FCC Test Report

E.U.T. : RF Wireless Mouse

Model : MY-X138

FCC ID : HQKKMEMYX138

Report No. : RF-J28-0503-189

Date of Report: March 28, 2005

Prepared for

Key Mouse Electronic Enterprise Co., Ltd.

NO.3, Wugung 5th Rd., Hsin Chuang City, Taipei County 242, Taiwan, R.O.C.

Prepared by

Central Research Technology Co. EMC Test Laboratory

No.11, Lane41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

NVLAP LAB CODE 200575-0

This report shall not be reproduced, except in full, without the written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. It should not be used to claim product endorsement by CNLA, NVLAP or any U.S. government agency. The test result in the report applies only to the sample tested.

Total: 19 Pages

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Certification of Compliance

E.U.T. : RF Wireless Mouse

Model : MY-X138

FCC ID : HQKKMEMYX138

Manufacturer : Key Mouse Electronic Enterprise Co., Ltd.Applicant : Key Mouse Electronic Enterprise Co., Ltd.

Address :NO.3, Wugung 5th Rd., Hsin Chuang City, Taipei County 242,

Taiwan, R.O.C.

Arrival of Sample(s) : March 24, 2005

Date of Test : March 25, 2005

Applicable Standards: 47 CFR part 15, Subpart C

Deviation: N/A

Condition of Test Sample : Prototype

We, **Central Research Technology Co**., hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

PREPARED BY: Rosa Hzieh, DATE: March 28, 2005

(Rosa Hsieh/RF Engineer)

CHECKED BY : XOM Chen, DATE: Mar. 26, 2005

(Sam Chien/Technical Manager)

APPROVED BY : O. J. Elih, DATE: Mar. 28, 2005

(Tsun-Yu Shih/Laboratory Head)

Contents

1	General Description	4
1.1	GENERAL DESCRIPTION OF EUT	4
1.2	CHARACTERISTIC OF E.U.T	4
1.3	TEST METHODOLOGY	
1.4	REQUIREMENT FOR COMPLIANCE	
1.5	THE SUPPORT UNITS	7
1.6	LAYOUT OF SETUP	7
1.7	TEST FACILITY	8
1.8	MEASUREMENT UNCERTAINTY	8
2	Field Strength of Fundamental	g
2.1	Applied Standard	9
2.2	MEASUREMENT PROCEDURE	
2.3	TEST CONFIGURATION	10
2.4	Test Instruments	11
2.5	TEST DATA	12
3	Radiated Emission	14
3.1	APPLIED STANDARD	14
3.2	MEASUREMENT PROCEDURE	15
3.3	TEST CONFIGURATION	16
3.4	Test Instruments	17
3.5	Test Data	18

Attachment 1 – Photographs of the Test Configurations

Attachment 2 – External Photographs of EUT

Attachment 3 – Internal Photographs of EUT

1 General Description

1.1 General Description of EUT

E.U.T. : RF Wireless Mouse

Model No. : MY-X138

FCC ID : HQKKMEMYX138

Power in : DC 3V (Battery)

Test Voltage : DC 3V (Battery)

Applicant : Key Mouse Electronic Enterprise Co., Ltd.

Manufacturer : Key Mouse Electronic Enterprise Co., Ltd.

1.2 Characteristic of E.U.T.

Frequency Range : 27.045MHz

Function Modulation: FSK

The EUT is used to transmit control command only. Please refer to the user's manual for

the details.

1.3 Test Methodology

For this E.U.T., the radiated emissions measurement performed according to the procedures illustrated in ANSI C63.4 and other required were illustrated in separate sections of this test report for detail.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.4 Requirement for Compliance

(1) Field strength of Fundametal

According to 15.227(a), The field strength of any emission within this band shall not exceed 10,000 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in Section 15.35 for limiting peak emissions apply.

(2) Radiation emission

According to 15.227(b), The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in Section 15.209.

(3) Radiated emission limits, general requirements.

