

Test report No. : 13523460H-A
Page : 1 of 23
Issued date : October 20, 2020
FCC ID : HYQ23ABP

EMI TEST REPORT

Test Report No.: 13523460H-A

Applicant : DENSO CORPORATION

Type of EUT : Remote Keyless Entry System and TPMS (Receiver)

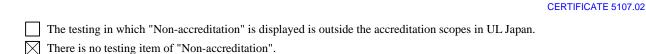
Model Number of EUT : 23ABP

FCC ID : HYQ23ABP

Test regulation : FCC Part 15 Subpart B: 2020

Test Result : Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers EMC technical requirements. It does not cover administrative issues such as Manual or non-EMC test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in SECTION 1.


Representative test engineer:

Tomohisa Nakagawa
Engineer
Consumer Technology Division

Approved by:

Motoya Imura

Leader Consumer Technology Division

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124 ACCREDITED

Test report No. : 13523460H-A
Page : 2 of 23
Issued date : October 20, 2020
FCC ID : HYQ23ABP

REVISION HISTORY

Original Test Report No.: 13523460H-A

Revision	Test report No.	Date	Page revised	Contents
-	13523460H-A	October 20, 2020	-	-
(Original)				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523460H-A
Page : 3 of 23
Issued date : October 20, 2020
FCC ID : HYQ23ABP

Reference: Abbreviations (Including words undescribed in this report)

Asymmetric Artificial Network ILAC International Laboratory Accreditation Conference ISED AC Alternating Current Innovation, Science and Economic Development Canada AM Amplitude Modulation ISN Impedance Stabilization Network AMN Artificial Mains Network ISO International Organization for Standardization Amp, AMP Amplifier JAB Japan Accreditation Board ANSI American National Standards Institute LAN Local Area Network Ant, ANT Antenna LCL Longitudinal Conversion Loss Access Point LIMS AP Laboratory Information Management System ASK Amplitude Shift Keying LISN Line Impedance Stabilization Network Atten., ATT Attenuator MRA Mutual Recognition Arrangement Average N/A Not Applicable BPSK Binary Phase-Shift Keying NIST National Institute of Standards and Technology BR Bluetooth Basic Rate NS No signal detect. ВТ NSA Bluetooth Normalized Site Attenuation BT LE Bluetooth Low Energy **NVLAP** National Voluntary Laboratory Accreditation Program BandWidth OBW Occupied Band Width BW C.F Correction Factor OFDM Orthogonal Frequency Division Multiplexing Cal Int Calibration Interval PK long-term flicker severity CISPR AV CAV Ргт CCK Complementary Code Keying POHC(A) Partial Odd Harmonic Current CDN Coupling Decoupling Network Pol., Pola. Polarization Ch., CH PR-ASK Phase Reversal ASK Channel Comite International Special des Perturbations Radioelectriques CISPR P_{ST} short-term flicker severity Corr. Correction QAM Quadrature Amplitude Modulation CPE QP Customer premise equipment Quasi-Peak CW Continuous Wave QPSK Quadri-Phase Shift Keying DBPSK Differential BPSK r.m.s., RMS Root Mean Square DC Direct Current RBW Resolution Band Width DET Detector RE Radio Equipment REV D-factor Distance factor Reverse maximum absolute voltage change during an observation period Radio Frequency DOPSK RFID Differential OPSK Radio Frequency Identifier DSSS RSS Direct Sequence Spread Spectrum Radio Standards Specifications EDR Enhanced Data Rate Rx e.i.r.p., EIRP Equivalent Isotropically Radiated Power SINAD Ratio of (Signal + Noise + Distortion) to (Noise + Distortion) EM clamp Electromagnetic clamp S/N Signal to Noise ratio EMC ElectroMagnetic Compatibility SA, S/A Spectrum Analyzer EMI ElectroMagnetic Interference SG Signal Generator SVSWR EMS ElectroMagnetic Susceptibility Site-Voltage Standing Wave Ratio EN European Norm THC(A) Total Harmonic Current e.r.p., ERP THD(%) Total Harmonic Distortion Effective Radiated Power European Union Test Receiver EUT Equipment Under Test TxTransmitting VBW Video BandWidth Fac. Factor FCC Federal Communications Commission Vertical Vert. WI.AN FHSS Frequency Hopping Spread Spectrum Wireless LAN xDSL. FM Generic term for all types of DSL technology Frequency Modulation Frequency (DSL: Digital Subscriber Line) Freq **FSK** Frequency Shift Keying Fund Fundamental **FWD** Forward **GFSK** Gaussian Frequency-Shift Keying **GNSS** Global Navigation Satellite System

UL Japan, Inc. Ise EMC Lab.

