

Page: 1 of 78

SAR TEST REPORT

Equipment Under Test	PDA Scanner			
Model Name	PA96811			
Mode of Operation	GPRS/WCDMA/WLAN 802.11 b/g band			
Company Name	Unitech electronics co.,ltd			
Company Address	5F, No. 136, Lane 235, Pao-Chiao Rd., Hsin-Tien Dist.,			
	New Taipei City, Taiwan			
Date of Receipt	2011.07.04			
Date of Test(s)	2011.07.18			
Date of Issue	2011.09.01			

Standards:

FCC OET Bulletin 65 supplement C, IEEE/ANSI C95.1, C95.3, IEEE 1528

In the configuration tested, the EUT complied with the standards specified above. Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

Tested by : Chris Tsung 2011.09.01 Date:

Engineer

Approved by : Kelly Tsai Date 2011.09.01

Supervisor

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 2 of 78

Revision Version

Report Number	Revision	Date	Memo
ES/2011/70004	00	2011/09/01	Initial creation of test report.

This test repot contains a reference to the previous version test report that it replaces.

Page: 3 of 78

Contents

1. General Information	4
1.1 Testing Laboratory	4
1.2 Details of Applicant	4
1.3 Description of EUT	4
1.4 Test Environment	8
1.5 Operation description	8
1.6 Evaluation Prpcedures	9
1.7 The SAR Measurement System	10
1.8 System Components	12
1.9 SAR System Verification	14
1.10 Tissue Simulant Fluid for the Frequency Band	15
1.11 Test Standards and Limits	16
2. Summary of Results	19
3. Instruments List	22
4. Measurements	23
5. System Verification	36
6. DAE & Probe Calibration certificate	39
7. Uncertainty Budget	51
8. Phantom description	52
9. System Validation from Original equipment supplier	53

Page: 4 of 78

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. Electronics & Communication Laboratory			
134, Wu Kung Road, Wuku industrial zone			
Taipei county, Taiwa	Taipei county, Taiwan, R.O.C.		
Telephone	+886-2-2299-3279		
Fax +886-2-2298-0488			
Internet	http://www.tw.sgs.com/		

Testing Location	1F,No.8, Alley 15, Lane 120, Sec .1, NeiHu Road NeiHu
	District Taipei City 114, Taiwan

1.2 Details of Applicant

Company Name	Unitech electronics co., ltd	
Company Address	5F, No. 136, Lane 235, Pao-Chiao Rd., Hsin-Tien Dist.,	
Company Address	New Taipei City, Taiwan	
Contact Person	Kevin Chen	
TEL	02-8912-1122 #377	
E-mail	kevinC@tw.ute.com	

1.3 Description of EUT

EUT Name	PDA Scanner			
Model Name	PA968II			
Brand Name	unitech			
IMEI code	35411401248001			

Page: 5 of 78

				Page: 5 of 7		
FCC ID	HLEPA9681IBTGP					
Definition	Production unit					
Mode of Operation	GPR	GPRS/WCDMA/ WLAN 802.11 b/g band				
Duty Cycle	GPRS (2multi-slot)	WCDMA BAND	WCDMA BAND V	WLAN 802.11 b/g		
Duty Cycle	1/4.1	1	1	1		
	GPRS 850	GPRS 1900	WCDMA BAND	WCDMA BAND V		
TX Frequency range	824.2-848.8	1850.2-1909.8	1852.4-1907.6	826.4-846.6		
(MHz)	WLAN802.11 b	WLAN802.11 g				
	2412-2462	2412-2462				
Channel Number	GPRS 850	GPRS 1900	WCDMA BAND	WCDMA BAND V		
	128-251	512-810	9262-9538	4132-4233		
(ARFCN)	WLAN802.11 b	WLAN802.11 g				
	1-11	1-11				
		WW	/AN			
Max. SAR Measured	0.772 mW/g (At WCDMA BAND II Body_Front side_CH9400)					
(10 g)	WLAN					
	(At WLAN80	0.0568 02.11 b Body_Ba	•	in Antenna)		

Page: 6 of 78

#. Conducted power table:

EUT Mode	Frequency	СН	Peak Power (1DN 1UP)	Avg. Power (1DN 1UP)	Peak Power (1DN 2UP)	Avg. Power (1DN 2UP)
	(MHz)		(dBm)	(dBm)	(dBm)	(dBm)
GPRS	824.2	128	32.20	32.10	30.30	30.20
850	836.6	190	32.20	32.10	30.60	30.40
(Class 10)	848.8	251	32.30	32.20	30.70	30.60

EUT Mode	Frequency	СН	Peak Power (1DN 1UP)	Avg. Power (1DN 1UP)	Peak Power (1DN 2UP)	Avg. Power (1DN 2UP)
	(MHz)		(dBm)	(dBm)	(dBm)	(dBm)
GPRS	1850.2	512	30.00	29.80	27.40	27.20
1900	1880.0	661	30.10	29.90	27.60	27.40
(Class 10)	1909.8	810	30.00	29.80	27.60	27.40

Band II	wcı	OMA	HSI	OPA .
	PK	AV	PK	AV
CH9262	26.05	22.53	26.00	22.50
CH9400	26.84	22.68	26.82	22.53
CH9538	26.34	22.21	26.28	22.35

Page: 7 of 78

Band V	wcı	OMA	HSI	OPA .
	PK	AV	PK	AV
CH4132	26.82	23.67	26.80	23.44
CH4183	26.94	23.38	26.89	23.23
CH4233	26.85	23.67	26.83	23.51

	Main Antenna			Aux	Aux Antenna			
EUT Mode	Frequency	СН	AVG. Power	Frequency	СН	AVG. Power		
	(MHz)		(dBm)	(MHz)		(dBm)		
WLAN802.11 b	2412	1	15.81	2412	1	15.59		
	2437	6	16.08	2437	6	15.58		
	2462	11	16.09	2462	11	15.45		

	Main Antenna			Aux	Aux Antenna		
	Frequency		AVG.	Frequency		AVG.	
EUT Mode	requericy	СН	Power	requericy	СН	Power	
	(MHz)		(dBm)	(MHz)		(dBm)	
WLAN802.11 g	2412	1	13.46	2412	1	13.31	
	2437	6	13.76	2437	6	13.28	
	2462	11	13.7	2462	11	13.13	

- # According to KDB248227-SAR is not required for 802.11 g channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.
- # According to KDB447498-When the maximum output power variation across H, M and L channels is $\leq \frac{1}{2}$ dB, start with the middle channel; otherwise, start with the highest output power channel. When the measured 1-g SAR for the middle or highest output power channel is ≤ 0.8 W/kg, testing of the remaining two channels in that device and exposure configuration is not necessary.

Page: 8 of 78

#. Using KDB941225 D01 to exclude SAR test requirements for HSPA modes due to the maximum average output power of HSPA active is less than 1/4 dB higher than that measured without HSPA using 12.2kbps RMC

1.4 Test Environment

Ambient Temperature: 22±2° C Tissue Simulating Liquid: 22±2° C

1.5 Operation description

- 1. Use chipset specific software to control the EUT, and makes it transmit in maximum power. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged.
- 2. The EUT is controlled by using a Radio Communication Tester (Agilent 8960), and the communication between the EUT and the tester is established by air link.
- 3. During the SAR testing, the DASY5 system checks power drift by comparing the e-field strength of one specific location measured at the beginning with that measured at the end of the SAR testing.
- 4. Testing body-worn SAR by separating 0cm between the front of the EUT and the flat phantom in WLAN/WWAN mode, since the antenna is close to the front side.
- 5. When the maximum transmitter and antenna output power are $\leq 60/f(GHz)$ (mW) SAR evaluation is typically not required for FCC or TCB approval (BT power = 3.87 dBm).

Page: 9 of 78

1.6 Evaluation Prpcedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g. The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

Page: 10 of 78

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans.

The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found.