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(4) Restricted Band

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0.090 - 0.110	37.475 - 38.275	1435.0 - 1626.5	8025.0 - 8500.0
¹ 0.490 - 0.510	73.500 - 75.400	1660.0 - 1755.0	9000.0 - 9200.0
2.172 - 2.198	108.00 - 138.00	1805.0 - 1850.0	9300.0 - 9500.0
3.013 - 3.033	149.90 - 150.05	2200.0 - 2300.0	10600 - 12700
4.115 - 4.198	156.70 - 156.90	2310.0 - 2390.0	13250 - 13400
5.670 - 5.690	162.01 - 167.17	2483.5 - 2500.0	14470 - 14500
6.200 - 6.300	167.72 - 173.20	2655.0 - 2900.0	15350 - 16200
8.230 - 8.400	240.00 - 285.00	3260.0 - 3267.0	17700 - 21400
12.265 - 12.600	322.00 - 335.40	3332.0 - 3339.0	22010 - 23120
13.340 - 13.430	399.90 - 410.00	3345.8 - 3358.0	23600 - 24000
14.965 - 15.020	608.00 - 614.00	3500.0 - 4400.0	31200 - 31800
16.700 - 16.755	825.00 - 915.00	4500.0 - 5250.0	36430 - 36500
19.965 - 20.020	935.00 - 1240.0	5350.0 - 5460.0	38600 以上
25.500 - 25.700	1300.0 - 1427.0	7250.0 - 7750.0	

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Page: 6

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL. : $886\hbox{-}2-25984542$

FAX.: 886-2-25984546

1.5 The Support Units

No.	Unit	Model No./ Serial No.	FCC ID	Trade Name	Power Cord	Supported by lab.
NA	*	*	*	*	*	*

1.6 Layout of Setup

EUT

Connecting Cables:

No.	Cable	Length	Shielded	Core	Shielded Backshell	Supported by lab.	Note
NA	*	*	*	*	*	*	*

Justification:

For both conducted and radiated emission below 1GHz, the system was configured for typical fasion as a customer could normal use it.

For radiated emission, measurement of radiated emission from digital circuit is performed with normal transmitting.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.7 Test Facility

Test Room	Type of Test Room	Descriptions
☑ TR1	10m semi-anechoic chamber (23m×14m×9m)	Complying with the NSA requirements in documents CISPR 22 and ANSI C63.4. for the radiated emission measurement.
□ TR4	Shielding Room (5m×3m×3m)	For the RF conducted emission measurement.

1.8 Measurement Uncertainty

All the measurement uncertainty evaluation procedures in this report are base on ETSI TR 100 028-1, 100 028-2, and ETSI TR 102 273-3. The assessed measurement uncertainties are:

Test Item	Measurement Uncertainty
Field strength of fundamental	Horizontal 4.05dB; Vertical 4.08dB
Radiated Emission	Horizontal 4.05dB; Vertical 4.08dB

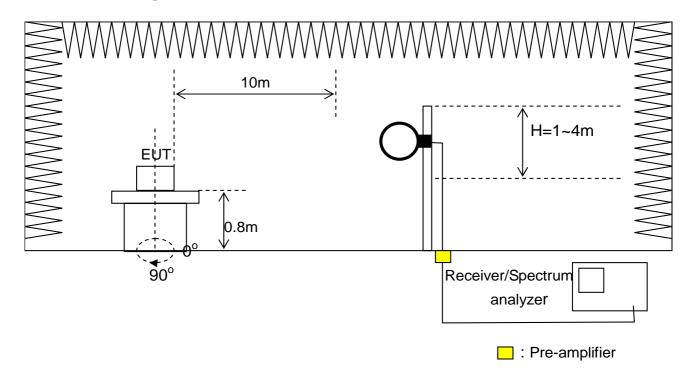
CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2 Field Strength of Fundamental

Result: Pass

2.1 Applied Standard


According to 15.227(a), The field strength of any emission within this band shall not exceed 10,000 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in Section 15.35 for limiting peak emissions apply

2.2 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 0.1 meters above the reference ground plane in the semi-anechoic chamber.
- c. The EUT was set 10m away from the interference receiving antenna.
- d. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- e. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine the fundamental frequency and compare the maximum level with the required limit.
- f. Finely tune the antenna and turntable around the recorded position of fundamental frequency found from step e.
- g. Record the frequency and polarization of the receiving antenna and compare the maximum level with the required limit.
- h. Change the receiving antenna to another polarization to measure Field Strength of fundamental by following step e. to g. again.