GPS

Hori.

ICES

I/O

IEC

IEEE

IF

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Global Positioning System

Intermediate Frequency

Interference-Causing Equipment Standard

International Electrotechnical Commission

Institute of Electrical and Electronics Engineers

Horizontal

Input/Output

Test report No.
Page
Issued date
FCC ID

: 13523460H-A : 4 of 23 : October 20, 2020 : HYQ23ABP

CONTENTS PAGE SECTION 1: Equipment under test (EUT)......5 **SECTION 2: SECTION 3:** Operation of EUT during testing......10 **SECTION 4: SECTION 5:** APPENDIX 1: Test data ______14 Radiated Emission 14 Test instruments _______20 **APPENDIX 2: APPENDIX 3:**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523460H-A
Page : 5 of 23
Issued date : October 20, 2020
FCC ID : HYQ23ABP

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1, Showa-cho, Kariya-shi, Aichi-ken, 448-8661, Japan

Telephone Number : +81-566-63-7723 Facsimile Number : +81-566-25-4792 Contact Person : KOUJI MURAYAMA

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Remote Keyless Entry System and TPMS (Receiver)

Model Number : 23ABP

Serial Number : Refer to SECTION 4.2 Receipt Date : October 5, 2020

Country of Mass-production : Japan, China, United States of America

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523460H-A
Page : 6 of 23
Issued date : October 20, 2020
FCC ID : HYQ23ABP

2.2 Product Description

Model: 23ABP (referred to as the EUT in this report) is a Remote Keyless Entry System and TPMS (Receiver).

23ABP has 6 variations. For details of variations, see "Theory of Operation".

Feature of EUT:

<RKES mode>

RKE System is mainly used for locking or unlocking the doors of the vehicle. The transmitter sends a radio wave signal, while the button is pushed. The receiver becomes active in response to the signal from the transmitter.

<TPMS mode>

Tire Pressure Monitoring System is used for monitoring and indicating information of air pressure in vehicle's tires. Transmitter sends receiver the data that informs air pressure in vehicle's tire to the receiver. The data also includes the information of temperature, battery voltage and identity code of transmitter. The receiver judges the data, and if the data of air pressure and others is not in a normal condition, the receiver sends signal to a warning lamp. Then, the warning lamp warns drivers.

Type of receiving system : Super-heterodyne

Frequency of Operation : RKES (CH1): 433.58 MHz

RKES (CH2): 434.42 MHz TPMS: 433.90 MHz

Oscillator Frequency : 30.265 MHz Crystal
Type of Modulation : RKES: FSK (F1D)

TPMS: FSK (F1D)

Power Supply : DC 12.0 V

Antenna Type : Internal antenna (Inverse F antenna / Inverse L antenna)

Voltage Controlled Oscillator : RKES (CH1): 1733.20 MHz

RKES (CH2): 1736.56 MHz TPMS: 1734.48 MHz

* RKES : Remote Keyless Entry System
TPMS : Tire Pressure Monitoring System

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 13523460H-A Test report No. Page : 7 of 23 **Issued date** : October 20, 2020 FCC ID

: HYQ23ABP

SECTION 3: Test specification, procedures & results

3.1 **Test Specification**

Test Specification FCC Part 15 Subpart B

FCC Part 15 final revised on June 26, 2020 and effective July 27, 2020

Title FCC 47CFR Part15 Radio Frequency Device

Subpart B Unintentional Radiators

3.2 Procedures and results

Item	Test Procedure	Limits	Deviation	Worst margin	Result	Remarks	
Conducted emission	FCC: ANSI C63.4: 2014 7. AC power - line conducted emission measurements	FCC:Part 15 Subpart B 15.107(a)	N/A	N/A	N/A	*1)	
	ISED: RSS-Gen 7.1	ISED: RSS-Gen 7.2					
Radiated emission	FCC: ANSI C63.4: 2014 8. Radiated emission measurements	FCC: Part 15 Subpart B 15.109(a)	N/A	21.82 dB 868.280 MHz, Vertical, QP	Complied a)	-	
	ISED: RSS-Gen 7.1	ISED: RSS-Gen 7.3		<mode 2=""></mode>			
Antenna Terminal	FCC: ANSI C63.4: 2014 12. Measurement of unintentional radiators other than ITE	FCC: Part 15 Subpart B 15.111(a)	N/A	N/A	N/A	*2)	
	ISED: - RSS-Gen 7.1	ISED: RSS-Gen 7.4					