If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.7 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 5 professional system). A Model EX3DV4 field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ ($|Ei|^2$)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

Page: 11 of 78

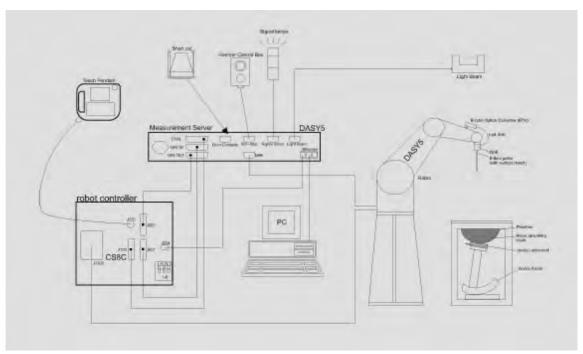


Fig.a The block diagram of SAR system

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

Page: 12 of 78

- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
 - A computer operating Windows 2000 or Windows XP.
 - DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
 - The SAM twin phantom enabling testing left-hand and right-hand usage.
 - The device holder for handheld mobile phones.
 - Tissue simulating liquid mixed according to the given recipes.
 - Validation dipole kits allowing to validate the proper functioning of the system.

1.8 System Components

EX3DV4 E-Field Probe

LASDV T L-1 ICIU	111000				
Construction:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)				
Calibration:	Basic Broad Band Calibration in air Conversion Factors (CF) for MSL835/1900/2450MHz Additional CF for other liquids and frequencies upon request				
		EX3DV4			
		E-Field Probe			
Frequency:	10 MHz to $>$ 4 GHz; Linearity: \pm 0.6 dB (30	MHz to 6 GHz)			
Directivity:	± 0.3 dB in HSL (rotation around probe axis ± 0.5 dB in tissue material (rotation normal	•			
Dynamic Range:	10 μW/g to > 100 mW/g;				
	Linearity: \pm 0.6 dB (noise: typically < 1 μ W	/g)			
Dimensions:	Overall length: 337 mm (Tip: 10 mm)				
	Tip diameter: 4 mm (Body: 10 mm)				
	Typical distance from probe tip to dipole cel	nters: 2 mm			
Application:	High precision dosimetric measurements in any exposure scenario				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(e.g., very strong gradient fields). Only probe which enables				
	compliance testing for frequencies up to 6 G				
	30%.	,			

Page: 13 of 78

SAM PHANTOM V4.0C

Canatauration	The shall corresponds to the specifi	cations of the Specific			
Construction:	The shell corresponds to the specifications of the Specific				
	Anthropomorphic Mannequin (SAM) phantom defined in IEEE				
	1528-200X, CENELEC 50361 and IE	C 62209.			
	It enables the dosimetric evaluation	of left and right hand phone			
	usage as well as body mounted usa	ge at the flat phantom region. A			
	cover prevents evaporation of the li-				
	phantom allow the complete setup				
	positions and measurement grids by	•			
	,	y manually teaching three points			
	with the robot.				
Shell Thickness:	2 ± 0.2 mm				
Filling Volume:	Approx. 25 liters				
Dimensions:	Height: 850 mm;	1			
Birroriororior	Length: 1000 mm;				
	Width: 500 mm				
	Width. 300 mm	-			

DEVICE HOLDED

DEVICE HOLD	EK	
Construction	In combination with the Twin SAM Phantom V4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and	
	accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).	Device Holder

Page: 14 of 78

1.9 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/-5% from the target SAR values. These tests were done at 835/1900/2450 MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was in the range 22.1°C, the relative humidity was in the range 62% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

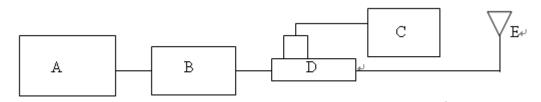


Fig.b The block diagram of system verification

- A. Agilent Model 8648D Signal Generator
- B. Mini circuits Model ZHL-42 Amplifier
- C. Agilent Model U2001B Power Sensor
- D. Agilent Model 777D/778D Dual directional coupling
- E. Reference dipole antenna

Photograph of the dipole Antenna

Page: 15 of 78

Validation Kit	Frequency (MHz)	Target SAR (1g) (Pin=250mW)	Measured SAR (1g)	Measured Date
D835V2 S/N:4d063	835 MHz (Body)	2.43 mW/g	2.51 mW/g	2011/07/18
D1900V2 S/N: 5d027	1900 MHz (Body)	9.93 mW/g	9.91 mW/g	2011/07/18
D2450V2 S/N: 727	2450 MHz (Body)	12.7 mW/g	13.3 mW/g	2011/07/18

Table 1. System validation (follow manufacture target value)

1.10 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this Head-simulant fluid were measured by using the HP Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjuncation with HP 8753D Network Analyzer (30 KHz-6000MHz) by using a procedure detailed in Section V.

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The depth of the tissue simulant iin the flat section of the phantom was 15cm±5mm during all tests. (Appendix Fig .2)

Eroguopov		. Measurement date/		Dielectric Parameters			
Frequency (MHz)	Tissue type	Limits	ρ	σ (S/m)	Simulated Tissue Temperature(° C)		
835	Pody	Measured, 2011-07-18	52.361	1.008	21.7		
033	835 Body	Recommended Limits	51.21-56.60	0.95-1.05	20-24		
1000	1900 Body	Measured, 2011-07-18	52.684	1.572	21.7		
1900		Recommended Limits	48.55-53.66	1.44-1.60	20-24		
2450	Pody	Measured, 2011-07-18	52.143	1.98	21.7		
2450	Body	Recommended Limits	48.07-53.13	1.81-2.01	20-24		

Table 2. Dielectric Parameters of Tissue Simulant Fluid

Page: 16 of 78

The	composition	of the	brain	tissue	simulating	liquid:

Ingredient	850MHz (Body)	1900MHz (Body)	2450MHz (Body)
DGMBE	Χ	300.67 g	301.7ml
Water	631.68 g	716.56 g	698.3ml
Salt	11.72 g	4.0 g	Χ
Preventol D-7	1.2 g	X	X
Cellulose	Х	Х	Х
Sugar	600 g	Χ	Χ
Total amount	1 L (1.0kg)	1 L (1.0kg)	1 L (1.0kg)

Table 3. Recipes for tissue simulating liquid

1.11 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1–1992, Copyright 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter.

Page: 17 of 78

Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube).

General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section. (Table .6)

Page: 18 of 78

Human Exposure	Uncontrolled Environment	Controlled Environment
	General Population	Occupational
Spatial Peak SAR (Brain)	1.60 m W/g	8.00 m W/g
Spatial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table 4. RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Page: 19 of 78

2. Summary of Results

GPRS 850

Body_Front Side (multi class 10_2 up 1 down)							
Frequency	Channel	MHz	Declared Output	Measured(W/kg)	Amb.	Liquid	
			Power	10g	Temp[°C]	Temp[°C]	
850MHz	190	836.6	30.40dBm	0.209	22.1	21.7	
Body_Front	Side (mu	lti class	8_1 up 1 down)				
Frequency	Channel	MHz	Declared Output	Measured(W/kg)	Amb.	Liquid	
			Power	10g	Temp[°C]	Temp[°C]	
835MHz	190	836.6	32.10dBm	0.146	22.1	21.7	

GPRS 1900

Body_Front Side (multi class 10_2 up 1 down)							
Frequency	Channel	MHz	Declared Output	Measured(W/kg)	Amb.	Liquid	
			Power	10g	Temp[°C]	Temp[°C]	
1900MHz	661	1880.0	27.40dBm	0.393	22.1	21.7	
Body_Front	Side (mu	lti class	8_1 up 1 down)				
Frequency	Channel	MHz	Declared Output	Measured(W/kg)	Amb.	Liquid	
			Power	10g	Temp[°C]	Temp[°C]	
1900MHz	661	1880.0	29.90dBm	0.273	22.1	21.7	

