

RADIO TEST REPORT

Test Report No. : 11796085H-A-R1

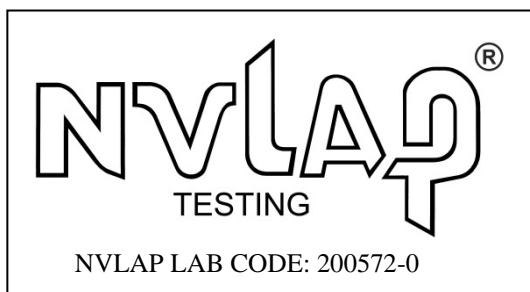
Applicant : DENSO CORPORATION

Type of Equipment : Electronic Key

Model No. : 14FBN

Test regulation : FCC Part 15 Subpart C: 2017

FCC ID : HYQ14FBN


Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
2. The results in this report apply only to the sample tested.
3. This sample tested is in compliance with above regulation.
4. The test results in this report are traceable to the national or international standards.
5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
7. This report is a revised version of 11796085H-A.

Date of test: July 5 and 6, 2017

Representative test engineer:
Shinya Watanabe
Engineer
Consumer Technology Division

Approved by:
Motoya Imura
Engineer
Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation.
*As for the range of Accreditation in NVLAP, you may refer to the WEB address,
http://japan.ul.com/resources/emc_accredited/

**UL Japan, Inc.
Ise EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

13-EM-F0429

REVISION HISTORY

Original Test Report No.: 11796085H-A

UL Japan, Inc.

UE Japan, Inc. Ise EMC Lab.

Ise EMC Lab.
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

4383-326 Asama-cho, Ise-shi, Mie-Ke
Telephone : +81 596 24 8999

Telephone : +81 596 24 8999
Facsimile : +81 596 24 8124

CONTENTS	PAGE
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	5
SECTION 4: Operation of E.U.T. during testing	8
SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission) 9	
SECTION 6: Automatically deactivate	10
SECTION 7: -20 dB and 99 % Occupied Bandwidth	10
APPENDIX 1: Test data	11
Automatically deactivate.....	11
Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission).....	12
-20dB and 99% Occupied Bandwidth.....	15
APPENDIX 2: Test Instruments	17
APPENDIX 3: Photographs of test setup	18
Radiated emission	18
Worst case position	19

SECTION 1: Customer information

Company Name : DENSO CORPORATION
Address : 1-1 Showa-cho, Kariya-shi, Aichi-ken, 448-8661 Japan
Telephone Number : +81-566-20-3955
Facsimile Number : +81-566-25-4837
Contact Person : TAKAYUKI HATTORI

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Electronic Key
Model No. : 14FBN
Serial No. : Refer to Clause 4.2
Rating : DC 3.0 V
Receipt Date of Sample : June 21, 2017
Country of Mass-production : Japan
Condition of EUT : Engineering prototype
(Not for Sale: This sample is equivalent to mass-produced items.)
Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: 14FBN (referred to as the EUT in this report) is the Electronic Key.

Radio Type : Transceiver
Frequency of Operation : 314.35 MHz / 312.10 MHz*
*These two different frequencies are not emitted simultaneously.
Clock frequency(ies) in the system : 27.6 MHz Crystal
Modulation : FSK (F1D)
Power Supply (radio part input) : DC 3.0 V
Type of Battery : One lithium battery
Antenna type : Built-in type (Fixed)
Receiving frequency of Operation : 125 kHz *1)

*1) The test of receiver part was performed separately from this test report, and the conformability is confirmed.

* Original model: 14FBN has two types; Type A and Type B.
The worst case was confirmed with Type A and Type B at pre check.
The test was performed with Type A, which had the worst result.