^{*}Note: UL Japan, Inc's EMI Work Procedure 13-EM-W0420.

a) Refer to APPENDIX 1 (data of Radiated Emission)

Symbols:

The data of this test item has enough margin, more than the measurement uncertainty. Complied

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*2)} The receiving antenna (of this EUT) is installed inside the EUT and cannot be removed (permanently attached). Therefore, Radiated emission test was performed.

Test report No. : 13523460H-A
Page : 8 of 23
Issued date : October 20, 2020
FCC ID : HYQ23ABP

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency	range	Uncertainty (+/-)
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	5.0 dB
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB
		(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	4.8 dB
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB
		(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz		4.9 dB
	6 GHz to 18 GHz		5.2 dB
1 m	10 GHz to 26.5 GHz		5.5 dB
	26.5 GHz to 40 GHz		5.5 dB
0.5 m	26.5 GHz to 40 GHz		5.5 dB
10 m	1 GHz to 18 GHz		5.2 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523460H-A
Page : 9 of 23
Issued date : October 20, 2020
FCC ID : HYQ23ABP

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

* AZLA Certificate Number: 5107.02/ FCC Test Firm Registration Number: 199967 / ISED Lab Company Number: 2973C

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test) : $2.0 \text{ m} \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13523460H-A

 Page
 : 10 of 23

 Issued date
 : October 20, 2020

 FCC ID
 : HYQ23ABP

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

Mode		Remarks
Mode1)	RKES Receiving mode (433.58 MHz)	-
Mode2	RKES Receiving mode (434.42 MHz)	
Mode3	TPMS Receiving mode (433.90 MHz)	
* EUT w	as set by the software as follows;	
Software	19CY Ver.1.0 82h00h	

^{*}The test signal level was confirmed to be sufficient to stabilize the local oscillator of the EUT.

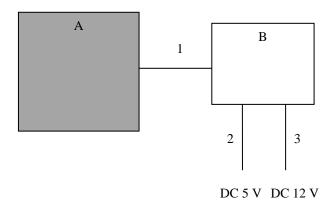
As a result, enough margin for the limit was observed.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Tuning was confirmed to be locked on each mode by checking local oscillator frequency to be stable using a search-coil.

^{*}The tests were performed only with variation No.1 which was the worst variation, after the test results were compared among Variation No.1 to 6 (the table in "Theory of Operation Variation") at pre-check.

 Test report No.
 : 13523460H-A


 Page
 : 11 of 23

 Issued date
 : October 20, 2020

 FCC ID
 : HYQ23ABP

Configuration and peripherals

4.2

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Remote Keyless Entry System and TPMS (Receiver)	23ABP	1 *1)	DENSO CORPORATION	EUT
В	Jig	TPMS-RKE/SMART check bench	3	DENSO CORPORATION	-

List of cables used

No.	Name	Length (m)	Shi	Remarks	
			Cable	Connector	
1	Signal Cable and power	1.2	Unshielded	Unshielded	-
2	DC Cable	1.0	Unshielded	Unshielded	-
3	DC Cable	1.6	Unshielded	Unshielded	-

*1) **Variations owing to antenna matching (Inverse F Antenna Type)** *See "Theory of Operation" for details. TYPE1 which was used for the tests has (a) "Resistance 0 ohm",(b) "Nothing", (c) "Nothing" and (d) "Nothing". The result of Radiated emission test was mainly from characteristics of Local Oscillator.

If the range of (a), (b), (c), and (d) becomes "Capacitor 0.1-1000pF" or "Inductor 1nH to 100nH", there is no influence on the result of Radiated emission test.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Item No. A includes Receiver Antenna.

Test report No. : 13523460H-A
Page : 12 of 23
Issued date : October 20, 2020
FCC ID : HYQ23ABP

SECTION 5: Radiated Emission

5.1 Operating environment

Test place : No.3 semi anechoic chamber

Temperature : See data Humidity : See data

5.2 Test configuration

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The EUT was set on the edge of the tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength.