Page: 20 of 78

WCDMA BAND II

Body_Front Side							
Frequency	Channel	MHz	Declared Output Measured(W/kg)		Amb.	Liquid	
			Power 10g		Temp[°C]	Temp[°C]	
1900MHz	9400	1880.0	22.68dBm	0.772	22.1	21.7	
Body_Back	Body_Back Side						
Frequency	Channel	MHz	Declared Output	Measured(W/kg)	Amb.	Liquid	
			Power	10g	Temp[°C]	Temp[°C]	
1900MHz	9400	1880.0	22.68dBm	0.269	22.1	21.7	
Body_Front Side_repeated with Memory card							
Frequency	Channel	MHz	Declared Output	ut Measured(W/kg) Amb.		Liquid	
			Power	10g	Temp[°C]	Temp[°C]	
1900MHz	9400	1880.0	22.68dBm	0.720	22.1	21.7	

WCDMA BAND V

Body_Front Side						
Frequency	Channel	MHz	Declared Output	Measured(W/kg)	Amb.	Liquid
			Power	10g	Temp[°C]	Temp[°C]
850MHz	4183	836.6	23.38dBm	0.220	22.1	21.7

WLAN802.11 b

Body_Back Side_Main Antenna						
Frequency	Channel	MHz	Conducted Output	Measured(W/kg) Amb. Liqu		Liquid
			Power (Average) 1g Temp[°C]		Temp[°C]	Temp[°C]
2450 MHz	6	2437	16.08dBm	0.057	22.1	21.7
Body_Back	Body_Back side_Aux Antenna					
Frequency	Channel	MHz	Conducted Output	Measured(W/kg)	Amb.	Liquid
			Power (Average)	1g	Temp[°C]	Temp[°C]
2450 MHz	6	2437	15.58dBm	0.049	22.1	21.7

Page: 21 of 78

Body_Front Side						
Frequency	Channel	MHz	Conducted Output Measured(W/kg) Amb.		Liquid	
			Power (Average) 1g Temp[°C] Te		Temp[°C]	
2450 MHz	6	2437	16.08dBm 0.023 22.1		21.7	
Body_Back Side_ repeated with Memory card						
Frequency	Channel	MHz	Conducted Output	Measured(W/kg)	Amb.	Liquid
			Power (Average) 1g Temp[°C		Temp[°C]	Temp[°C]
2450 MHz	6	2437	16.08dBm	0.054	22.1	21.7

Page: 22 of 78

3. Instruments List

Manufacturer	Device	Туре	Serial number	Date of last calibration
Schmid & Partner Engineering AG	Dosimetric E-Field Probe	EX3DV4	3703	Jan.24.2011
Schmid &	835/1900/2450 MHz	D835V2	4d063	May.25.2011
Partner	System Validation	D1900V2	5d027	Apr.19.2011
Engineering AG	Dipole	D2450V2	727	Apr.19.2011
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE4	856	May.18.2011
Schmid & Partner Engineering AG	Software	DASY 5 V5.0 Build125	N/A	Calibration not required
Schmid & Partner Engineering AG	Phantom	SAM	N/A	Calibration not required
HP	Network Analyzer	8753D	3410A05547	Mar.16.2011
HP	Dielectric Probe Kit	85070D	US01440168	Calibration not required
Agilopt	Dual-directional	777D	50114	Aug.25.2010
Agilent	coupler	778D	50313	Aug.25.2010
Agilent	RF Signal Generator	8648D	3847M00432	Jun.01.2011
Agilent	Power Sensor	U2001B	MY48100169	Apr.28.2011
Agilent	Agilent Radio Communication Test		GB44051912	Jul.27.2010

Page: 23 of 78

4. Measurements

Date: 7/18/2011

Body_CH190_Front Side_Class 10

Communication System: GPRS(Class 10); Frequency: 836.6 MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.009 \text{ mho/m}$; $\epsilon_r = 52.457$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3703; ConvF(8.85, 8.85, 8.85); Calibrated: 1/24/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 5/18/2011

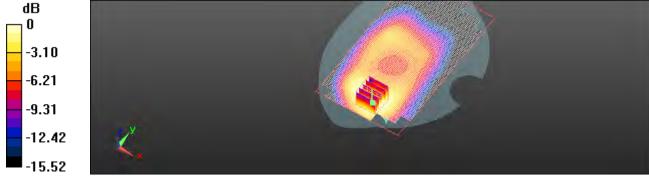
Phantom: SAM2; Type: SAM;

Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.223 mW/g

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 8.174 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.299 W/kg

SAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.140 mW/g

Maximum value of SAR (measured) = 0.224 mW/g

0 dB = 0.220 mW/q

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 24 of 78

Date: 7/18/2011

Body_CH190_Front Side_Class 8

Communication System: GPRS CLASS 8; Frequency: 836.6 MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.009 \text{ mho/m}$; $\varepsilon_r = 52.457$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

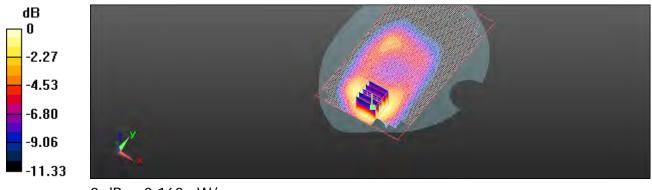
Probe: EX3DV4 - SN3703; ConvF(8.85, 8.85, 8.85); Calibrated: 1/24/2011

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 5/18/2011
- Phantom: SAM2; Type: SAM;
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.156 mW/g

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 6.408 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.207 W/kg

SAR(1 g) = 0.146 mW/g; SAR(10 g) = 0.097 mW/g

Maximum value of SAR (measured) = 0.156 mW/g

0 dB = 0.160 mW/g

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 25 of 78

Date: 7/18/2011

Body_CH661_Front side_Class 10

Communication System: GPRS(Class 10); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.548 \text{ mho/m}$; $\varepsilon_r = 52.76$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

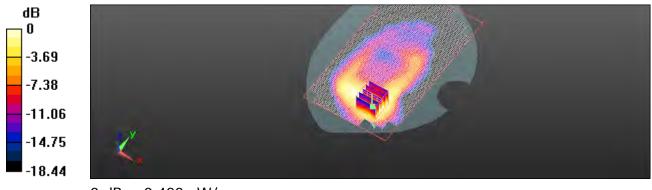
DASY5 Configuration:

- Probe: EX3DV4 SN3703; ConvF(7.04, 7.04, 7.04); Calibrated: 1/24/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 5/18/2011
- Phantom: SAM2; Type: SAM;
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.426 mW/g

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 3.851 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.645 W/kg

SAR(1 g) = 0.393 mW/g; SAR(10 g) = 0.227 mW/g

Maximum value of SAR (measured) = 0.422 mW/g

0 dB = 0.420 mW/g

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 26 of 78

Date: 7/18/2011

Body_CH661_Front side_Class 8

Communication System: GPRS CLASS 8; Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.548 \text{ mho/m}$; $\varepsilon_r = 52.76$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3703; ConvF(7.04, 7.04, 7.04); Calibrated: 1/24/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 5/18/2011

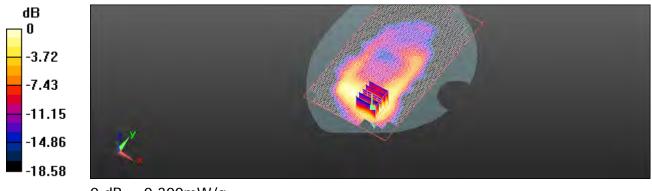
Phantom: SAM2; Type: SAM;

Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.295 mW/g

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 3.243 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.446 W/kg

SAR(1 g) = 0.273 mW/g; SAR(10 g) = 0.159 mW/g

Maximum value of SAR (measured) = 0.295 mW/g

0 dB = 0.300 mW/g

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 27 of 78

Date: 7/18/2011

Body_CH9400_Front side

Communication System: WCDMA; Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.548 \text{ mho/m}$; $\varepsilon_r = 52.76$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3703; ConvF(7.04, 7.04, 7.04); Calibrated: 1/24/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 5/18/2011