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C
 FCC Part 15 final revised on September 1, 2017 and effective October 2, 2017

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators
 Section 15.231 Periodic operation in the band 40.66 - 40.70MHz
 and above 70MHz

* The revision on September 1, 2017, does not affect the test specification applied to the EUT.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	N/A	N/A*1)	-
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods IC: -	FCC: Section 15.231(a)(1) IC: RSS-210 A1.1	N/A	Complied	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 6.12	FCC: Section 15.231(b) IC: RSS-210 A1.2	1.5 dB Horizontal PK with Duty factor (Tx 312.10 MHz)	Complied	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 6.13	FCC: Section 15.205 Section 15.209 Section 15.231(b) IC: RSS-210 A1.2, 4.4 RSS-Gen 8.9	10.7 dB 3143.500 MHz Horizontal PK with Duty factor (Tx 314.35 MHz)	Complied	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods IC: -	FCC: Section 15.231(c) IC: Reference data	N/A	Complied	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.
 *1) The test is not applicable since the EUT does not have AC Mains.

FCC 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

**UL Japan, Inc.
Ise EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied Bandwidth	IC: RSS-Gen 6.6	IC: RSS-210 A1.1.3	N/A	Complied	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor $k = 2$.

Polarity	Radiated emission (Below 1 GHz)			
	(3 m*)(+/-)		(10 m*)(+/-)	
	30 MHz to 200 MHz	200 MHz to 1000 MHz	30 MHz to 200 MHz	200 MHz to 1000 MHz
Horizontal	5.0 dB	5.3 dB	5.0 dB	5.0 dB
Vertical	5.2 dB	6.3 dB	5.0 dB	5.0 dB

Radiated emission (Above 1 GHz)				
(3 m*)(+/-)		(1 m*)(+/-)		(10 m*)(+/-)
1 GHz to 6 GHz	6 GHz to 18 GHz	10 GHz to 26.5 GHz	26.5 GHz to 40 GHz	1 GHz to 18 GHz
5.2 dB	5.5 dB	5.5 dB	5.4 dB	5.5 dB

* Measurement distance

Radiated emission test(3 m)

[Electric Field Strength of Fundamental Emission]

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

[Electric Field Strength of Spurious Emission]

The data listed in this test report has enough margin, more than the site margin.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	4.0 x 4.5 x 2.7m	4.0 x 4.5 m	-
No.6 measurement room	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	8.0 x 4.6 x 2.8m	2.4 x 2.4m	-
No.11 measurement room	-	6.2 x 4.7 x 3.0m	4.8 x 4.6m	-

* Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

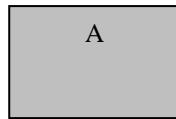
3.6 Test data, Test instruments, and Test set up.

Refer to APPENDIX.

**UL Japan, Inc.
Ise EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999


Facsimile : +81 596 24 8124

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test Item	Mode
Automatically Deactivate	Normal use mode, 314.35 MHz Normal use mode, 312.10 MHz
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx), 314.35 MHz *1)
Electric Field Strength of Spurious Emission -20dB & 99% Occupied Bandwidth	Transmitting mode (Tx), 312.10 MHz *1)
* The system was configured in typical fashion (as a customer would normally use it) for testing. *1) End users cannot change the settings of the output power of the product.	

4.2 Configuration and peripherals

* Setup was taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Electronic Key	14FBN	No.1 *1) No.2 *2)	DENSO CORPORATION	EUT

*1) Used for Transmitting mode.

*2) Used for Normal use mode.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength.

Photographs of the set up are shown in Appendix 3.

[Transmitting mode]

(Below 30 MHz)

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

(Above 30 MHz)

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of 3 m.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with Duty factor	Peak and Peak with Duty factor
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz, VBW: 3 MHz

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

This EUT has two modes which mechanical key is inserted or not. The worst case was confirmed with and without mechanical key, as a result, the test with mechanical key was the worst case. Therefore the test with mechanical key was performed only.

*The result is rounded off to the second decimal place, so some differences might be observed.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Measurement range : 9 kHz - 3.2 GHz
Test data : APPENDIX
Test result : Pass

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

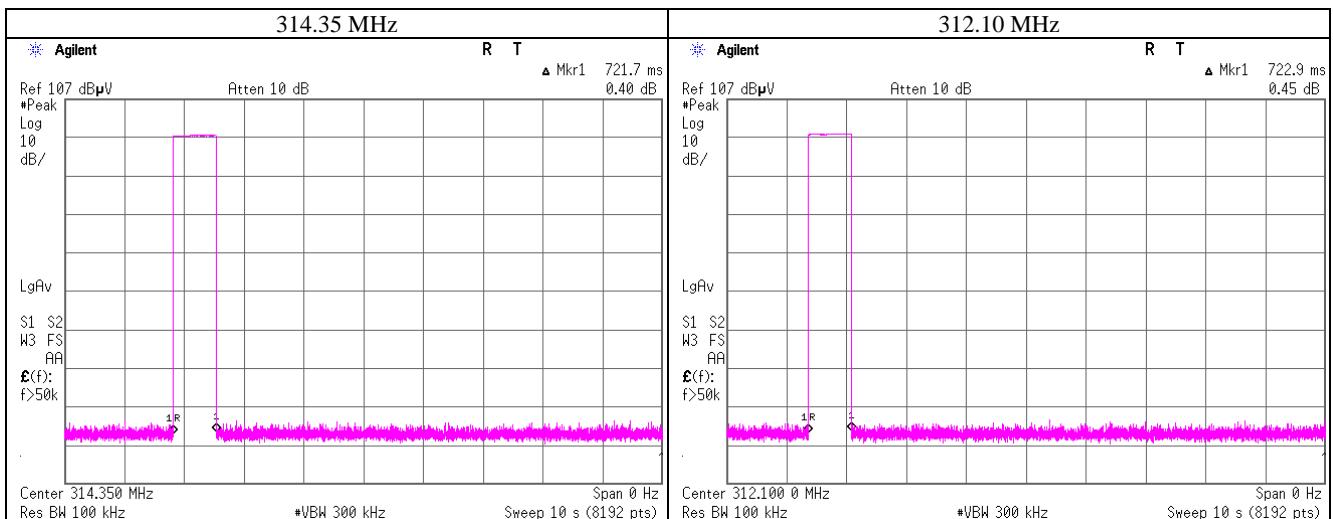
Test data : APPENDIX
Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	150 kHz	1.5 kHz	5.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Peak hold was applied as Worst-case measurement.							


Test data : APPENDIX
Test result : Pass

APPENDIX 1: Test data

Automatically deactivate

Test place Ise EMC Lab. No.2 Measurement Room
 Report No. 11796085H
 Date 07/05/2017
 Temperature/ Humidity 22 deg. C / 73 % RH
 Engineer Shinya Watanabe
 Mode Normal use mode

Tx Freq	Time of Transmitting [sec]	Limit [sec]	Result
314.35 MHz	0.7217	5.00	Pass
312.10 MHz	0.7229	5.00	Pass

* The test was performed by a button-pressed operation as representative, because the EUT transmits UHF when LF signal is received from a car or a button on the EUT is pressed, and the UHF transmission is stopped within 5 seconds even when receiving request signal.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber
 Report No. 11796085H
 Date 07/05/2017 07/06/2017
 Temperature/ Humidity 22 deg. C / 73 % RH 23 deg. C / 56 % RH
 Engineer Shinya Watanabe Shinya Watanabe
 (Below 1GHz) (Above 1GHz)
 Mode Transmitting mode 314.35 MHz

Frequency [MHz]	Detector	Reading [dBuV]		Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]		Limit [dBuV/m]	Margin [dB]		Remark Inside or Outside of Restricted Bands
		Hor	Ver					Hor	Ver		Hor	Ver	
314.350	PK	78.4	74.5	13.8	9.0	27.3	-	73.9	70.0	95.5	21.6	25.5	Carrier
628.700	PK	31.7	32.1	19.3	10.2	27.9	-	33.3	33.7	75.5	42.2	41.8	Outside
943.050	PK	28.3	29.4	22.3	11.4	26.5	-	35.5	36.6	75.5	40.0	38.9	Outside
1257.400	PK	46.7	46.4	24.7	3.7	35.5	-	39.6	39.3	75.5	35.9	36.2	Outside
1571.750	PK	46.5	46.9	26.0	3.9	35.1	-	41.3	41.7	73.9	32.6	32.2	Inside
1886.100	PK	46.4	46.6	27.0	4.0	34.9	-	42.5	42.7	75.5	33.0	32.8	Outside
2200.450	PK	45.3	44.6	27.2	4.2	34.7	-	42.0	41.3	73.9	31.9	32.6	Inside
2514.800	PK	45.6	45.3	27.0	4.4	34.6	-	42.4	42.1	75.5	33.1	33.4	Outside
2829.150	PK	44.6	44.8	27.6	4.6	34.6	-	42.2	42.4	73.9	31.7	31.5	Inside
3143.500	PK	46.5	46.3	28.1	4.7	34.5	-	44.8	44.6	75.5	30.7	30.9	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amplifier)