Photographs of the set up are shown in Appendix 3.

5.3 Test conditions

Frequency range : 30 MHz - 200 MHz (Biconical antenna) / 200 MHz - 1000 MHz (Logperiodic antenna)

1000 MHz - 10000 MHz (Horn antenna)

Test distance : 3 m EUT position : Table top EUT operation mode : See Clause 4.1

5.4 Test procedure

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver.

The radiated emission measurements were made with the following detector function of the Test Receiver.

For above 1 GHz, test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

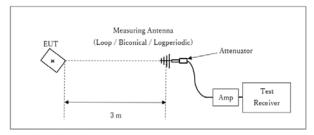
Frequency	Below 1GHz	Above 1GHz *1)
Instrument used	Test Receiver	Test Receiver
IF Bandwidth	QP: BW 120 kHz	PK: BW 1 MHz, CISPR AV: BW 1 MHz

^{*1)} The measurement data was adjusted to a 3 m distance using the following Distance Factor. Distance Factor: See Figure 2.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

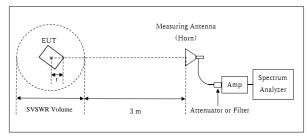
 Test report No.
 : 13523460H-A


 Page
 : 13 of 23

 Issued date
 : October 20, 2020

 FCC ID
 : HYQ23ABP

Figure 2: Test Setup


Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz - 10 GHz

* Test Distance: (3 + SVSWR Volume /2) - r = 3.8 m

Distance Factor: $20 \times \log (3.8 \text{ m}^*/3.0 \text{ m}) = 2.06 \text{ dB}$

SVSWR Volume: 2 m (SVSWR Volume has been calibrated based on CISPR

16-1-4.) r = 0.2 m

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

- The noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

5.5 Test result

Summary of the test results: Pass

The limit is rounded down to one decimal place.

The test result is rounded off to one or two decimal places, so some differences might be observed.

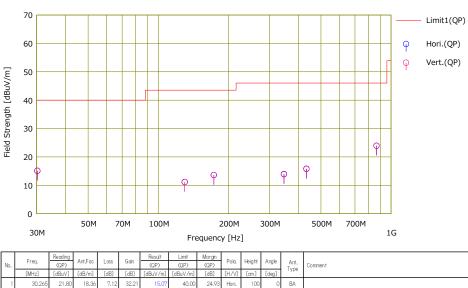
Date: October 8, 2020 Test engineer: Tomohisa Nakagawa October 9, 2020 Akihiko Maeda

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523460H-A
Page : 14 of 23
Issued date : October 20, 2020
FCC ID : HYQ23ABP

APPENDIX 1: Test data

Radiated Emission


Report No. 13523460H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 8, 2020
Temperature / Humidity 22 deg. C / 61 % RH
Engineer Tomohisa Nakagawa
(Below 1 GHz)

Mode 1

Limit: FCC_Part 15 Subpart B(15.109)_Class B

	Frea.	Reading	Ant Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle		
No.		(QP)				(QP)	(QP)	(QP)				Ant. Type	Comment
\vdash	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	(dB)	[H/V]	[cm]	[deg]		
1	30.265	21.80	18.36	7.12	32.21	15.07	40.00	24.93		100	0	BA	
2		20.90	13.83	8.51	32.10	11.14	43.50	32.36	Hori.	100	0		
3	t	20.80	15.88	8.96	32.04	13,60	43.50	29.90	Hori.	100	0		
4	346,640	20.60	14.95	10.39	31.98	13.96	46.00	32.04	Hori.	100	0	LA22	
5	433,300	20.60	16.15	10.99	31.99	15.75	46.00	30.25	Hori.	100	0	LA22	
6	866,600	19.90	21.67	13.42	31.08	23.91	46.00	22.09	Hori.	100	0	LA22	
7	30.265	21.80	18.36	7.12	32.21	15.07	40.00	24.93	Vert.	100	0	BA	
8	129.990	20.90	13.83	8.51	32.10	11.14	43.50	32.36	Vert.	100	0	BA	
9	173.320	20.80	15.88	8.96	32.04	13,60	43.50	29.90	Vert.	100	0	BA	
10	346,640	20.50	14.95	10.39	31.98	13.86	46.00	32.14	Vert.	100	0	LA22	
11	433,300	20.70	16.15	10.99	31.99	15.85	46.00	30.15	Vert.	100	0	LA22	
12	866,600	19.90	21.67	13.42	31.08	23.91	46.00	22.09	Vert.	100	0	LA22	
	1												
						l							
	1												
_	1												