Phantom: SAM2; Type: SAM;

Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.781 mW/g

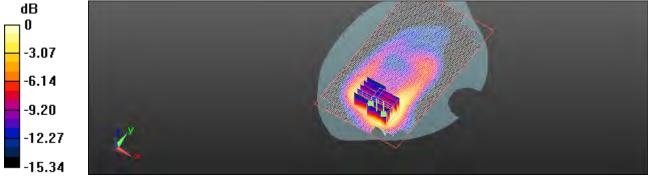
Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm; Reference Value = 5.364 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.267 W/kg

SAR(1 g) = 0.772 mW/g; SAR(10 g) = 0.446 mW/g

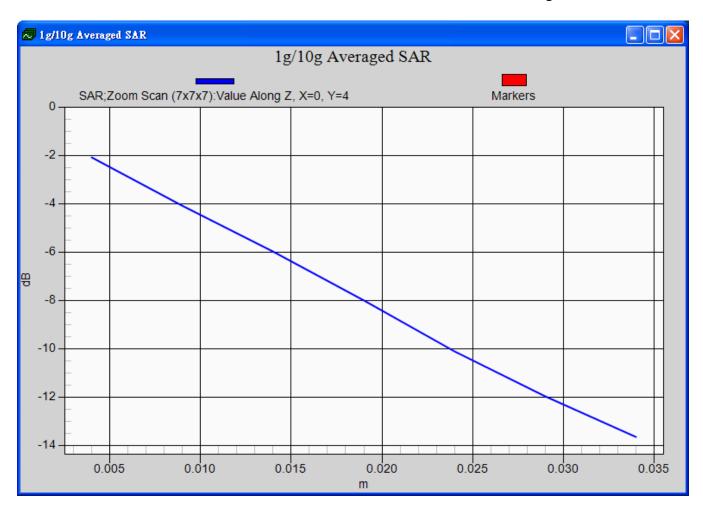
Maximum value of SAR (measured) = 0.843 mW/g


Configuration/Body/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=8mm,

dy=8mm, dz=5mm; Reference Value = 5.364 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.067 W/kg

SAR(1 g) = 0.613 mW/g; SAR(10 g) = 0.361 mW/g


Maximum value of SAR (measured) = 0.697 mW/g

0 dB = 0.700 mW/q

Page: 28 of 78

Page: 29 of 78

Date: 7/18/2011

Body_CH9400_Back side

Communication System: WCDMA; Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.548 \text{ mho/m}$; $\varepsilon_r = 52.76$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3703; ConvF(7.04, 7.04, 7.04); Calibrated: 1/24/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 5/18/2011

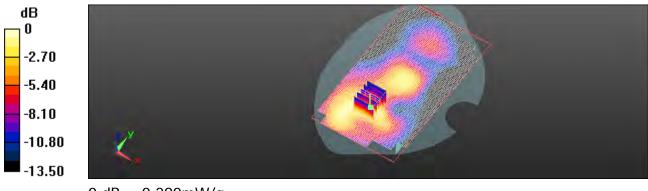
Phantom: SAM2; Type: SAM;

Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.292 mW/g

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 11.065 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.388 W/kg

SAR(1 g) = 0.269 mW/g; SAR(10 g) = 0.167 mW/g

Maximum value of SAR (measured) = 0.288 mW/g

0 dB = 0.290 mW/g

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 30 of 78

Date: 7/18/2011

Body_CH9400_Front Side_repeated with Memory card

Communication System: WCDMA; Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.548 \text{ mho/m}$; $\varepsilon_r = 52.76$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section A

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3703; ConvF(7.04, 7.04, 7.04); Calibrated: 1/24/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 5/18/2011

Phantom: SAM2; Type: SAM;

Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.763 mW/g

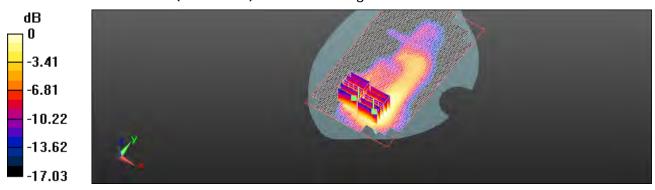
Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm; Reference Value = 6.098 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.155 W/kg

SAR(1 g) = 0.720 mW/g; SAR(10 g) = 0.405 mW/g

Maximum value of SAR (measured) = 0.536 mW/g


Configuration/Body/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=8mm,

dy=8mm, dz=5mm; Reference Value = 6.098 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.843 W/kg

SAR(1 g) = 0.547 mW/g; SAR(10 g) = 0.344 mW/g

Maximum value of SAR (measured) = 0.589 mW/g

0 dB = 0.590 mW/g

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 31 of 78

Date: 7/18/2011

Body_WCDMA BAND V CH4183_Front Side

Communication System: WCDMA; Frequency: 836.6 MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.009$ mho/m; $\varepsilon_r = 52.457$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

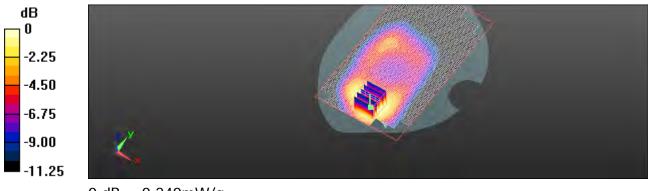
DASY5 Configuration:

- Probe: EX3DV4 SN3703; ConvF(8.85, 8.85, 8.85); Calibrated: 1/24/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 5/18/2011
- Phantom: SAM2; Type: SAM;
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.228 mW/g

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 7.546 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.316 W/kg

SAR(1 g) = 0.220 mW/g; SAR(10 g) = 0.146 mW/g

Maximum value of SAR (measured) = 0.235 mW/g

0 dB = 0.240 mW/g

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 32 of 78

Date: 7/18/2011

Body_WLAN802.11b_CH6_Back Side_MAIN Antenna

Communication System: WLAN802.11 b & g & n(20M)(40M); Frequency: 2437 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.964 \text{ mho/m}$; $\varepsilon_r = 52.214$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

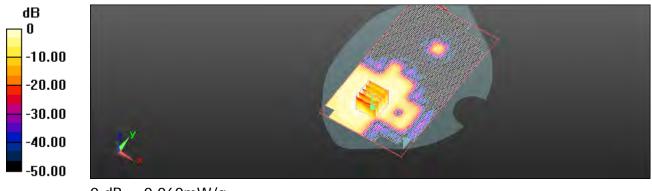
DASY5 Configuration:

- Probe: EX3DV4 SN3703; ConvF(6.82, 6.82, 6.82); Calibrated: 1/24/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 5/18/2011
- Phantom: SAM2; Type: SAM;
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.082 mW/g

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 1.192 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.103 W/kg

SAR(1 g) = 0.057 mW/g; SAR(10 g) = 0.031 mW/g

Maximum value of SAR (measured) = 0.065 mW/g

0 dB = 0.060 mW/g

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,発責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 33 of 78

Date: 7/18/2011

Body_WLAN802.11b_CH6_Back Side_AUX Antenna

Communication System: WLAN802.11 b & g & n(20M)(40M); Frequency: 2437 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.964 \text{ mho/m}$; $\varepsilon_r = 52.214$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

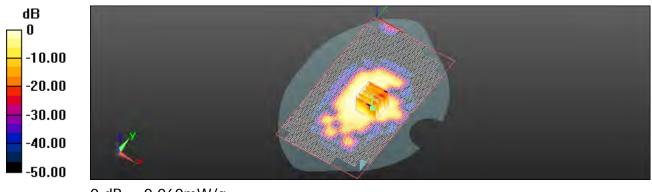
DASY5 Configuration:

- Probe: EX3DV4 SN3703; ConvF(6.82, 6.82, 6.82); Calibrated: 1/24/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 5/18/2011
- Phantom: SAM2; Type: SAM;
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.057 mW/g