PK with Duty factor

Frequency [MHz]	Detector	Reading [dBuV]		Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]		Limit [dBuV/m]	Margin [dB]		Remark
		Hor	Ver					Hor	Ver		Hor	Ver	
314.350	PK	78.4	74.5	13.8	9.0	27.3	0.0	73.9	70.0	75.5	1.6	5.5	Carrier
628.700	PK	31.7	32.1	19.3	10.2	27.9	0.0	33.3	33.7	55.5	22.2	21.8	Outside
943.050	PK	28.3	29.4	22.3	11.4	26.5	0.0	35.5	36.6	55.5	20.0	18.9	Outside
1257.400	PK	46.7	46.4	24.7	3.7	35.5	0.0	39.6	39.3	55.5	15.9	16.2	Outside
1571.750	PK	46.5	46.9	26.0	3.9	35.1	0.0	41.3	41.7	53.9	12.6	12.2	Inside
1886.100	PK	46.4	46.6	27.0	4.0	34.9	0.0	42.5	42.7	55.5	13.0	12.8	Outside
2200.450	PK	45.3	44.6	27.2	4.2	34.7	0.0	42.0	41.3	53.9	11.9	12.6	Inside
2514.800	PK	45.6	45.3	27.0	4.4	34.6	0.0	42.4	42.1	55.5	13.1	13.4	Outside
2829.150	PK	44.6	44.8	27.6	4.6	34.6	0.0	42.2	42.4	53.9	11.7	11.5	Inside
3143.500	PK	46.5	46.3	28.1	4.7	34.5	0.0	44.8	44.6	55.5	10.7	10.9	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Sample calculation:

Result of PK = Reading + Ant Factor + Loss (Cable + Attenuator +Filter) - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amplifier) + Duty factor

For above 1GHz : Distance Factor: $20 \times \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Since the peak emission result satisfied the average limit, duty factor was omitted.

The result of AV (PK with Duty factor) was calculated by applying Duty 100%.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place	Ise EMC Lab. No.2 Semi Anechoic Chamber					
Report No.	11796085H					
Date	07/05/2017					
Temperature/ Humidity	22 deg. C / 73 % RH					
Engineer	Shinya Watanabe (Below 1GHz) (Above 1GHz)					
Mode	Transmitting mode 312.10 MHz					

PK		Detector	Reading [dBuV]		Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]		Limit [dBuV/m]	Margin [dB]		Remark Inside or Outside of Restricted Bands
Frequency [MHz]	Hor	Ver	Hor	Ver					Hor	Ver		Hor	Ver	
312.100	PK	78.5	74.8	13.7	8.9	27.2	-	73.9	70.2	95.4	21.5	25.2	Carrier	
624.200	PK	32.6	33.5	19.3	10.2	27.9	-	34.2	35.1	75.4	41.2	40.3	Outside	
936.300	PK	28.7	28.8	22.3	11.4	26.6	-	35.8	35.9	75.4	39.6	39.5	Outside	
1248.400	PK	46.7	46.3	24.7	3.7	35.5	-	39.6	39.2	75.4	35.8	36.2	Outside	
1560.500	PK	45.9	46.0	26.0	3.9	35.2	-	40.6	40.7	73.9	33.3	33.2	Inside	
1872.600	PK	45.2	45.0	27.0	4.0	34.9	-	41.3	41.1	75.4	34.1	34.3	Outside	
2184.700	PK	44.9	44.9	27.2	4.2	34.7	-	41.6	41.6	75.4	33.8	33.8	Outside	
2496.800	PK	45.1	45.8	27.0	4.4	34.6	-	41.9	42.6	73.9	32.0	31.3	Inside	
2808.900	PK	45.3	45.1	27.6	4.6	34.6	-	42.9	42.7	73.9	31.0	31.2	Inside	
3121.000	PK	45.6	44.8	28.0	4.7	34.5	-	43.8	43.0	75.4	31.6	32.4	Outside	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amplifier)

PK with Duty factor		Detector	Reading [dBuV]		Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]		Limit [dBuV/m]	Margin [dB]		Remark
Frequency [MHz]	Hor	Ver	Hor	Ver					Hor	Ver		Hor	Ver	
312.100	PK	78.5	74.8	13.7	8.9	27.2	0.0	73.9	70.2	75.4	1.5	5.2	Carrier	
624.200	PK	32.6	33.5	19.3	10.2	27.9	0.0	34.2	35.1	55.4	21.2	20.3	Outside	
936.300	PK	28.7	28.8	22.3	11.4	26.6	0.0	35.8	35.9	55.4	19.6	19.5	Outside	
1248.400	PK	46.7	46.3	24.7	3.7	35.5	0.0	39.6	39.2	55.4	15.8	16.2	Outside	
1560.500	PK	45.9	46.0	26.0	3.9	35.2	0.0	40.6	40.7	53.9	13.3	13.2	Inside	
1872.600	PK	45.2	45.0	27.0	4.0	34.9	0.0	41.3	41.1	55.4	14.1	14.3	Outside	
2184.700	PK	44.9	44.9	27.2	4.2	34.7	0.0	41.6	41.6	55.4	13.8	13.8	Outside	
2496.800	PK	45.1	45.8	27.0	4.4	34.6	0.0	41.9	42.6	53.9	12.0	11.3	Inside	
2808.900	PK	45.3	45.1	27.6	4.6	34.6	0.0	42.9	42.7	53.9	11.0	11.2	Inside	
3121.000	PK	45.6	44.8	28.0	4.7	34.5	0.0	43.8	43.0	55.4	11.6	12.4	Outside	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Sample calculation:

Result of PK = Reading + Ant Factor + Loss (Cable + Attenuator +Filter) - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amplifier) + Duty factor

For above 1GHz : Distance Factor: $20 \times \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$