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS(CABLE + ATT) - GAIN(AMP)

Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13523460H-A

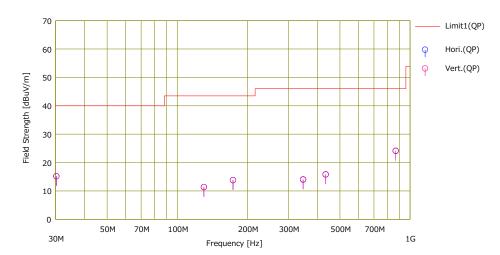
 Page
 : 15 of 23

 Issued date
 : October 20, 2020

 FCC ID
 : HYQ23ABP

Radiated Emission

Report No. 13523460H Test place Ise EMC Lab.


Semi Anechoic Chamber No.3

Date October 8, 2020
Temperature / Humidity Engineer Tomohisa Nakagawa

(Below 1 GHz)

Mode 2

Limit: FCC_Part 15 Subpart B(15.109)_Class B

No.	Freq.	Reading (QP)	Ant Fac	Loss	Gain	Result (QP)	Limit (QP)	Margin (QP)	Pola	Height	Angle	Ant.	Comment
1	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	(dB)	[H/V]	[cm]	[deg]	Type	Common
1	30.265	21.90	18.36	7.12	32.21	15.17	40.00	24.83	Hori.	100	0	BA	
2	130.242	21.10	13.84	8.51	32.10	11.35	43.50	32.15	Hori.	100	0	BA	
3	173,656	21.00	15.89	8.96	32.04	13.81	43.50	29.69	Hori.	100	0	BA	
4	347.312	20.60	14.97	10.39	31.98	13.98	46.00	32.02	Hori.	100	0	LA22	
- 5	434.140	20.60	16.16	11.00	31.99	15.77	46.00	30.23	Hori.	100	0	LA22	
6	868.280	20.10	21.62	13.43	31.07	24.08	46.00	21.92	Hori.	100	0	LA22	
7	30.265	21.90	18.36	7.12	32.21	15.17	40.00	24.83	Vert.	100	0	BA	
8	130.242	21.10	13.84	8.51	32.10	11.35	43.50	32.15	Vert.	100	0	BA	
9	173.656	21.00	15.89	8.96	32.04	13.81	43.50	29.69	Vert.	100	0	BA	
10	347.312	20.70	14.97	10.39	31.98	14.08	46.00	31.92	Vert.	100	0	LA22	
11	434,140	20.70	16.16	11.00	31.99	15.87	46.00	30.13	Vert.	100	0	LA22	
12	868.280	20.20	21.62	13.43	31.07	24.18	46.00	21.82	Vert.	100	0	LA22	

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN

CALCULATION: RESULT = READING + ANT FACTOR + LOSS(CABLE + ATT) - GAIN(AMP)

Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13523460H-A

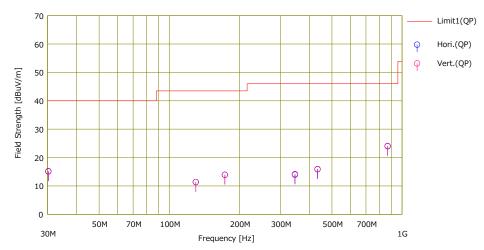
 Page
 : 16 of 23

 Issued date
 : October 20, 2020

 FCC ID
 : HYQ23ABP

Radiated Emission

Report No. 13523460H Test place Ise EMC Lab.


Semi Anechoic Chamber No.3

Date October 8, 2020
Temperature / Humidity Engineer Tomohisa Nakagawa

(Below 1 GHz)