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 4.340 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.086 W/kg

SAR(1 g) = 0.049 mW/g; SAR(10 g) = 0.026 mW/g

Maximum value of SAR (measured) = 0.057 mW/g

0 dB = 0.060 mW/g

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 34 of 78

Date: 7/18/2011

Body_WLAN802.11b_CH6_ Front Side_MAIN Antenna

Communication System: WLAN802.11 b & g & n(20M)(40M); Frequency: 2437 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.964 \text{ mho/m}$; $\varepsilon_r = 52.214$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

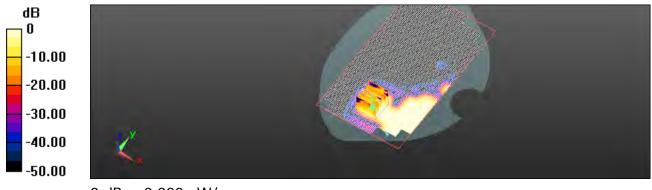
DASY5 Configuration:

- Probe: EX3DV4 SN3703; ConvF(6.82, 6.82, 6.82); Calibrated: 1/24/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 5/18/2011
- Phantom: SAM2; Type: SAM;
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.071 mW/g

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 0.619 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.071 W/kg

SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.0093 mW/g

Maximum value of SAR (measured) = 0.025 mW/g

0 dB = 0.020 mW/g

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,発責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 35 of 78

Date: 7/18/2011

Body_WLAN802.11b_CH6_Back Side_MAIN Antenna_ repeated with Memory card

Communication System: WLAN802.11 b & g & n(20M)(40M); Frequency: 2437 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.964 \text{ mho/m}$; $\varepsilon_r = 52.214$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

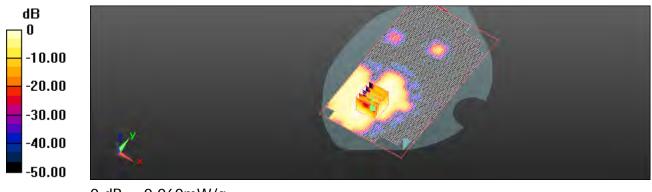
DASY5 Configuration:

- Probe: EX3DV4 SN3703; ConvF(6.82, 6.82, 6.82); Calibrated: 1/24/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 5/18/2011
- Phantom: SAM2; Type: SAM;
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/Body/Area Scan (91x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.066 mW/g

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 1.126 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.094 W/kg

SAR(1 g) = 0.054 mW/g; SAR(10 g) = 0.028 mW/g

Maximum value of SAR (measured) = 0.061 mW/g

0 dB = 0.060 mW/q

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 36 of 78

5. System Verification

Date: 7/18/2011

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.008$ mho/m; $\epsilon_r = 52.361$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3703; ConvF(8.85, 8.85, 8.85); Calibrated: 1/24/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 5/18/2011

Phantom: SAM2; Type: SAM;

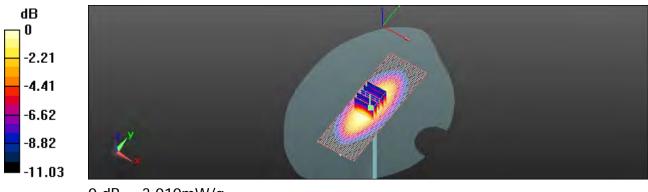
Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/d=15mm, Pin=250mW, dist=4mm): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.913 mW/g

Configuration/d=15mm, Pin=250mW, dist=4mm: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.134 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.889 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.60 mW/g

Maximum value of SAR (measured) = 3.007 mW/g

0 dB = 3.010 mW/q

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,発責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

Page: 37 of 78

Date: 7/18/2011

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.572 \text{ mho/m}$; $\varepsilon_r = 52.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

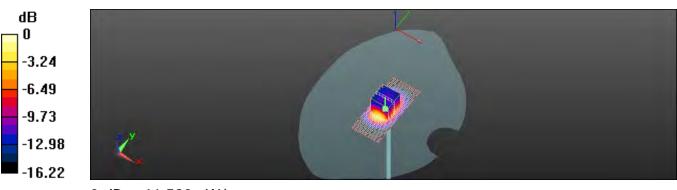
- Probe: EX3DV4 SN3703; ConvF(7.04, 7.04, 7.04); Calibrated: 1/24/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 5/18/2011
- Phantom: SAM2; Type: SAM;
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/d=10mm, Pin=250mW, dist=4mm: Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.412 mW/g

Configuration/d=10mm, Pin=250mW, dist=4mm: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.615 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 17.367 W/kg

SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.28 mW/g

Maximum value of SAR (measured) = 11.528 mW/g

0 dB = 11.530 mW/q

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

SGS Taiwan Ltd. No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei County, Taiwan. / 台北縣五股工業區五工路136之1號台灣檢驗科技股份有限公司 t (886-2) 2299-3939 f (886-2) 2299-9489 www.sgs.com.tw

Page: 38 of 78

Date: 7/18/2011

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ mho/m}$; $\epsilon_r = 52.143$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

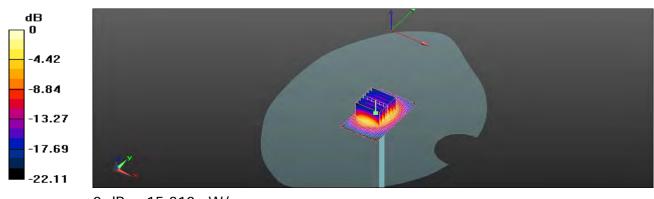
- Probe: EX3DV4 SN3703; ConvF(6.82, 6.82, 6.82); Calibrated: 1/24/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 5/18/2011
- Phantom: SAM2; Type: SAM;
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Configuration/d=10mm, Pin=250mW, dist=4mm: Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 16.065 mW/g

Configuration/d=10mm, Pin=250mW, dist=4mm: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.341 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 27.357 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 5.98 mW/g

Maximum value of SAR (measured) = 15.313 mW/g

0 dB = 15.310 mW/q

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在www.sgs.com中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

SGS Taiwan Ltd. No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei County, Taiwan. / 台北縣五股工業區五工路136之1號台灣檢驗科技股份有限公司 t (886-2) 2299-3939 f (886-2) 2299-9489 www.sgs.com.tw

Page: 39 of 78

6. DAE & Probe Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE4-856_May11 SGS-TW (Auden) **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BJ - SN: 856 Calibration procedure(s) QA CAL-06.v23 Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 18, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 28-Sep-10 (No:10376) Sep-11 Secondary Standards Check Date (in house) Scheduled Check SE UMS 006 AB 1004 07-Jun-10 (in house check) In house check: Jun-11 Dominique Steffen Calibrated by: Technician Fin Bomholt R&D Director Approved by: Illu Issued: May 18, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: DAE4-856_May11

Page 1 of 5

Page: 40 of 78

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signal

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SGS-TW (Auden)

Certificate No: EX3-3703_Jan11

Accreditation No.: SCS 108

Object	EX3DV4 - SN:3	703	
Calibration procedure(s)		QA CAL-14.v3, QA CAL-23.v4 and edure for dosimetric E-field probes	
Calibration date:	January 24, 201	1	
The measurements and the unc	ertainties with confidence	tional standards, which realize the physical uni probability are given on the following pages an ony facility: environment temperature (22 ± 3)°C	d are part of the certificate.
m ound and a mave peel condi		bry lacility. environment temperature (22 2 5)	and namany - 1070.
Calibration Equipment used (M&		ory recently, environment temperature (22.2.5) of	and namely 170%.
Calibration Equipment used (M&	RTE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter E4419B	RTE critical for calibration) ID # GB41293874	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136)	Scheduled Calibration Apr-11
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	ID# GB41293874 MY41495277	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	Scheduled Calibration Apr-11 Apr-11
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41495277 MY41498087	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	Scheduled Calibration Apr-11 Apr-11 Apr-11
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159)	Scheduled Calibration Apr-11 Apr-11
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11
	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5066 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11
Calibration Equipment used (M&Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: 3013 SN: 660 ID # US3642U01700	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. ES3-3013_Dec10) 29-Dec-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11
Calibration Equipment used (M&Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID#	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check
Calibration Equipment used (M&Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID# US3642U01700 US37390585 Name	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11
Calibration Equipment used (M&Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: EX3-3703 Jan11