No. 11, Lane 41, Fushuen St., Jungshan (TEL.: 886-2-25984542 FAX.: 886-2-25984546

2.3 Test Configuration

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.4 Test Instruments

Test Site and Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Semi-anechoic Chamber	ETS.LINDGREN	TR1/17627-B	April 11,2004
Spectrum Analyzer	R&S	FSP40/100031	June 8,2004
Antenna	EMCO	6502/ 00042960	Jan 14,2005

Note:

- 1. The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required

Instrument Setting

RBW	VBW	Detector	Trace	Comment
9KHz	10KHz	Peak/Average	Maxhold	

Climatic Condition

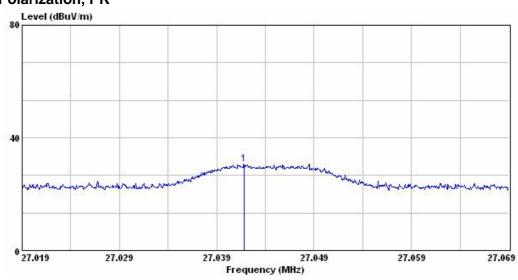
Ambient Temperature: 24°C; Relative Humidity: 55%

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.5 **Test Data**

Field Strength of Fundament

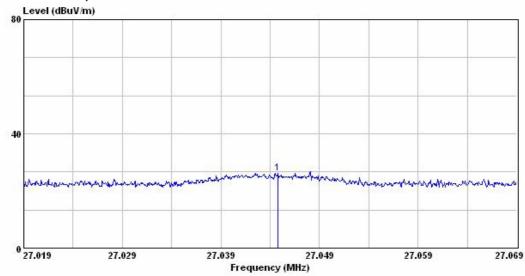

Test Distance Tester : 10m : Hata

Frequency (MHz)	Polarization	Reading (dBu			Output Field Strength (dBµV/m)		Limit (Mar (d	_
(PK	AV	(GB/III)	PK	AV	PK	AV	PK	AV
20.042	V	30.64	25.68	12.90	43.54	38.58	89.54	69.54	46	30.96
27.042	Н	26.31	17.9	12.90	39.21	30.8	89.54	69.54	50.33	38.74

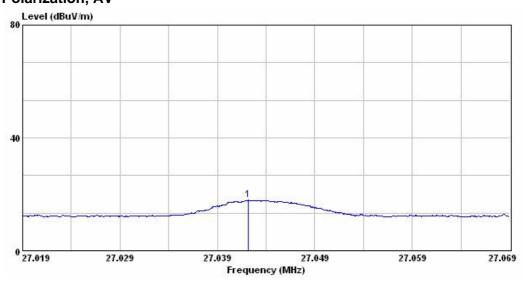
Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- Output Field Strength (dBuV/m) = Reading Data + Correction Factor
- 3. Limit@10m=Limit @3m * 3/10 = 3000 uV/m = 69.54 dBuV/m
- 3. Margin (dB) = Limit Output Field Strength

V Polarization, PK


CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.


V Polarization, AV

H Polarization, PK

H Polarization, AV

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3 Radiated Emission

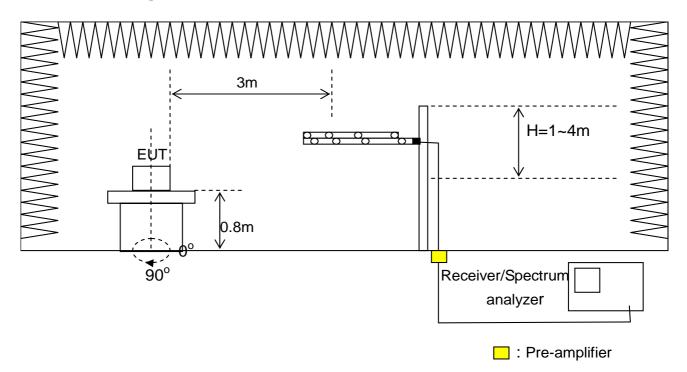
Result: Pass

3.1 Applied Standard

According to 15.231(b), The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in Section 15.209