Mode Mode 3

Limit: FCC_Part 15 Subpart B(15.109)_Class B

	-	Reading		. 1	0.1	Result	Limit	Margin	Б.				
No.	Freq.	(QP)	Ant Fac	Loss	Gain	(QP)	(QP)	(QP)	Pola.	Height	Angle	Ant. Type	Comment
\vdash	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	1900	
1	30.265	21.90	18.36	7.12	32.21	15.17	40.00	24.83	Hori.	100	0	BA	
2	130.086	21.10	13.84	8.51	32.10	11.35	43.50	32.15	Hori.	100	0	BA	
3	173.448	21.10	15.88	8.96	32.04	13.90	43.50	29.60	Hori.	100	0	BA	
4	346.896	20.60	14.96	10.39	31.98	13,97	46.00	32.03	Hori.	100	0	LA22	
5	433.620	20.70	16.15	10.99	31.99	15,85	46.00	30.15	Hori.	100	0	LA22	
6	867.240	20.00	21.64	13.42	31.08	23.98	46.00	22.02	Hori.	100	0	LA22	
7	30.265	21.80	18.36	7.12	32.21	15.07	40.00	24.93	Vert.	100	0	BA	
8	130.086	21.10	13.84	8.51	32.10	11.35	43.50	32.15	Vert.	100	0	BA	
9	173.448	21.10	15.88	8.96	32.04	13.90	43.50	29.60	Vert.	100	0	BA	
10	346.896	20.80	14.96	10.39	31.98	14,17	46.00	31.83	Vert.	100	0	LA22	
11	433.620	20.80	16.15	10.99	31.99	15.95	46.00	30.05	Vert.	100	0	LA22	
12	867.240	20.10	21.64	13.42	31.08	24.08	46.00	21.92	Vert.	100	0	LA22	

CHART: WITH FACTOR

 $ANT\ TYPE: -30\ MHz:\ LOOP,\ 30\ MHz-200\ MHz:\ BICONICAL,\ 200\ MHz-1000\ MHz:\ LOGPERIODIC,\ 1000\ MHz-:\ HORN-1000\ MHz$

CALCULATION: RESULT = READING + ANT FACTOR + LOSS(CABLE + ATT) - GAIN(AMP)

Except for the above table: adequate margin data below the limits.

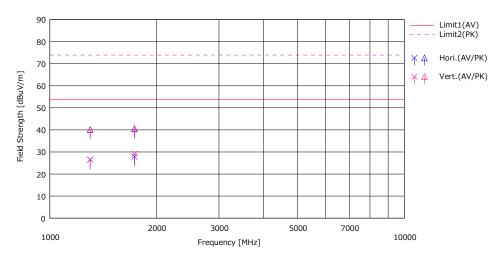
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523460H-A Page : 17 of 23 **Issued date** : October 20, 2020 FCC ID : HYQ23ABP

Radiated Emission

Report No. 13523460H Test place Ise EMC Lab.


Semi Anechoic Chamber No.3

October 9, 2020 Temperature / Humidity 21 deg. C / 65 % RH Engineer Akihiko Maeda

(Above 1 GHz)

Mode 1 Mode

Limit : FCC_Part 15 Subpart B(15.109)_Class B

	F	Red	ding	Ant Fac	1	0.4	Re:	sult	Li	nit	Ma	rgin	Pola.	The Series	Annels		
No.	Freq.	(AV)	(PK)		Loss	Gain	(AV)	(PK)	(AV)	(PK)	(AV)	(PK)		Height		Ant. Type	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	[cm]	[deg]		
1	1299.900	31.50	45.10	25.82	3.85	34.62	26.55	40.15	53.90	73.90	27.35	33.75	Hori.	100	0	H20	
2	1733.200	32.30	44.80	24.99	4.15	33.54	27.90	40.40	53.90	73.90	26.00	33.50	Hori.	100	273	H20	
3	1299.900	31.50	45.10	25.82	3.85	34.62	26.55	40.15	53.90	73.90	27.35	33.75	Vert.	100	0	H20	
4	1733.200	33.50	45.00	24.99	4.15	33.54	29.10	40.60	53.90	73.90	24.80	33,30	Vert.	100	37	H20	
\Box																	

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN

 $CALCULATION: RESULT = READING + ANT\ FACTOR + LOSS(CABLE + D\text{-}factor) - GAIN(AMP)$

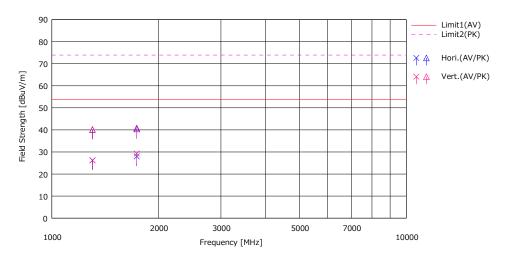
Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523460H-A Page : 18 of 23 **Issued date** : October 20, 2020 FCC ID : HYQ23ABP