Page 1 of 11

Page: 41 of 78

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonna Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP

diode compression point crest factor (1/duty_cycle) of the RF signal CF A, B, C modulation dependent linearization parameters

Polarization o φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement

Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required

Certificate No: EX3-3703_Jan11

Page 2 of 11

Page: 42 of 78

EX3DV4 SN:3703 January 24, 2011

Probe EX3DV4

SN:3703

Manufactured: July 21, 2009 Last calibrated: December 30, 2009 Recalibrated: January 24, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3703_Jan11

Page 3 of 11

Page: 43 of 78

EX3DV4 SN:3703

January 24, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3703

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.52	0.52	0.54	± 10.1%
DCP (mV) ^B	98.8	94.8	99.6	

Modulation Calibration Parameters

DID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	154.8	± 3.1 %
			Y	0.00	0.00	1.00	118.0	
			Z	0.00	0.00	1.00	156.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3703_Jan11

Page 4 of 11

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

⁶ Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Page: 44 of 78

EX3DV4 SN:3703 January 24, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3703

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY (ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.9 ± 5%	$0.89 \pm 5\%$	9.21	9.21	9.21	0.73	0.65 ± 11.0%
835	± 50 / ± 100	41.5 ± 5%	$0.90 \pm 5\%$	8.83	8.83	8.83	0.79	0.61 ± 11.0%
900	$\pm 50 / \pm 100$	$41.5 \pm 5\%$	$0.97 \pm 5\%$	8.78	8.78	8.78	0.73	0.63 ± 11.0%
1750	$\pm 50 / \pm 100$	40.1 ± 5%	1.37 ± 5%	8.02	8.02	8.02	0.50	0.71 ± 11.0%
1900	± 50 / ± 100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	7.67	7.67	7.67	0.39	0.82 ± 11.0%
2000	± 50 / ± 100	40.0 ± 5%	$1.40 \pm 5\%$	7.63	7.63	7.63	0.35	0.86 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	$1.80 \pm 5\%$	7.00	7.00	7.00	0.32	0.91 ± 11.0%
2600	$\pm 50 / \pm 100$	$39.0 \pm 5\%$	$1.96 \pm 5\%$	6.75	6.75	6.75	0.30	1.02 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency

Certificate No: EX3-3703_Jan11

Page 5 of 11

Page: 45 of 78

EX3DV4 SN:3703 January 24, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3703

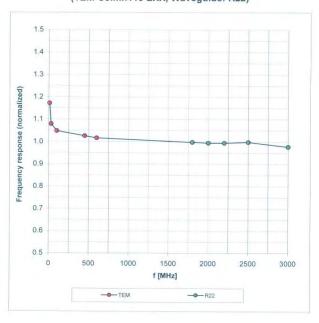
Calibration Parameter Determined in Body Tissue Simulating Media

Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY (ConvF Z	Alpha	Depth Unc (k=2)
± 50 / ± 100	$55.5 \pm 5\%$	$0.96 \pm 5\%$	9.06	9.06	9.06	0.57	0.73 ± 11.0%
± 50 / ± 100	55.2 ± 5%	$0.97 \pm 5\%$	8.85	8.85	8.85	0.46	0.83 ± 11.0%
± 50 / ± 100	$55.0 \pm 5\%$	$1.05 \pm 5\%$	8.74	8.74	8.74	0.45	0.83 ± 11.0%
± 50 / ± 100	$53.4 \pm 5\%$	$1.49 \pm 5\%$	7.26	7.26	7.26	0.58	0.70 ± 11.0%
± 50 / ± 100	$53.3 \pm 5\%$	$1.52 \pm 5\%$	7.04	7.04	7.04	0.44	0.82 ± 11.0%
± 50 / ± 100	$53.3 \pm 5\%$	$1.52 \pm 5\%$	7.13	7.13	7.13	0.61	0.70 ± 11.0%
± 50 / ± 100	$52.7 \pm 5\%$	$1.95 \pm 5\%$	6.82	6.82	6.82	0.41	0.82 ± 11.0%
± 50 / ± 100	$52.5 \pm 5\%$	2.16 ± 5%	6.78	6.78	6.78	0.33	0.89 ± 11.0%
± 50 / ± 100	$49.0 \pm 5\%$	$5.30 \pm 5\%$	4.00	4.00	4.00	0.50	1.95 ± 13.1%
± 50 / ± 100	$48.9 \pm 5\%$	$5.42 \pm 5\%$	3.73	3.73	3.73	0.55	1.95 ± 13.1%
± 50 / ± 100	$48.5\pm5\%$	5.77 ± 5%	3.42	3.42	3.42	0.65	1.95 ± 13.1%
± 50 / ± 100	48.2 ± 5%	$6.00 \pm 5\%$	3.67	3.67	3.67	0.65	1.95 ± 13.1%
	±50/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100	±50/±100 55.5±5% ±50/±100 55.2±5% ±50/±100 55.0±5% ±50/±100 53.4±5% ±50/±100 53.3±5% ±50/±100 52.7±5% ±50/±100 52.5±5% ±50/±100 49.0±5% ±50/±100 48.9±5% ±50/±100 48.5±5%	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3703_Jan11

Page 6 of 11



Page: 46 of 78

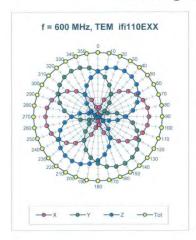
EX3DV4 SN:3703 January 24, 2011

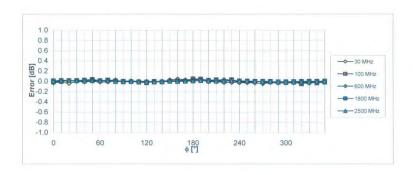
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)

Certificate No: EX3-3703_Jan11


Page 7 of 11


Page: 47 of 78

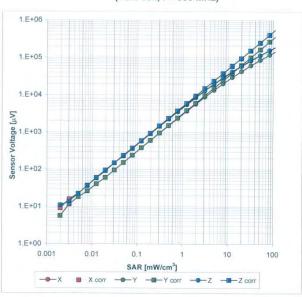
EX3DV4 SN:3703 January 24, 2011

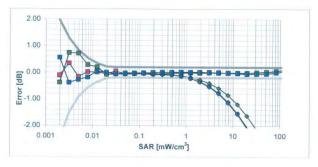
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3703_Jan11

Page 8 of 11


Page: 48 of 78


EX3DV4 SN:3703

January 24, 2011

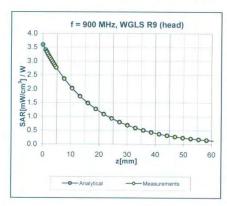
Dynamic Range f(SAR_{head})

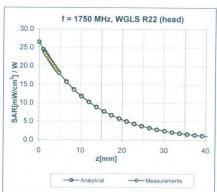
(TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3703_Jan11

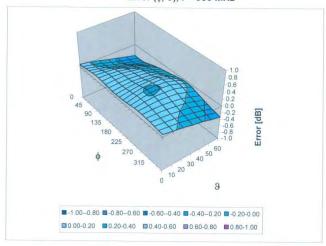
Page 9 of 11




Page: 49 of 78

EX3DV4 SN:3703

January 24, 2011


Conversion Factor Assessment

Deviation from Isotropy in HSL

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3703_Jan11

Page 10 of 11

Page: 50 of 78

EX3DV4 SN:3703 Other Probe Parameters

January 24, 2011

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3703_Jan11

Page 11 of 11

Page: 51 of 78

7. Uncertainty Budget

DASY5 Uncertainty Budget According to IEEE 1528 [1]