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.2 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 minimeters above the reference ground plane in the semi-anechoic chamber.
- c. The EUT was set 3m away from the interference receiving antenna.
- d. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- e. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine the fundamental frequency and frequencies associated with higher emission levels and record them.
- f. Then measure each frequency found from step e. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- g. Finely tune the antenna and turntable around the recorded position of each frequency found from step f.
- h. For measurement of frequency below 1000MHz, set the receiver detector to be Quasi-Peak per CISPR 16-1 to find out the maximum level occurred.
- i. For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or Average to find out the maximum level occurred, if any.
- j. Record the frequency and polarization of the receiving antenna and compare the maximum level with the required limit.
- k. Change the receiving antenna to another polarization to measure radiated emission by following step d. to j. again.
- I. If the peak emission level measured from step e. is 10dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate Q.P. value will be measured and presented.

3.3 Test Configuration

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.4 Test Instruments

Test Site and	Manufacturer	Model No./Serial No.	Last Cal.	
Equipment	Manufacturer	woder No./Serial No.	Lasi Gai.	
Semi-anechoic Chamber	ETS.LINDGREN	TR1/17627-B	April 11,2004	
Test Receiver	R&S	ESCS30/ 836858/020	July 21,2004	
Antenna	EMCO	6502/ 00042960	Jan 14,2005	
Antenna	R&S	HL562/ 360543/006	May 27,2004	
Pre-amplifier	Mini Circuit	ZKL-2/ 001	April 17,2004	

Note:

- 1. The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required

Instrument Setting

RBW	VBW	Detector	Trace	Comment
120kHz	N/A	Quasi-Peak	Maxhold	

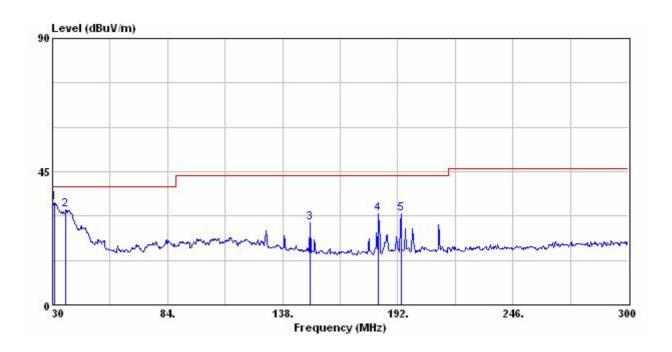
Climatic Condition

Ambient Temperature: 24°C; Relative Humidity: 55%

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.5 Test Data


Test Distance :3m **Tester** :Hata

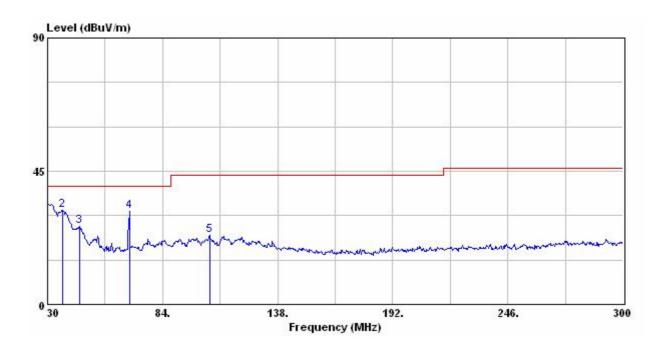
Polarization: Vertical **Frequency Range**: 27MHz~300MHz

	Freq. (MHz)	Reading Data (dBuV)	Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	30.81	44.57	-10.65	33.92	40	6.08
2	36.21	44.06	-12.09	31.97	40	8.03
3	150.69	43.68	-17.45	26.23	40	13.77
4	183.09	53.74	-22.34	31.4	40	8.6
5	193.62	41.89	-18.51	23.38	43.5	20.12

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Emission Level
- 4. "*": The emission is too low to be measured.

CENTRAL RESEARCH TECHNOLOGY CO.


No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Polarization : Horizontal Frequency Range : 27MHz~300MHz

	Freq. (MHz)	Reading Data (dBuV)	Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	30	44.57	-10.65	33.92	40.00	6.08
2	37.02	44.06	-12.09	31.97	40.00	8.03
3	44.85	43.68	-17.45	26.23	40.00	13.77
4	68.34	53.74	-22.34	31.4	40.00	8.6
5	106.14	41.89	-18.51	23.38	43.50	20.12

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Emission Level

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.