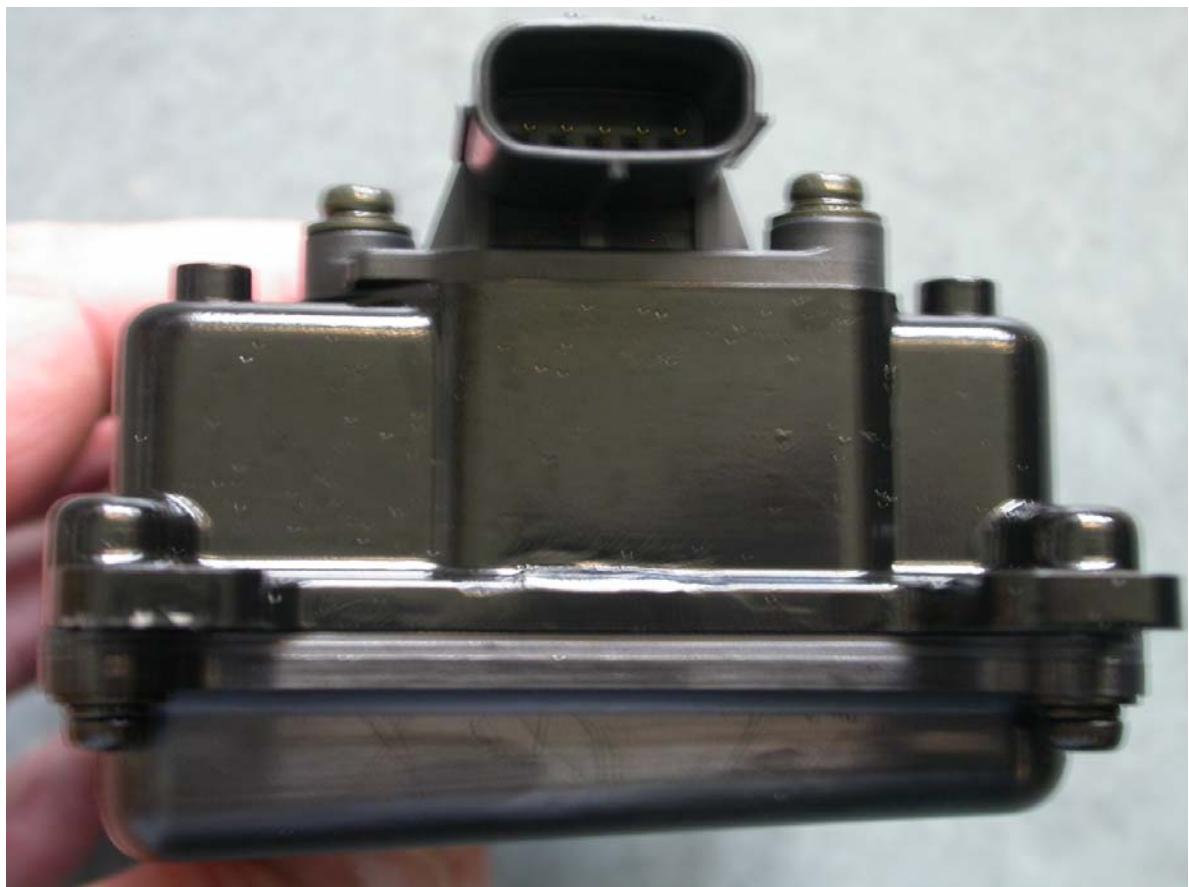

The occupied frequency range is between 76.2578 G HZ and 76.6972 GHz.

Verdikt = Pass

4 Photographs


4.1 Photographs of the test set-up

Radiated Emission


Radiated Emission

4.2 Photographs of the EUT