Error Description	Uncertainty value	Prob.	Div.	(c _i)	$\begin{pmatrix} c_i \end{pmatrix}$ $10 \mathrm{g}$	Std. Unc. (1g)	Std. Unc. (10g)	v_{eff}
Measurement System					100	7 7	31.07	-42
Probe Calibration	±5.9%	N	1	1 -	1	±5.9%	±5.9%	30
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.0%	±1.9%	-00
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	30
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	00
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	30
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	-00
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	.00
Response Time	±0.8%	R	$\sqrt{3}$	1 -	1	±0.5%	±0.5%	30
Integration Time	±2.6 %	R	$\sqrt{3}$	1	1 -	±1.5%	±1.5%	-00
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	-00
RF Ambient Reflections	±3.0%	R	V3	1	1	±1.7%	±1.7%	00
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	30
Probe Positioning	±2.9 %	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	-00
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	30
Test Sample Related				-				
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	V3	1	1	±2.9%	±2.9%	-00
Phantom and Setup		+ -	7					-
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1-	1	±2.3%	±2.3%	30
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	$\pm 1.2\%$	-00
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	000
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	30
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	30
Combined Std. Uncertainty	3	1				±10.9%	±10.7%	387
Expanded STD Uncertain	ty					±21.9 %	±21.4%	

Table 19.6: Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528 [1]. The budget is valid for the frequency range 300 MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

Page: 52 of 78

8. Phantom description

Schmid & Parmer Engineering AG

Zeughausstrasse 43, 6004 Zunch, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	SAM Twin Phantom V4.0	
Type No	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer	SPEAG Zeughausstrasse 43 CH-8004 Zürich Switzerland	

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness of shell	Compliant with the requirements according to the standards	2mm +/- 0.2mm in flat and specific areas of head section	First article, Samples, TP-1314 ff.
Material thickness at ERP	Compliant with the requirements according to the standards	6mm +/- 0.2mm at ERP	First article, All items
Material parameters	Dielectric parameters for required frequencies	300 MHz = 6 GHz: Relative permittivity < 5, Loss tangent < 0.05	Material samples
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material compatibility.	DEGMBE based simulating liquids	Pre-series, First article, Material samples
Sagging	Compliant with the requirements according to the standards. Sagging of the flat section when filled with tissue simulating liquid.	< 1% typical < 0.8% if filled with 155mm of HSL900 and without DUT below	Prototypes, Sample testing

Standards

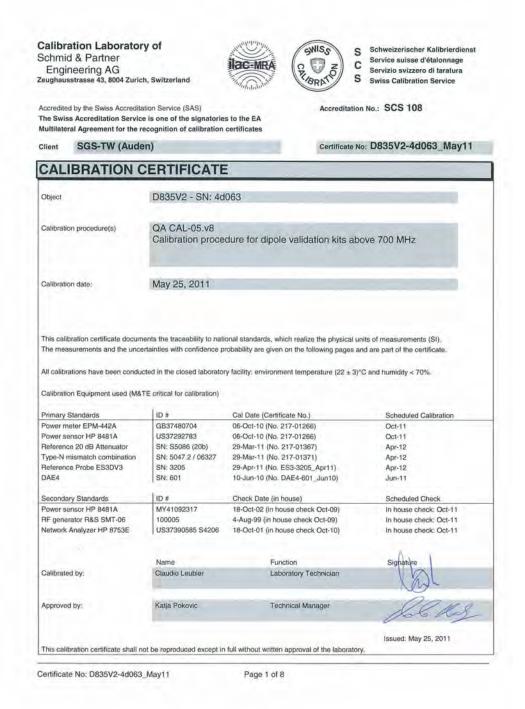
- CENELEC EN 50361 IEEE Std 1528-2003 IEC 62209 Part I

- FCC OET Bulletin 65, Supplement C, Edition 01-01
 The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Signature / Stamp

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4].

Doc No 881 - QD 000 P40 C - F


This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在<u>www.sgs.com</u>中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、爲 造、竄改皆屬非法,違犯者將會被依法追訴。

SGS Taiwan Ltd. No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei County, Taiwan. / 台北縣五股工業區五工路136之1號台灣檢驗科技股份有限公司 t (886-2) 2299-3939 f (886-2) 2299-9489 www.sas.com.tw

Page: 53 of 78

9. System Validation from Original equipment supplier

Page: 54 of 78

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d063_May11

Page 2 of 8

Page: 55 of 78

Measurement Conditions

DASY Version	DASY5	V52.6.2	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	15 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	835 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	40.4 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.31 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.13 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		***

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.45 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.60 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.27 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d063_May11

Page 3 of 8

Page: 56 of 78

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4 Ω - 1.5 jΩ	
Return Loss	- 28.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 4.1 jΩ	
Return Loss	- 27.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,426 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	November 27, 2006	

Certificate No: D835V2-4d063_May11

Page 4 of 8

Page: 57 of 78

DASY5 Validation Report for Head TSL

Date: 25.05.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d063

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.88$ mho/m; $\varepsilon_r = 40.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

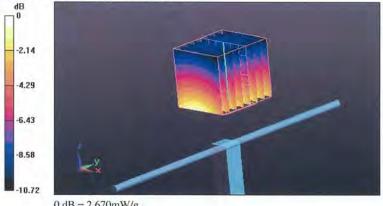
Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.2 Build (424)


Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

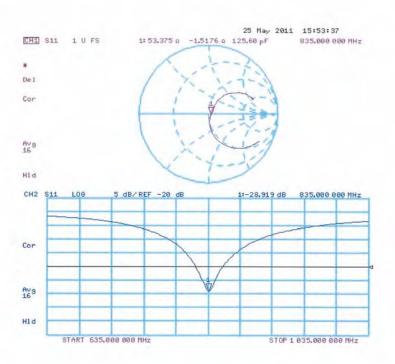
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.554 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.427 W/kg

SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.52 mW/gMaximum value of SAR (measured) = 2.669 mW/g

0 dB = 2.670 mW/g


Certificate No: D835V2-4d063_May11

Page 5 of 8

Page: 58 of 78

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d063_May11

Page 6 of 8

Page: 59 of 78

DASY5 Validation Report for Body TSL

Date: 25.05.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d063

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1 \text{ mho/m}$; $\varepsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

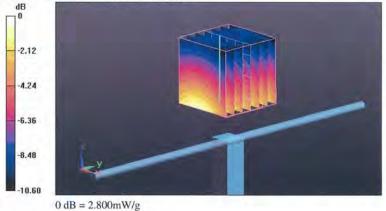
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Cube 0:

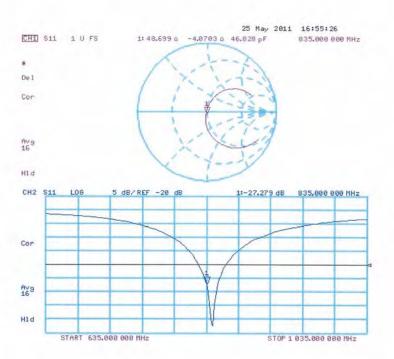

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.297 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 3.530 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.804 mW/g


Certificate No: D835V2-4d063_May11

Page 7 of 8

Page: 60 of 78

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d063_May11

Page 8 of 8

Page: 61 of 78

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

SGS TW (Auden) Certificate No: D1900V2-5d027_Apr11 **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d027 QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: April 19, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Primary Standards Cal Date (Certificate No.) Scheduled Calibration GB37480704 Power meter EPM-442A 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 SN: 5086 (20g) Reference 20 dB Attenuator 29-Mar-11 (No. 217-01368) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. E\$3-3205_Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 ID# Secondary Standards Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: April 19, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D1900V2-5d027_Apr11

Page 1 of 9

Page: 62 of 78

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d027 Apr11

Page 2 of 9

Page: 63 of 78

Measurement Conditions

DASY Version	DASY5	V52,6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1,41 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		449

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.1 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.26 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.9 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-5d027_Apr11

Page 3 of 9

Page: 64 of 78

Body TSL parameters

he following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.1 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		sair_

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.93 mW / g
SAR normalized	normalized to 1W	39.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.18 mW / g
SAR normalized	normalized to 1W	20.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.6 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d027_Apr11

Page 4 of 9

Page: 65 of 78

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.8 \Omega + 6.4 j\Omega$
Return Loss	- 23.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.1 \Omega + 6.6 j\Omega$	
Return Loss	- 23.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 17, 2002	

Certificate No: D1900V2-5d027_Apr11

Page 5 of 9

Page: 66 of 78

DASY5 Validation Report for Head TSL

Date/Time: 18.04.2011 15:27:22

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d027

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

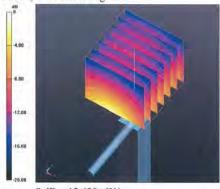
Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.2 Build (424)


Postprocessing SW: SEMCAD X, V14.4.2 Build (2829)

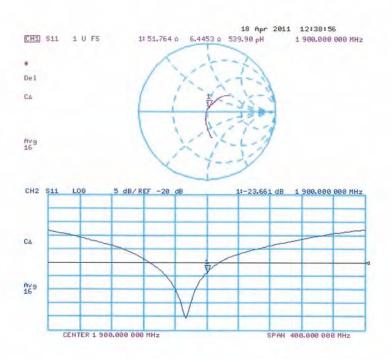
Pin=250 mW, Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.235 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 18.650 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.26 mW/g

Maximum value of SAR (measured) = 12.424 mW/g

0 dB = 12.420 mW/g


Certificate No: D1900V2-5d027 Apr11

Page 6 of 9

Page: 67 of 78

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d027_Apr11

Page 7 of 9

Page: 68 of 78

DASY5 Validation Report for Body TSL

Date/Time: 19.04.2011 12:53:51

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d027

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 1900 MHz; σ = 1.52 mho/m; ϵ_r = 51.1; ρ = 1000 kg/m³

Phantom section: Flat Section

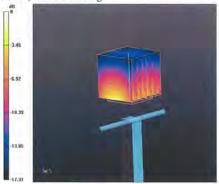
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010

· Sensor-Surface: 3mm (Mechanical Surface Detection)

· Electronics: DAE4 Sn601; Calibrated: 10.06.2010


Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

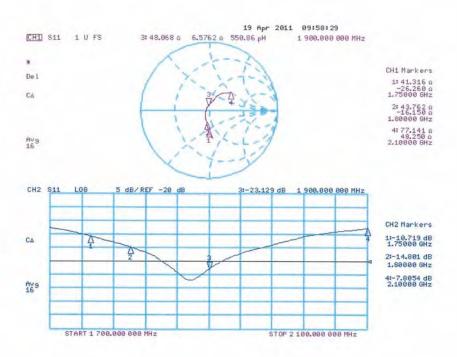
Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2829)

Pin=250 mW, Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.170 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.156 W/kg SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.18 mW/g Maximum value of SAR (measured) = 12.615 mW/g

0 dB = 12.610 mW/g


Certificate No: D1900V2-5d027_Apr11

Page 8 of 9

Page: 69 of 78

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d027_Apr11

Page 9 of 9

Page: 70 of 78

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

SGS TW (Auden) Certificate No: D2450V2-727_Apr11 **CALIBRATION CERTIFICATE** D2450V2 - SN: 727 Object Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits April 19, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 5086 (20g) 29-Mar-11 (No. 217-01368) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205 Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 US37390585 S4206 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: April 19, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D2450V2-727 Apr11

Page 1 of 9

Page: 71 of 78

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-727_Apr11

Page 2 of 9

Page: 72 of 78

Measurement Conditions

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

ving parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.72 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	****	(Airia)

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR normalized	normalized to 1W	54.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	55.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.39 mW / g
SAR normalized	normalized to 1W	25.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.7 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-727_Apr11

Page 3 of 9

Page: 73 of 78

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	1.91 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C		page 1

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.7 mW / g
SAR normalized	normalized to 1W	50.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.84 mW / g
SAR normalized	normalized to 1W	23.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.3 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-727_Apr11

Page 4 of 9

Page: 74 of 78

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3 Ω + 2.0 jΩ	
Return Loss	- 26.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.9 \Omega + 3.7 j\Omega$	
Return Loss	- 28.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.149 ns
Electrical Delay (one direction)	1.149 NS

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	January 9, 2003	

Certificate No: D2450V2-727_Apr11

Page 5 of 9

Page: 75 of 78

DASY5 Validation Report for Head TSL

Date/Time: 18.04.2011 16:55:19

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:727

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.74 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

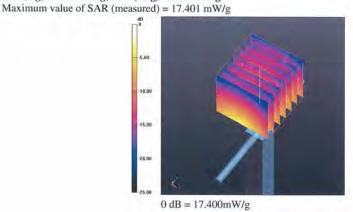
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

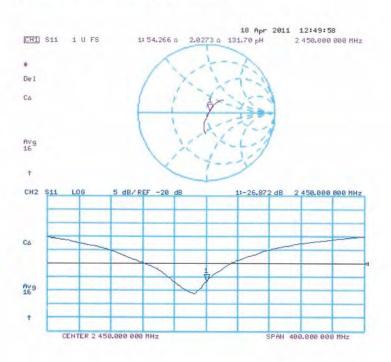

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14,4.2 Build (2829)

Pin=250 mW, Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.6 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.919 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.39 mW/g


Certificate No: D2450V2-727_Apr11

Page 6 of 9

Page: 76 of 78

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-727_Apr11

Page 7 of 9

Page: 77 of 78

DASY5 Validation Report for Body TSL

Date/Time: 19.04.2011 14:37:11

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:727

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.91 \text{ mho/m}$; $\varepsilon_r = 50.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

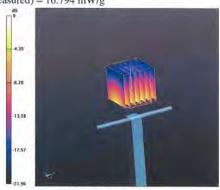
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010

· Sensor-Surface: 3mm (Mechanical Surface Detection)

· Electronics: DAE4 Sn601; Calibrated: 10.06.2010


Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

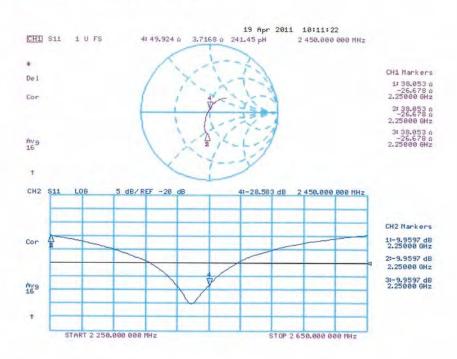
Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2829)

Pin=250 mW, Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.949 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 26.888 W/kg SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.84 mW/g Maximum value of SAR (measured) = 16.794 mW/g

0 dB = 16.790 mW/g


Certificate No: D2450V2-727_Apr11

Page 8 of 9

Page: 78 of 78

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-727_Apr11

Page 9 of 9

End of 1st part of report

This document is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification, and Jurisdictional issued defined therein. Unless otherwise stated, the results shown in this test report refer only to the sample(s) tested. This document cannot be reproduced except in full, without prior approval of Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders may be prosecuted to the fullest extent of the law. 此報告是遵循本公司訂定之通用服務條款所製作發放,請注意此條款列印於背面,亦可在<u>www.sgs.com</u>中查閱。將本公司之義務,免責,管轄權皆 明確規範之。除非另有說明,此報告結果僅對檢驗之樣品負責。本報告未經本公司書面許可,不可部份複製。對本報告內容或外觀之任何未經授權之變更、僞 造、竄改皆屬非法,違犯者將會被依法追訴。

***SGS Taiwan Ltd. No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei County, Taiwan. / 台北縣五股工業區五工路136≥1號台灣檢驗科技股份有限公司 t (886-2) 2299-3939 f (886-2) 2299-9489 www.sgs.com.tw