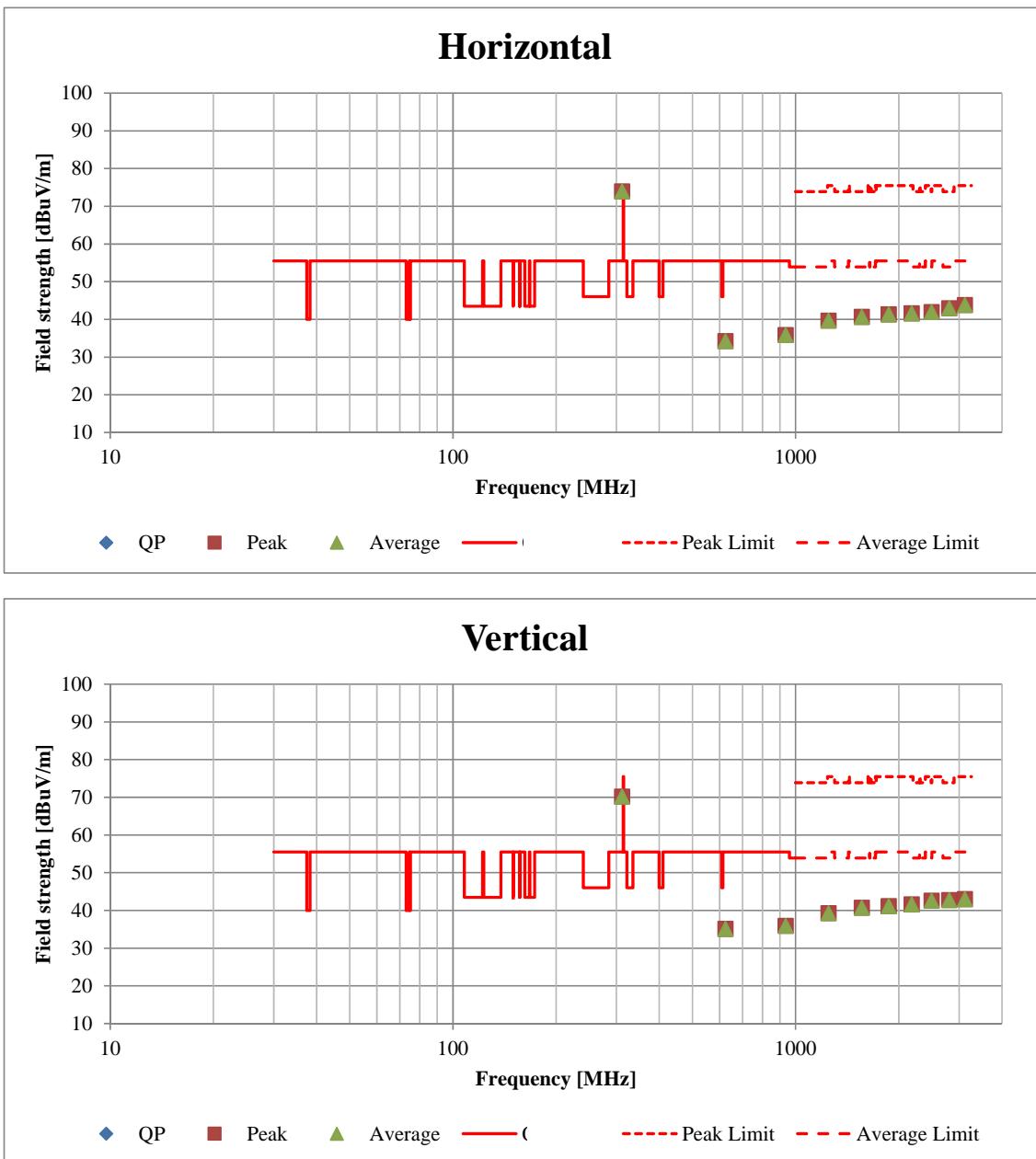
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Since the peak emission result satisfied the average limit, duty factor was omitted.

The result of AV (PK with Duty factor) was calculated by applying Duty 100%.

UL Japan, Inc.

Ise EMC Lab.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber
 Report No. 11796085H
 Date 07/05/2017
 Temperature/ Humidity 22 deg. C / 73 % RH 23 deg. C / 56 % RH
 Engineer Shinya Watanabe Shinya Watanabe
 (Below 1GHz) (Above 1GHz)
 Mode Transmitting mode 312.10 MHz

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

-20dB and 99% Occupied Bandwidth

Test place Ise EMC Lab. No.2 Measurement Room
Report No. 11796085H
Date 07/05/2017
Temperature/ Humidity 22 deg. C / 73 % RH
Engineer Shinya Watanabe
Mode Transmitting mode 314.35 MHz / 312.10 MHz

Bandwidth Limit : Fundamental Frequency **312.10** MHz x 0.25% = 780.25 kHz

* The above limit was calculated from more stringent nominal frequency.

* Method of KDB 926416 for systems employing non sweeping frequencies was referred.

314.35 MHz

-20dB Bandwidth [kHz]
39.23

312.10MHz

-20dB Bandwidth [kHz]
39.27

-20dB Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
39.23 + 39.27 = 78.50	780.25	Pass

Bandwidth Limit : Fundamental Frequency **314.35** MHz x 0.25% = 785.88 kHz

99% Occupied Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
40.63	785.88	Pass

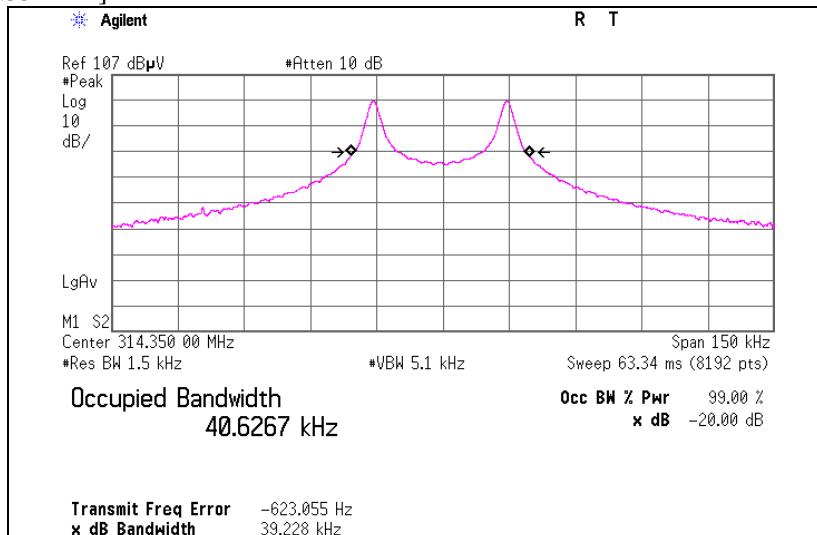
Bandwidth Limit : Fundamental Frequency **312.10** MHz x 0.25% = 780.25 kHz

99% Occupied Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
40.51	780.25	Pass

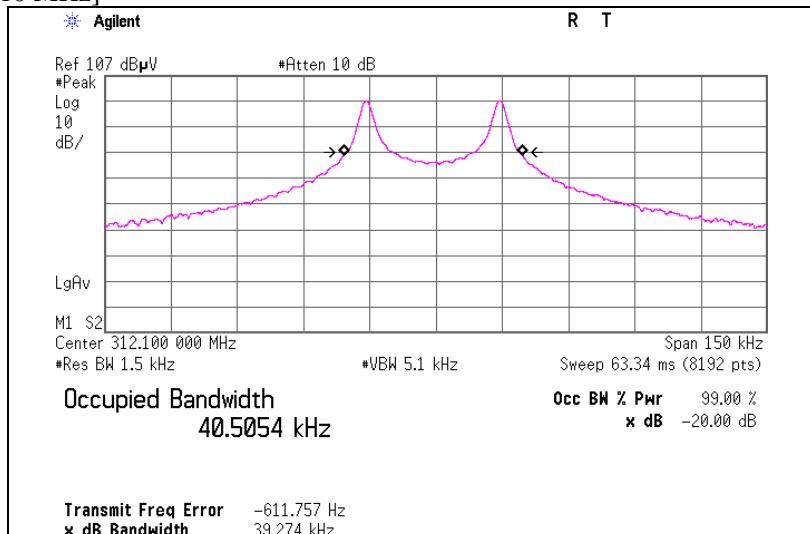
UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124


-20dB and 99% Occupied Bandwidth

Test place Ise EMC Lab. No.3 Measurement Room
Report No. 11796085H
Date 07/05/2017
Temperature/ Humidity 22 deg. C / 73 % RH
Engineer Shinya Watanabe
Mode Transmitting mode 314.35 MHz / 312.10 MHz

[314.35 MHz]

[312.10 MHz]

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

APPENDIX 2: Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE	2016/08/02 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE	2016/12/13 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-14	Spectrum Analyzer	Agilent	E4440A	MY48250080	RE	2016/10/14 * 12
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	RE	2016/10/21 * 12
MBA-08	Biconical Antenna	Schwarzbeck	VHA9103B	08031	RE	2016/09/29 * 12
MLA-21	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-190	RE	2017/01/05 * 12
MCC-12	Coaxial Cable	Fujikura/Agilent	-	-	RE	2017/02/24 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2016/11/28 * 12
MPA-09	Pre Amplifier	Agilent	8447D	2944A10845	RE	2016/09/13 * 12
MMM-01	Digital Tester	Fluke	FLUKE 26-3	78030611	RE	2016/08/23 * 12
MHA-06	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	254	RE	2017/02/24 * 12
MCC-216	Microwave Cable	Junkosha	MWX221	1604S253(1 m) / 1608S087(5 m)	RE	2016/08/29 * 12
MPA-10	Pre Amplifier	Agilent	8449B	3008A02142	RE	2017/01/16 * 12
MLPA-07	Loop Antenna	UL Japan	-	-	RE	Pre Check

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 99% Occupied Bandwidth, -20dB bandwidth, and Automatically deactivate tests

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124