Radiated Emission


Report No. 13523460H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

October 9, 2020 Temperature / Humidity 21 deg. C / 65 % RH Engineer Akihiko Maeda (Above 1 GHz)

Mode 2 Mode

Limit: FCC_Part 15 Subpart B(15.109)_Class B

	F	Red	ding	A - 4 E	1	0.4.	Result		Li	nit	Mai	rgin	D.I.	I le tele a	Anni		
No.	Freq.	(AV) (PK)	(PK)	Ant Fac		Gain	(AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pola.		Angle	Ant. Type	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	[cm]	[deg]	1,900	
1	1302,420	31.20	45.10	25.81	3.85	34.62	26.24	40.14	53.90	73.90	27.66	33.76	Hori.	100	0	H20	
2	1736.560	32.40	44.80	24.99	4.15	33.54	28.00	40.40	53.90	73.90	25.90	33.50	Hori.	100	270	H20	
3	1302.420	31.20	45.10	25.81	3.85	34.62	26.24	40.14	53.90	73.90	27.66	33.76	Vert.	100	0	H20	
4	1736.560	33.70	45.30	24.99	4.15	33.54	29.30	40.90	53.90	73.90	24.60	33.00	Vert.	100	38	H20	

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN

 $CALCULATION: RESULT = READING + ANT\ FACTOR + LOSS(CABLE + D\text{-}factor) - GAIN(AMP)$

Except for the above table: adequate margin data below the limits.

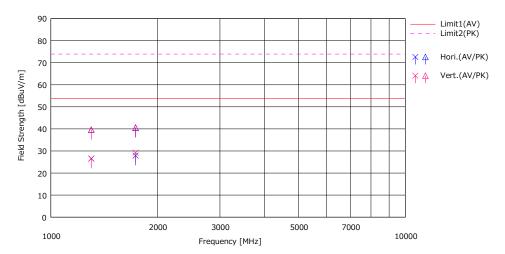
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523460H-A
Page : 19 of 23
Issued date : October 20, 2020
FCC ID : HYQ23ABP

Radiated Emission

Report No. 13523460H Test place Ise EMC Lab.


Semi Anechoic Chamber No.3

Date October 9, 2020
Temperature / Humidity 21 deg. C / 65 % RH
Engineer Akihiko Maeda

(Above 1 GHz)

Mode 3

Limit : FCC_Part 15 Subpart B(15.109)_Class B

	Freq.	Reading		Ant.Fac	1	Gain		Result		Limit		Margin		The Series	Anale		
No.		(AV)	(PK)				(AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pola.	- v	_ ~	Ant. Type	Comment
ш	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]		[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	[cm]	[deg]		
1	1300.860	31.50	44.60	25.82	3.85	34.62	26.55	39.65	53.90	73.90	27.35	34.25	Hori.	100	0	H20	
2	1734.480	32.30	44.90	24.99	4.15	33.54	27.90	40.50	53.90	73.90	26,00	33.40	Hori.	100	275	H20	
3	1300.860	31.50	44.60	25.82	3.85	34.62	26.55	39.65	53.90	73.90	27.35	34.25	Vert.	100	0	H20	
4	1734.480	33.60	45.00	24.99	4.15	33.54	29.20	40.60	53.90	73.90	24.70	33.30	Vert.	100	36	H20	
1 1																	
1 1																	
1 1																	
ш																	

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN

 $CALCULATION: RESULT = READING + ANT\ FACTOR + LOSS(CABLE + D-factor) - GAIN(AMP)$

Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13523460H-A

 Page
 : 20 of 23

 Issued date
 : October 20, 2020

 FCC ID
 : HYQ23ABP

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/07/2020	12
RE	MMM-08	141532	DIGITAL HITESTER	Hioki	3805	51201197	01/06/2020	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
	COTS-ME MI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAT-95	142314	Attenuator	Pasternack	PE7390-6	D/C 1504	06/17/2020	12
RE	MBA-03	141424	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103+BBA9106	1915	08/13/2020	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/06/2020	12
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-191	08/13/2020	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/10/2020	12
RE	MTR-08	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	08/18/2020	12
	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/08/2019	24
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	03/10/2020	12
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	258	10/01/2020	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/ 1902S579(5m)	03/02/2020	12
RE	MPA-11	141580	1	Keysight Technologies Inc	83017A	MY39500779	03/24/2020	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN