

FCC TEST REPORT

CATEGORY: Outdoor Mobile End Product
PRODUCT NAME: **RF Cradle**
FCC ID.: HLEMS086
FILING TYPE: Certification
BRAND NAME: Unitech
MODEL NAME: **MS086**

APPLICANT: **Unitech Electronics Co., Ltd.**
8F, No. 118, Lane 235, Pao-Chiao Rd., Hsin-Tien,
Taiwan 231, R.O.C.
MANUFACTURER: The same as Applicant.

ISSUED BY: **SPORTON INTERNATIONAL INC.**
6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien,
Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA, NVLAP or any agency of U.S. government.

The test equipment used to perform the test are calibrated and traceable to NML/ROC or NIST/USA.

Dr. Alan Lane
Vice General Manager

NVLAP®

Lab Code: 200079-0

Table of Contents

History of this test report.....	ii
1. General Description of Equipment under Test.....	1
1.1. General Description.....	1
1.2. List of EUT Accessories	1
1.3. Technical Features.....	1
2. TEST CONFIGURATION OF THE EQUIPMENT UNDER TEST.....	3
2.1. Description of the Test	3
2.2. Frequency Range Investigated	3
2.3. Details of the Supporting Units.....	4
2.4. Connection Diagram of Test System	4
3. TEST SOFTWARE.....	5
4. TEST LOCATION AND STANDARDS	6
4.1. Test Location.....	6
4.2. Test Standards	6
4.3. DoC Statement.....	6
5. TEST RESULT AND DETAILS.....	7
5.1. Summary of the Test Results.....	7
5.2. Hopping Channel Bandwidth.....	8
5.3. Number of Hopping Frequency	11
5.4. Hopping Channel Separation	13
5.5. Dwell Time of Each Frequency within a 30 Seconds Period.....	16
5.6. Output Power	19
5.7. 100KHz Bandwidth of Frequency Band Edges	22
5.8. Conducted Emission	25
5.9. Test of Radiated Emission	31
5.10. Antenna Requirements	38
5.11. RF Exposure	39
6. List of Measuring Equipments Used	41
Appendix A. Photographs of EUT.....	A1 ~ A9

History of this test report

No additional attachment.

Additional attachment were issued as following record:

1. General Description of Equipment under Test

1.1. General Description

Items	Description
Sample Type	RF Cradle with bluetooth module
Date of Testing	Sep. 27, 2003

1.2. List of EUT Accessories

Items	Description
RS-232 Cable	Shielded, 1.4m
Power Supply Type	Switching
AC Power Input	Wall-Mount, 2pin
DC Power Cable	Shielded, 1.8m

1.3. Technical Features

Items	Description
Communication Technique	FHSS
Modulation	GFSK
Number of Channels	79
Operating Frequency Band	2400~2483.5 MHz
Bandwidth of each channel	1MHz
Maximum Conducted RF Power	-1.06 dBm
Type of Antenna (Gain)	Dipole Antenna (2dBi)
Function Type	Transceiver
Power Rating (DC/AC , Voltage)	ADAPTOR : Brand : DEV / Model : DSA-0151F-09 A Output : +9V, 2A Input : AC100-120V, 50 / 80 Hz, 40VA

Note: The table below is the summary of the operating frequencies.

Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	27	2429 MHz	54	2456 MHz
01	2403 MHz	28	2430 MHz	55	2457 MHz
02	2404 MHz	29	2431 MHz	56	2458 MHz
03	2405 MHz	30	2432 MHz	57	2459 MHz
04	2406 MHz	31	2433 MHz	58	2460 MHz
05	2407 MHz	32	2434 MHz	59	2461 MHz
06	2408 MHz	33	2435 MHz	60	2462 MHz
07	2409 MHz	34	2436 MHz	61	2463 MHz
08	2410 MHz	35	2437 MHz	62	2464 MHz
09	2411 MHz	36	2438 MHz	63	2465 MHz
10	2412 MHz	37	2439 MHz	64	2466 MHz
11	2413 MHz	38	2440 MHz	65	2467 MHz
12	2414 MHz	39	2441 MHz	66	2468 MHz
13	2415 MHz	40	2442 MHz	67	2469 MHz
14	2416 MHz	41	2443 MHz	68	2470 MHz
15	2417 MHz	42	2444 MHz	69	2471 MHz
16	2418 MHz	43	2445 MHz	70	2472 MHz
17	2419 MHz	44	2446 MHz	71	2473 MHz
18	2420 MHz	45	2447 MHz	72	2474 MHz
19	2421 MHz	46	2448 MHz	73	2475 MHz
20	2422 MHz	47	2449 MHz	74	2476 MHz
21	2423 MHz	48	2450 MHz	75	2477 MHz
22	2424 MHz	49	2451 MHz	76	2478 MHz
23	2425 MHz	50	2452 MHz	77	2479 MHz
24	2426 MHz	51	2453 MHz	78	2480 MHz
25	2427 MHz	52	2454 MHz		
26	2428 MHz	53	2455 MHz		

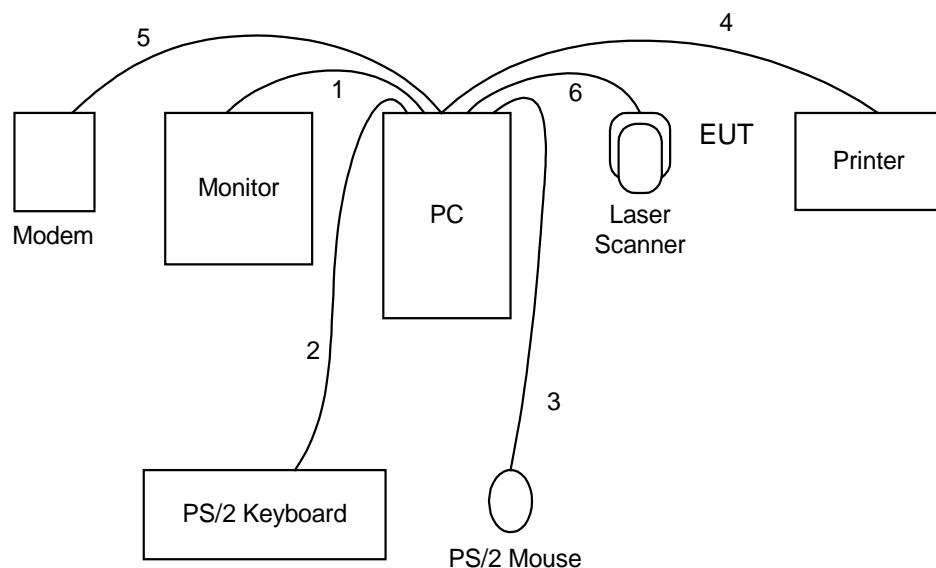
2. TEST CONFIGURATION OF THE EQUIPMENT UNDER TEST

2.1. Description of the Test

- a) For 15.247(g), during data transmission, the carrier frequency is repeatedly switched on 79 hopping frequencies, any 2 hopping frequencies will not be available on the spectrum simultaneously. So, this device can be taken as true frequency hopping device.
- b) For 15.247(h), the hopping sequence is determined by the address of piconet master. Each piconet master will have its unique address at any moment, so re-use of the hopping sequence is completely not possible. Within the piconet, one master can be communicated with many slaves via the same hopping sequence, but at any moment only one (master or slave) can be "talk". It is determined by the master that who should be "listen" or "talk". Any slave who wants to "talk" has to send "inquiry" to master first. So, 2 slaves (or one slave one master) is not possible to be on "talk" mode simultaneously.
- c) The used peripherals as well as the configuration fulfill the requirements of ANSI C63.4:2001. The configuration is operated in a manner which tends to maximize its emission characteristics in a typical application.
- d) 3 meters measurement distance at OATS was used in this test.

2.2. Frequency Range Investigated

- a) Conducted power line test: from 150 kHz to 30 MHz
- b) Radiated emission test: from 30 MHz to 25000 MHz


2.3. Details of the Supporting Units

Unit No	Device	Brand	FCC ID /DoC	Model No.	Power Supply	Power Cord	Data Cable
1.	Monitor	VIEWSONIC	DoC	VCDTS21553-3P	Switching	Non-Shielded	Shielded, 1.7m
2.	PS/2Keyboard	LOGITECH	DoC	Y-SJ17	NA	NA	Shielded (via metal backshells), 1.7m
3.	PS/2 Mouse	LOGITECH	DZL211029	M-S34	NA	NA	Shielded, 1.7m
4.	Printer	EPSON	NA	STYLUS COLOR 680	Linear	Non-Shielded	Shielded, 1..35m
5.	Modem	ACEEX	IFAXDM1414	DM1414	Linear	Non-Shielded	Shielded, 1.15m
6.	PC	COMPAQ	NA	Evo D380mx	Switching	Non-Shielded	NA

* connect to remote device.

** remote device.

2.4. Connection Diagram of Test System

3. TEST SOFTWARE

There are 2 softwares may be used in the testing.

- A) Channel & Power Controlling Software: This was provided by the manufacturer and is able to let the test engineer select the operating channel as well as the RF output power. The parameters for channel selection is trying to offer the test engineer the ability to fix the operating channel for testing, both normal data and continuously transmitting modes are allowed, and that for RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.
- B) "H" Pattern Generator: Except Access Point, the supporting equipment such as monitor or printer is always available. Under testing, these supporting equipment has to also under working condition. "H" Pattern Generator is able to continuously transmitting "H" character to those supporting equipments.

4. TEST LOCATION AND STANDARDS

4.1. Test Location

Test Location : Sporton Hwa Ya Testing Building

Address : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Tel: +886 3 327 3456 Fax: +886 3 318 0055

Test Site No. : CO01-HY, 03CH03-HY

4.2. Test Standards

Here is the list of the standards followed in this test report.

ANSI C63.4-2001

47 CFR Part 15 Subpart C (Section 15.247)

4.3. DoC Statement

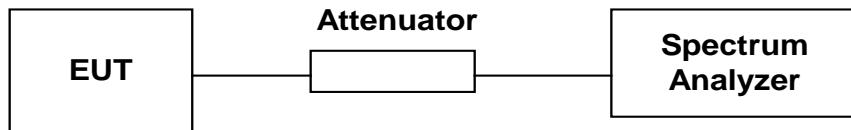
This EUT is also classified as a device of computer peripheral Class B which DoC has to be followed. It has been verified according to the rule of 47 CFR part 15 Subpart B, and found that all the requirements has been fulfilled.

5. TEST RESULT AND DETAILS

5.1. Summary of the Test Results

FCC Rule	Description of Test	Result
15.247(a)(1)(ii)	Hopping Channel Bandwidth	Pass
<u>15.247(a)(1)</u>	Hopping Channel Separation	Pass
<u>15.247(a)(1)(ii)</u>	Number of Hopping Frequency Used	Pass
<u>15.247(a)(1)(ii)</u>	Dwell Time of Each Frequency within a 30 Second Period	Pass
<u>15.247(b)</u>	Output Power	Pass
15.247(c)	100KHz Bandwidth of Frequency Band Edges	Pass
<u>15.107/15.207</u>	Conducted Emission	Pass
15.209	Radiated Emission	Pass
<u>15.203</u>	Antenna Requirement	Pass

5.2. Hopping Channel Bandwidth


5.2.1. Measuring Instruments :

Item 9 of the table on section 6.

5.2.2. Test Procedure :

1. The transmitter output was connected to the spectrum analyzer through an attenuator.
2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
3. The Hopping Channel bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20 dB.

5.2.3. Test Setup Layout :

5.2.4. Test Result : See spectrum analyzer plots below

- Temperature: 27°C
- Relative Humidity: 62 %
- Duty cycle of the equipment during the test X = 100%

Channel	Frequency (MHz)	Hopping Channel Bandwidth (MHz)	Limits	
			(MHz)	(MHz)
00	2402	0.2660		1.0
39	2441	0.2690		1.0
78	2480	0.2670		1.0


FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

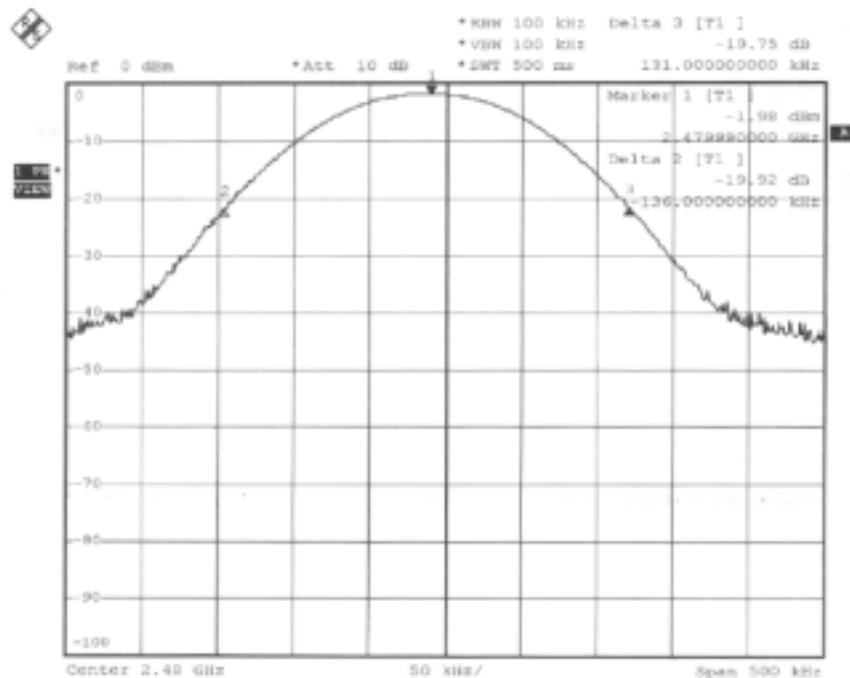
(Channel 00) :

(Channel 39) :

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255


FCC ID. : HLEMS086

Page No. : 9 of 41

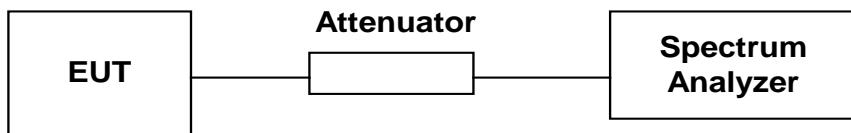
Issued Date : Feb. 17, 2004

(Channel 78) :

5.2.5. Test Configuration (EUT Operating Condition) :

The software provided by client enable the EUT under continuous transmission condition.
The EUT have its hopping function enabled.

5.3. Number of Hopping Frequency


5.3.1. Measuring Instruments :

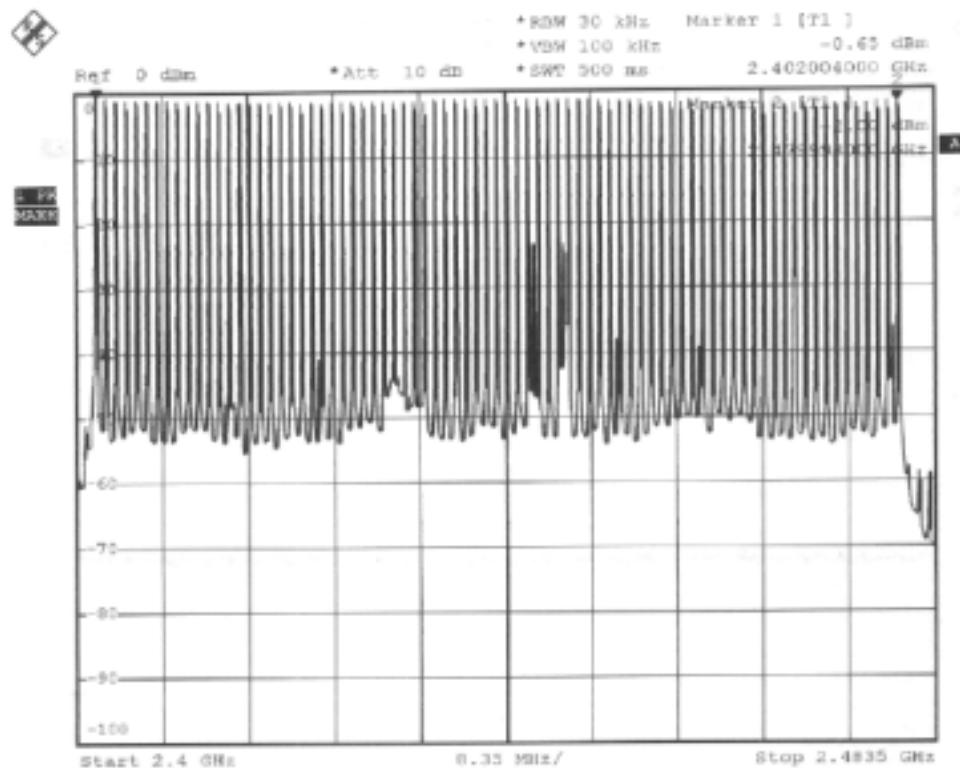
Item 9 of the table on section 6.

5.3.2. Test Procedure :

1. The transmitter output was connected to the spectrum analyzer through an attenuator.
2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
3. The number of hopping frequency used is defined as the total uumber of the channels avaible on the spectrum.

5.3.3. Test Setup Layout :

5.3.4. Test Result : See spectrum analyzer plots below


- Temperature: 27°C
- Relative Humidity: 62 %
- Duty cycle of the equipment during the test X = 100%

Number of Hopping Frequency (Channel)	Limits (Channel)
79	75

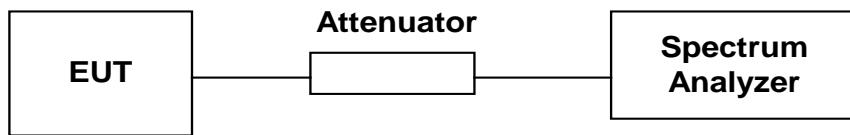
FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

5.3.5. Test Configuration (EUT Operating Condition) :

The software provided by client enable the EUT under continuous transmission condition.
The EUT have its hopping function enabled.

5.4. Hopping Channel Separation


5.4.1. Measuring Instruments :

Item 9 of the table on section 6.

5.4.2. Test Procedure :

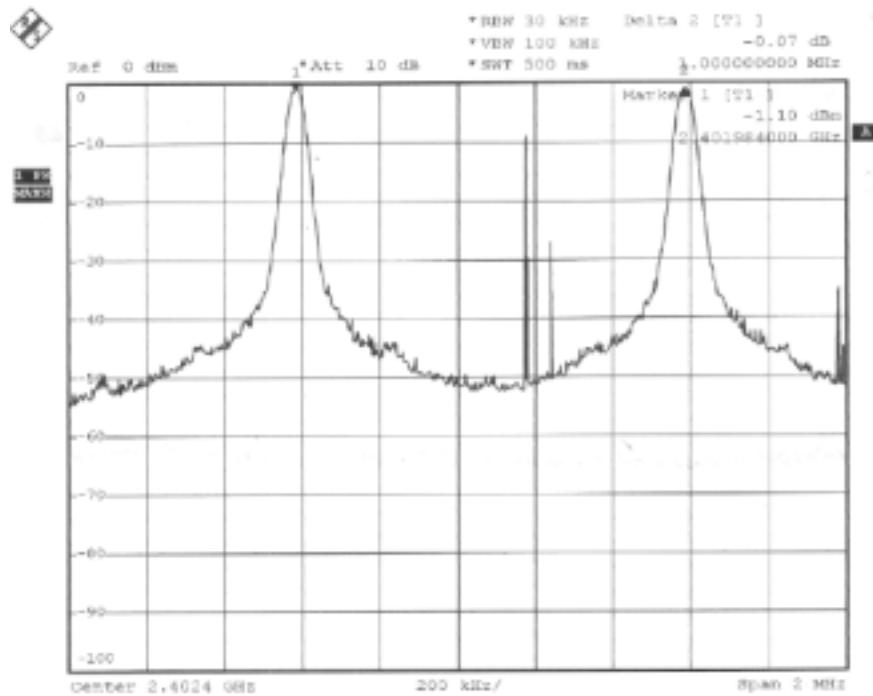
1. The transmitter output was connected to the spectrum analyzer through an attenuator.
2. Set RBW of spectrum analyzer to 30KHz and VBW to 100KHz.
3. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.

5.4.3. Test Setup Layout :

5.4.4. Test Result : The spectrum analyzer plots are attached as below

- Temperature: 27°C
- Relative Humidity: 62 %
- Duty cycle of the equipment during the test X = 100%

Channel	Frequency (MHz)	Hopping (KHz)	Channel Separation	Limits (KHz)
00	2402	1000.0000		0.2660
39	2441	1000.0000		0.2690
78	2480	1000.0000		0.2670


Limits: min fo 25KHz or 20dB bandwidth , which is greater.


FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

(Channel 00) :

(Channel 39) :

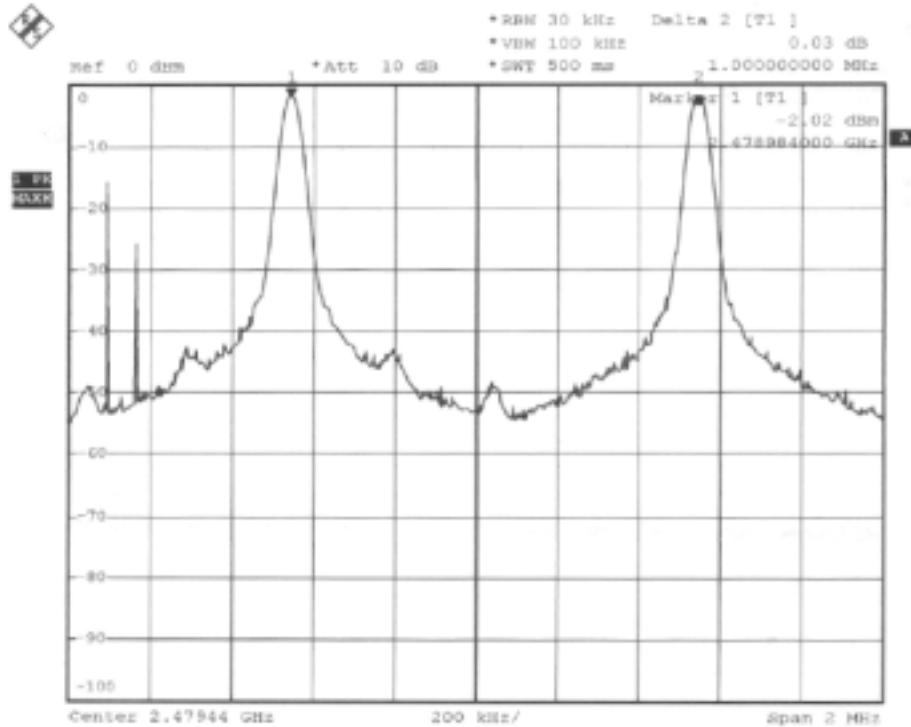
Sportun International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : HLEMS086

Page No. : 14 of 41


Issued Date : Feb. 17, 2004

FCC ID: HLEMS086
Issued on Feb. 17, 2004

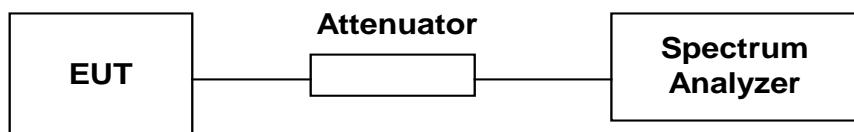
Report No.: F390903

(Channel 78) :

5.4.5. Test Configuration (EUT Operating Condition) :

The software provided by client enable the EUT under continuous transmission condition.
The EUT have its hopping function enabled.

5.5. Dwell Time of Each Frequency within a 30 Seconds Period


5.5.1. Measuring Instruments :

Item 9 of the table on section 6.

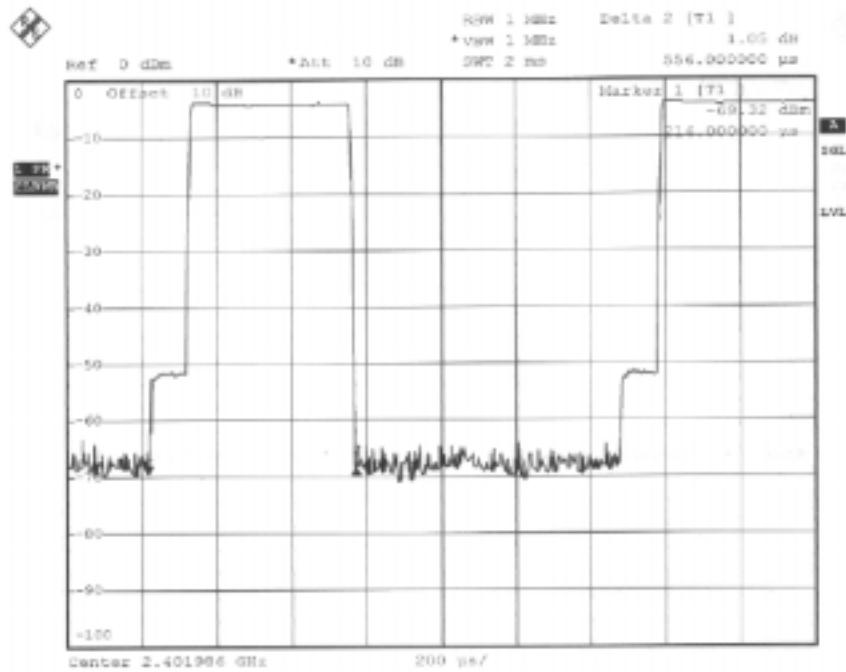
5.5.2. Test Procedure :

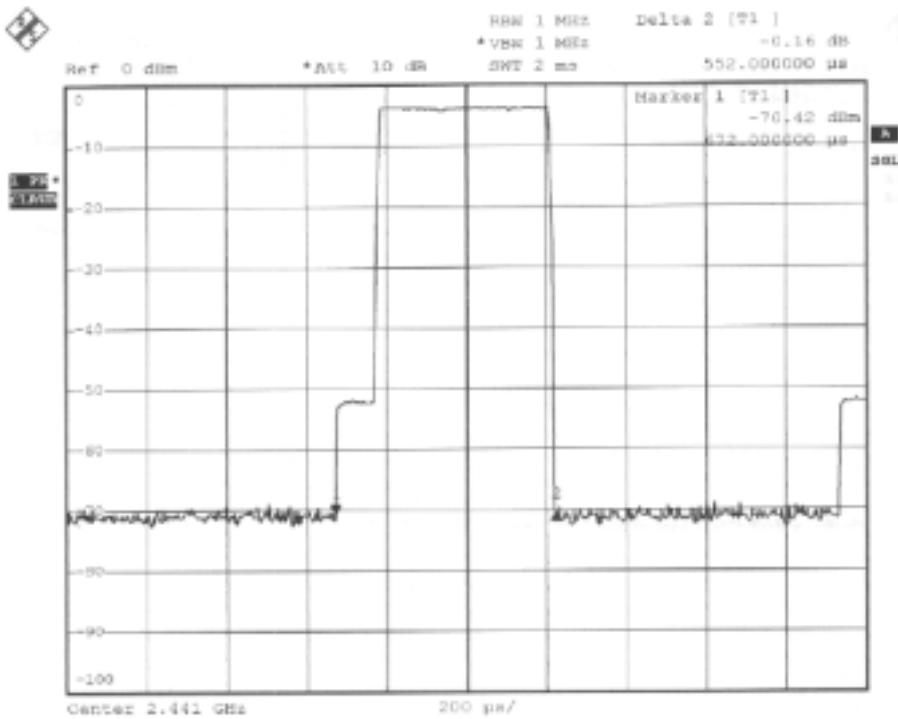
1. The transmitter output was connected to the spectrum analyzer through an attenuator.
2. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
3. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
4. Measure the maximum time duration, t , of one single pulse.
5. Assume the system is hopping on highest hopping rate, 1600 pps. The Dwell time on 30 seconds = $30 \times (1600/79) \times t$

5.5.3. Test Setup Layout :

5.5.4. Test Result : See spectrum analyzer plots below

- Temperature: 27°C
- Relative Humidity: 62 %
- Duty cycle of the equipment during the test X = 100%


Channel	Frequency (MHz)	Dwell Time (s)	Limits (s)
00	2402	0.337822785	0.4
39	2441	0.335392405	0.4
78	2480	0.337822785	0.4


FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

(Channel 00) :

(Channel 39) :

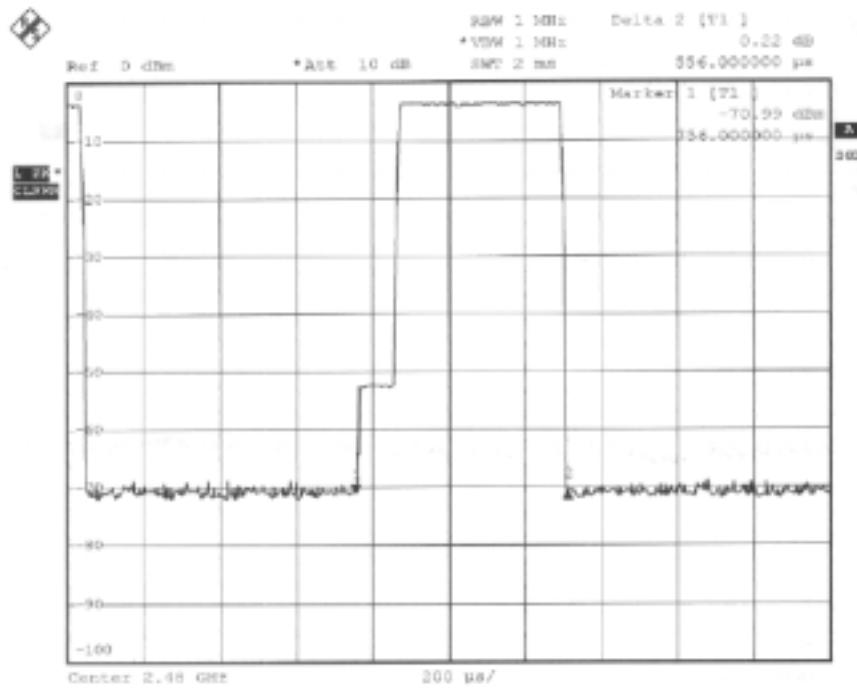
Sportun International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : HLEMS086

Page No. : 17 of 41


Issued Date : Feb. 17, 2004

FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

(Channel 78) :

5.5.5. Test Configuration (EUT Operating Condition) :

Same as Section 5.2.5.

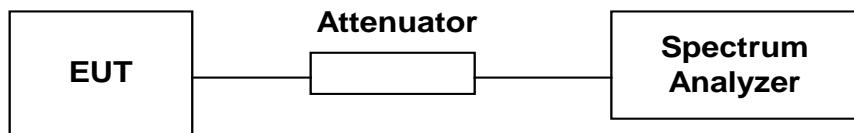
Sportun International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : HLEMS086
Page No. : 18 of 41
Issued Date : Feb. 17, 2004

5.6. Output Power


5.6.1. Measuring Instruments :

Item 9 of the table on section 6.

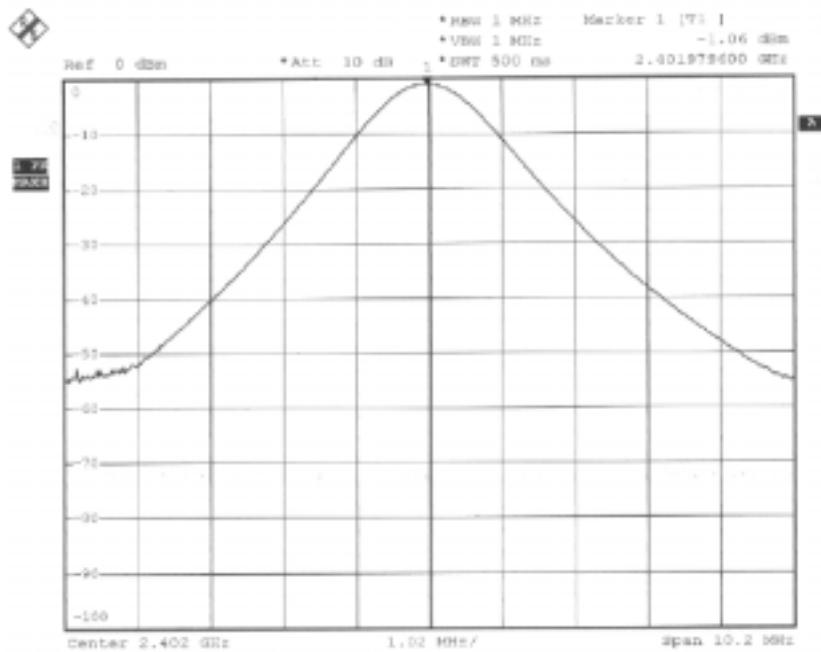
5.6.2. Test Procedure :

1. The transmitter output was connected to the spectrum analyzer through an attenuator.
2. The center frequency of the spectrum analyzer was set to the fundamental frequency and set RBW to 1MHz and VBW to 1MHz.

5.6.3. Test Setup Layout :

5.6.4. Test Result : See spectrum analyzer plots below

- Temperature: 27°C
- Relative Humidity: 61 %
- Duty cycle of the equipment during the test X = 100%


Channel	Frequency	Measured Output Power (dBm)	Measured Output Power (mWatt)	Limits (Watt/dBm)
00	2402	-1.06	0.783429643	1W/30 dBm
39	2441	-1.42	0.721107479	1W/30 dBm
78	2480	-1.97	0.635330932	1W/30 dBm


FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

(Channel 00) :

(Channel 39) :

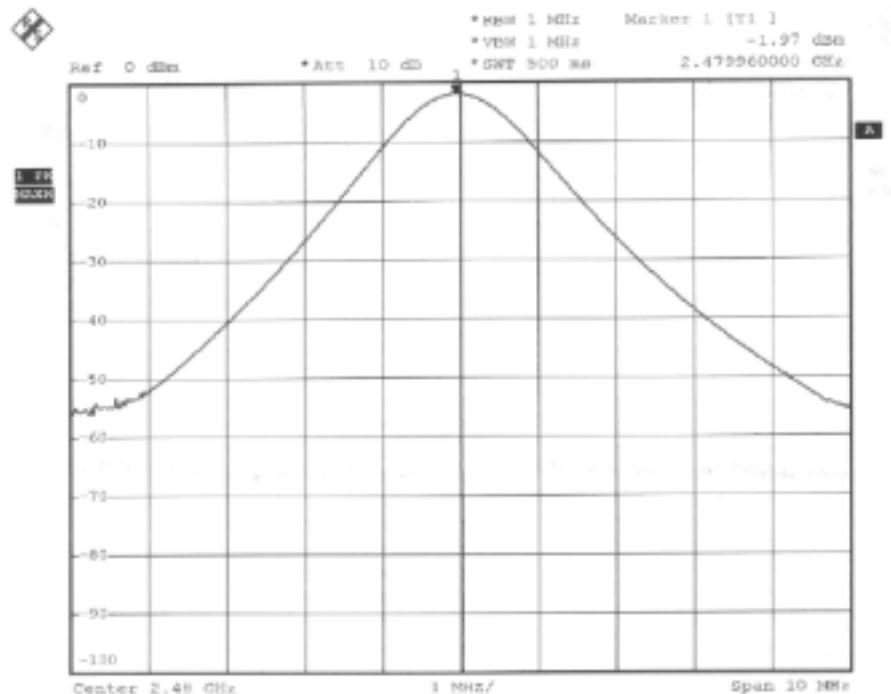
Sportun International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : HLEMS086

Page No. : 20 of 41


Issued Date : Feb. 17, 2004

FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

(Channel 78) :

5.6.5. Test Configuration (EUT Operating Condition) :

Same as Section 5.4.5.

Sportun International Inc.

TEL : 886-2-2696-2468
FAX : 886-2-2696-2255

FCC ID. : HLEMS086
Page No. : 21 of 41
Issued Date : Feb. 17, 2004

5.7. 100KHz Bandwidth of Frequency Band Edges

5.7.1. Measuring Instruments :

Item 9 of the table on section 6.

5.7.2. Test Procedure :

1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
2. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100 KHz bandwidth from band edge.
3. The band edges was measured and recorded.

5.7.3. Test Result :

Test Result in lower band (Channel 00) :	PASS
Test Result in higher band(Channel 78) :	PASS

5.7.4. Note on Band edge Emission

(A) Left Edge

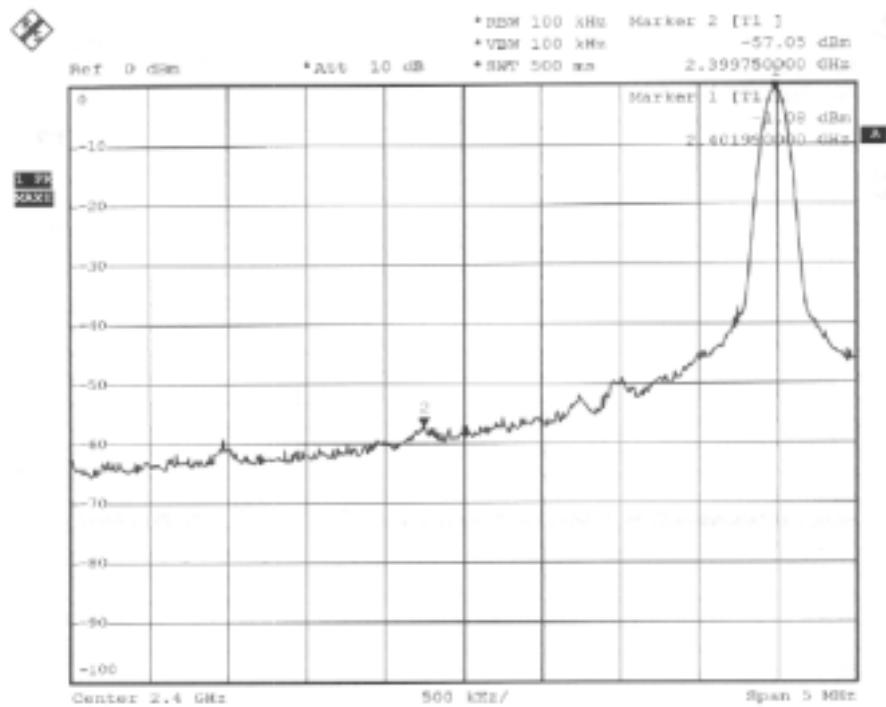
The band edge emission plot shows 55.97dB delta between carrier maximum power and local maximum emission in the restricted band.

CH 00	Carrier power strength (dB μ V/m)	Delta (dB)	The maximum field strength in restrict band (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
	73.17	55.97	17.20	54.00	-36.80

(B) Right Edge

The band edge emission plot shows 60.33dB delta between carrier maximum power and local maximum emission in the restricted band.

CH 78	Carrier power strength (dB μ V/m)	Delta (dB)	The maximum field strength in restrict band (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
	70.39	60.33	10.06	54.00	-43.94


* The maximum field strength in restricted band is the emission of carrier power strength subtract to the delta between carrier maximum power and local maximum emission in the restricted band.

FCC ID: HLEMS086
Issued on Feb. 17, 2004

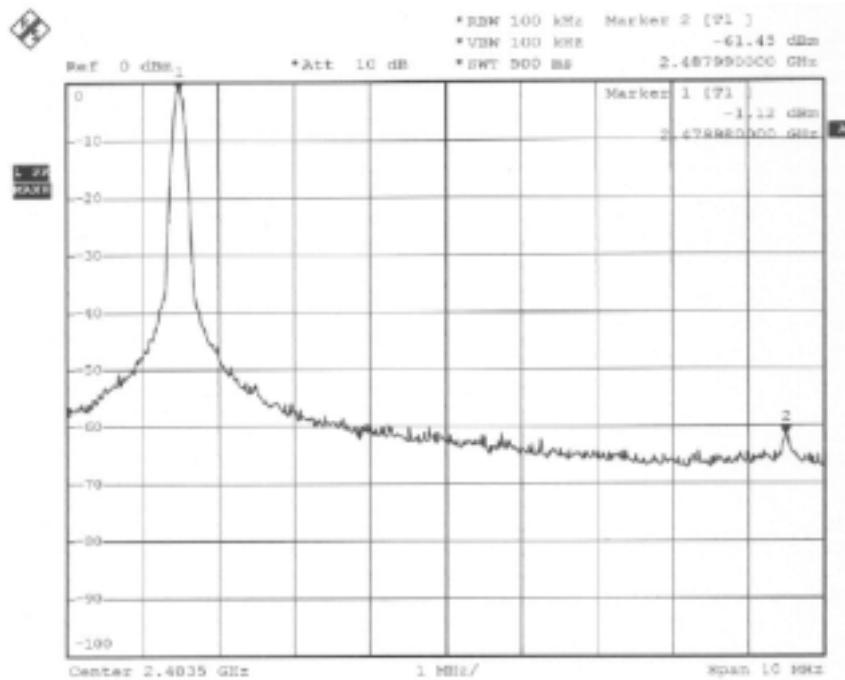
Report No.: F390903

(Channel 00) :

SPURTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255


FCC ID. : HLEMS086

Page No. : 23 of 41

Issued Date : Feb. 17, 2004

(Channel 78) :

Comments : All emissions in those 100kHz bandwidth are attenuated more than 20dB from carrier maximum power.

5.7.5. Test Configuration (EUT Operating Condition) :

The software provided by client enable the EUT under continuous transmission condition.
The EUT have its hopping function enabled.

5.8. Conducted Emission

5.8.1. Measuring Instruments

Please reference item 1~7 in chapter 6 for the instruments used for testing.

5.8.2. Test Procedures

- a) Configure the EUT according to ANSI C63.4.
- b) The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- c) Connect EUT to the power mains through a line impedance stabilization network (LISN).
- d) All the support units are connected to the other LISNs. The LISN should provides 50uH/50ohms coupling impedance.
- e) The frequency range from 150 KHz to 30 MHz was searched.
- f) Use the Channel & Power Controlling software to make the EUT working on selected channel and expected output power, then use the "H" Patter Generator software to make the supporting equipments stay on working condition.
- g) Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- h) The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.

5.8.3. Test Result of Conducted Emission

Test Mode	CH 00	Tested By	Brian Lin
Temperature / Humidity	24 deg. C / 52%		

Line to Ground

Freq	Level	Over Limit		Read Line	Probe Factor	Cable Loss		Remark
		MHz	dBuV	dB	dBuV	dB	dB	
1	0.188	41.35	-22.77	64.12	41.20	0.10	0.05	QP
2	0.188	36.53	-17.59	54.12	36.38	0.10	0.05	Average
3	0.251	37.31	-24.41	61.72	37.13	0.10	0.08	QP
4	0.251	34.04	-17.68	51.72	33.86	0.10	0.08	Average
5	0.318	44.18	-5.58	49.76	43.96	0.10	0.12	Average
6	0.318	44.87	-14.89	59.76	44.65	0.10	0.12	QP
7	0.375	38.74	-9.65	48.39	38.50	0.10	0.14	Average
8	0.375	39.91	-18.48	58.39	39.67	0.10	0.14	QP
9	0.440	46.79	-10.27	57.06	46.54	0.10	0.15	QP
10	0.440	45.49	-1.57	47.06	45.24	0.10	0.15	Average
11	0.641	36.29	-19.71	56.00	36.06	0.10	0.13	QP
12	0.641	37.00	-9.00	46.00	36.77	0.10	0.13	Average

Neutral to Ground

Freq	Level	Over Limit		Read Line	Probe Factor	Cable Loss		Remark
		MHz	dBuV	dB	dBuV	dB	dB	
1	0.188	38.61	-25.51	64.12	38.46	0.10	0.05	QP
2	0.188	36.66	-17.46	54.12	36.51	0.10	0.05	Average
3	0.251	36.99	-24.73	61.72	36.81	0.10	0.08	QP
4	0.251	33.58	-18.14	51.72	33.40	0.10	0.08	Average
5	0.320	41.65	-8.06	49.71	41.43	0.10	0.12	Average
6	0.320	41.54	-18.17	59.71	41.32	0.10	0.12	QP
7	0.377	37.54	-10.81	48.35	37.30	0.10	0.14	Average
8	0.377	39.77	-18.58	58.35	39.53	0.10	0.14	QP
9	0.440	43.30	-3.76	47.06	43.05	0.10	0.15	Average
10	0.440	46.25	-10.81	57.06	46.00	0.10	0.15	QP
11	0.641	36.29	-19.71	56.00	36.06	0.10	0.13	QP
12	0.641	37.32	-8.68	46.00	37.09	0.10	0.13	Average

Test Mode	CH 39	Tested By	Brian Lin
Temperature / Humidity	24 deg. C / 52%		

Line to Ground

Freq	Level	Over	Limit	Read	Probe	Cable	Remark
		Limit	Line	Level	Factor	Loss	
	MHz	dBuV	dB	dBuV	dBuV	dB	dB
1	0.184	34.86	-29.44	64.30	34.71	0.10	0.05 QP
2	0.184	32.85	-21.45	54.30	32.70	0.10	0.05 Average
3	0.251	36.99	-24.73	61.72	36.81	0.10	0.08 QP
4	0.251	23.83	-27.89	51.72	23.65	0.10	0.08 Average
5	0.318	41.13	-8.63	49.76	40.91	0.10	0.12 Average
6	0.318	42.19	-17.57	59.76	41.97	0.10	0.12 QP
7	0.375	40.49	-7.90	48.39	40.25	0.10	0.14 Average
8	0.375	39.61	-18.78	58.39	39.37	0.10	0.14 QP
9	0.440	43.63	-3.43	47.06	43.38	0.10	0.15 Average
10	0.440	46.25	-10.81	57.06	46.00	0.10	0.15 QP
11	0.641	36.31	-19.69	56.00	36.08	0.10	0.13 QP
12	0.641	36.53	-9.47	46.00	36.30	0.10	0.13 Average

Neutral to Ground

Freq	Level	Over	Limit	Read	Probe	Cable	Remark
		Limit	Line	Level	Factor	Loss	
	MHz	dBuV	dB	dBuV	dBuV	dB	dB
1	0.190	40.47	-23.57	64.04	40.32	0.10	0.05 QP
2	0.190	35.89	-18.15	54.04	35.74	0.10	0.05 Average
3	0.252	37.15	-24.54	61.69	36.97	0.10	0.08 QP
4	0.252	33.94	-17.75	51.69	33.76	0.10	0.08 Average
5	0.318	43.83	-5.93	49.76	43.61	0.10	0.12 Average
6	0.318	44.49	-15.27	59.76	44.27	0.10	0.12 QP
7	0.375	38.95	-9.44	48.39	38.71	0.10	0.14 Average
8	0.375	40.11	-18.28	58.39	39.87	0.10	0.14 QP
9	0.437	44.81	-2.31	47.12	44.56	0.10	0.15 Average
10	0.437	46.08	-11.04	57.12	45.83	0.10	0.15 QP
11	0.641	36.21	-19.79	56.00	35.98	0.10	0.13 QP
12	0.641	36.93	-9.07	46.00	36.70	0.10	0.13 Average

Test Mode	CH 78	Tested By	Brian Lin
Temperature / Humidity	24 deg. C / 52%		

Line to Ground

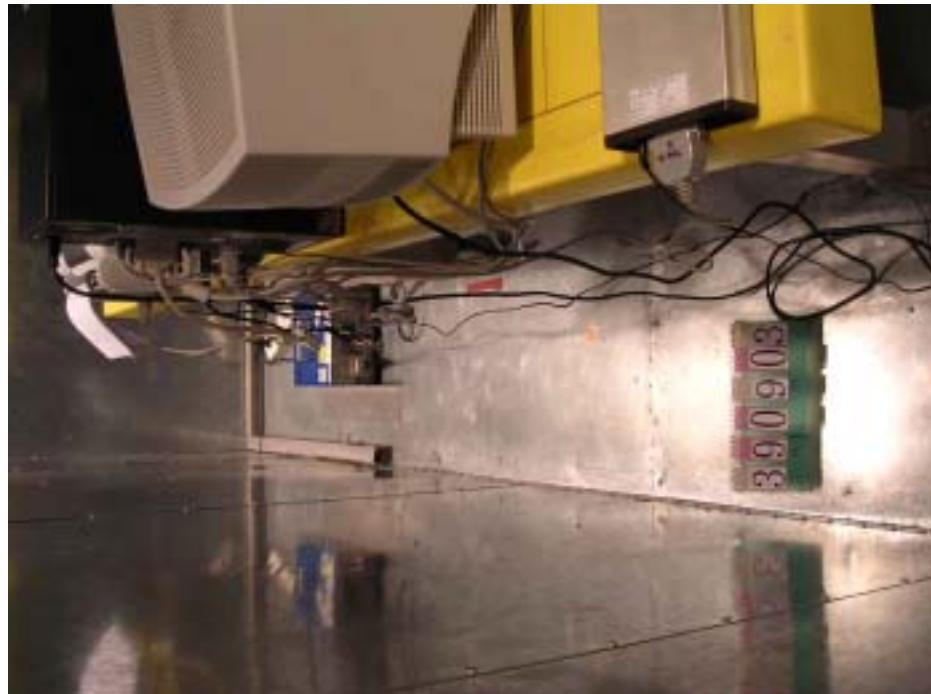
Freq	Level	Over	Limit	Read	Probe	Cable	Remark
		MHz	dBuV	Limit	Line	Level	Factor
1	0.186	40.24	-23.97	64.21	40.09	0.10	0.05 QP
2	0.186	35.75	-18.46	54.21	35.60	0.10	0.05 Average
3	0.252	37.17	-24.52	61.69	36.99	0.10	0.08 QP
4	0.252	33.94	-17.75	51.69	33.76	0.10	0.08 Average
5	0.320	44.84	-4.87	49.71	44.62	0.10	0.12 Average
6	0.320	44.24	-15.47	59.71	44.02	0.10	0.12 QP
7	0.375	39.00	-9.39	48.39	38.76	0.10	0.14 Average
8	0.375	40.15	-18.24	58.39	39.91	0.10	0.14 QP
9	0.437	44.91	-2.21	47.12	44.66	0.10	0.15 Average
10	0.437	46.20	-10.92	57.12	45.95	0.10	0.15 QP
11	0.641	36.21	-19.79	56.00	35.98	0.10	0.13 QP
12	0.641	36.93	-9.07	46.00	36.70	0.10	0.13 Average

Neutral to Ground

Freq	Level	Over	Limit	Read	Probe	Cable	Remark
		MHz	dBuV	Limit	Line	Level	Factor
1	0.185	36.57	-27.69	64.26	36.42	0.10	0.05 QP
2	0.185	33.26	-21.00	54.26	33.11	0.10	0.05 Average
3	0.251	37.05	-24.67	61.72	36.87	0.10	0.08 QP
4	0.251	33.13	-18.59	51.72	32.95	0.10	0.08 Average
5	0.318	40.69	-9.07	49.76	40.47	0.10	0.12 Average
6	0.318	41.97	-17.79	59.76	41.75	0.10	0.12 QP
7	0.377	38.74	-9.61	48.35	38.50	0.10	0.14 Average
8	0.377	39.81	-18.54	58.35	39.57	0.10	0.14 QP
9	0.437	44.36	-2.76	47.12	44.11	0.10	0.15 Average
10	0.437	45.69	-11.43	57.12	45.44	0.10	0.15 QP
11	0.641	36.19	-19.81	56.00	35.96	0.10	0.13 QP
12	0.641	36.93	-9.07	46.00	36.70	0.10	0.13 Average

FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903


5.8.4. Photographs of Radiated Emission Test Configuration

- The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

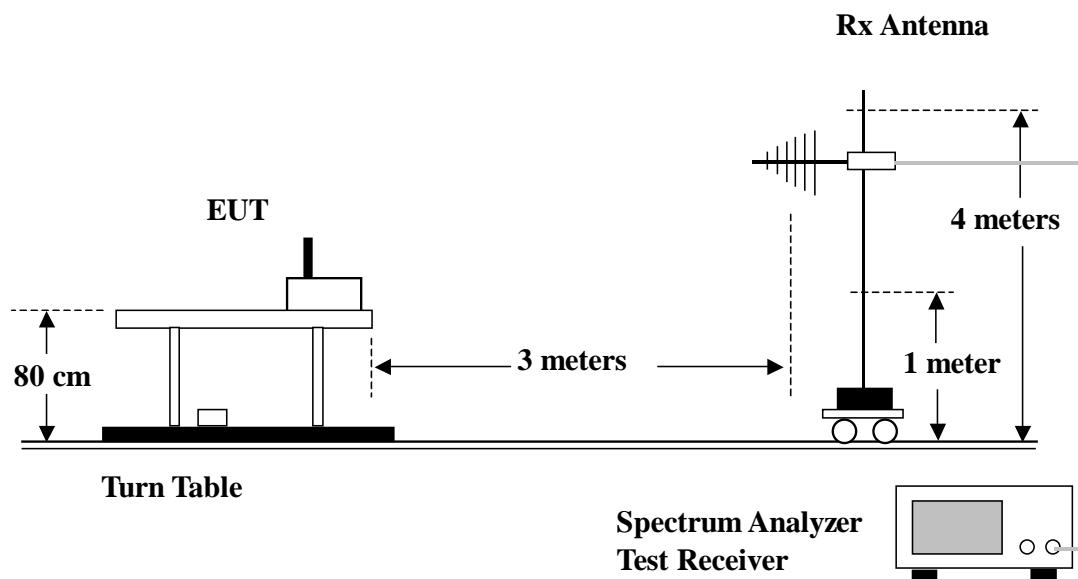
SIDE VIEW

Sportun International Inc.

TEL : 886-2-2696-2468
FAX : 886-2-2696-2255

FCC ID. : HLEMS086
Page No. : 30 of 41
Issued Date : Feb. 17, 2004

5.9. Test of Radiated Emission


5.9.1. Measuring Instruments

Please reference item 8~19 in chapter 6 for the instruments used for testing.

5.9.2. Test Procedures

- a) Configure the EUT according to ANSI C63.4.
- b) The EUT was placed on the top of the turn table 0.8 meter above ground.
- c) The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turn table.
- d) Power on the EUT and all the supporting units.
- e) The turn table was rotated 360 degrees to determine the position of the highest radiation.
- f) The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- g) For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- h) Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- i) For emission above 1GHz, use 1MHz VBW & RBW for peak reading and 1MHz RBW & 300Hz VBW for average reading in spectrum analyzer.
- j) If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- k) For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.9.3. Test Setup Layout

5.9.4. Test Results and Limit

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Test Mode	CH78	Temperature	27 deg. C	Tested By	Steve Chen
Freq. Range	30MHz~1GHz	Humidity	62%		

(A) **Polarization: Horizontal**

Freq	Level	Over Limit		Read Line	Probe Factor	Cable Preamp			Ant Pos	Table Pos
		MHz	dBuV/m	dB	dBuV/m	dB	dB	dB		
1	161.220	28.54	-14.96	43.50	45.18	7.99	2.12	26.75	Peak	---
2	220.620	30.05	-15.95	46.00	45.02	9.20	2.43	26.60	Peak	---
3	228.450	30.55	-15.45	46.00	44.77	9.91	2.47	26.60	Peak	---
1	575.100	26.68	-19.32	46.00	33.50	16.97	4.14	27.93	Peak	---
2	729.800	29.31	-16.69	46.00	34.21	18.23	4.87	28.00	Peak	---
3	870.500	28.74	-17.26	46.00	32.10	19.23	5.27	27.86	Peak	---

(B) **Polarization: Vertical**

Freq	Level	Over Limit		Read Line	Probe Factor	Cable Preamp			Ant Pos	Table Pos
		MHz	dBuV/m	dB	dBuV/m	dB	dB	dB		
1	30.000	34.68	-5.32	40.00	45.42	15.35	1.01	27.10	Peak	100
2	34.050	33.88	-6.12	40.00	46.60	13.34	1.04	27.10	Peak	---
3	40.800	33.54	-6.46	40.00	49.09	10.41	1.14	27.10	Peak	---
1	623.400	26.31	-19.69	46.00	32.43	17.46	4.42	28.00	Peak	---
2	729.800	28.86	-17.14	46.00	33.76	18.23	4.87	28.00	Peak	---
3	836.200	28.33	-17.67	46.00	32.09	19.02	5.15	27.93	Peak	---

FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

Test Mode	CH00	Temperature	27 deg. C	Tested By	Steve Chen
Freq. Range	1GHz~3GHz	Humidity	62%		

(A) Polarization: Horizontal

Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Ant Pos	Table Pos
		Limit	Line	Level	Factor	Loss	Factor		
1	1198.000	42.92	-31.08	74.00	54.39	24.60	4.24	40.31 Peak	---
2	1198.000	28.78	-25.22	54.00	40.25	24.60	4.24	40.31 Average	---
3 X	2404.000	91.49		98.20	28.23	6.21	41.15 Peak	---	---
4 X	2404.000	73.17		79.88	28.23	6.21	41.15 Average	---	---

(B) Polarization: Vertical

Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Ant Pos	Table Pos
		Limit	Line	Level	Factor	Loss	Factor		
1 X	2404.000	92.66		99.37	28.23	6.21	41.15 Peak	---	---
2 X	2404.000	71.95		78.66	28.23	6.21	41.15 Average	---	---

Remark : X : Fundamental Frequency

➤ For 3GHz ~ 25GHz

Remark: Frequency from 3000MHz to 25000MHz, the emission emitted by the EUT is too low to be measured.

FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

Test Mode	CH39	Temperature	27 deg. C	Tested By	Steve Chen
Freq. Range	1GHz~3GHz	Humidity	62%		

(A) Polarization: Horizontal

Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Remark	Ant	Table
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB		cm	Pos
1	1220.000	44.80	-29.20	74.00	56.21	24.65	4.27	40.33 Peak	---	---
2	1220.000	29.83	-24.17	54.00	41.24	24.65	4.27	40.33 Average	---	---
3 X	2440.000	91.67			98.28	28.30	6.26	41.17 Peak	---	---
4 X	2440.000	71.84			78.45	28.30	6.26	41.17 Average	---	---

(B) Polarization: Vertical

Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Remark	Ant	Table
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB		cm	Pos
1	1150.000	39.21	-34.79	74.00	50.82	24.48	4.17	40.26 Peak	---	---
2	1150.000	28.24	-25.76	54.00	39.85	24.48	4.17	40.26 Average	---	---
3	1220.000	41.84	-32.16	74.00	53.25	24.65	4.27	40.33 Peak	---	---
4	1220.000	28.72	-25.28	54.00	40.13	24.65	4.27	40.33 Average	---	---
5 X	2444.000	90.68			97.27	28.31	6.27	41.17 Peak	---	---
6 X	2444.000	69.75			76.34	28.31	6.27	41.17 Average	---	---

Remark : X : Fundamental Frequency

➤ For 3GHz ~ 25GHz

Remark: Frequency from 3000MHz to 25000MHz, the emission emitted by the EUT is too low to be measured.

FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

Test Mode	CH78	Temperature	27 deg. C	Tested By	Steve Chen
Freq. Range	1GHz~3GHz	Humidity	62%		

(A) Polarization: Horizontal

Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Ant	Table
		Limit	Line	Level	Factor	Loss	Factor		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	Pos	Pos
1 X	2478.000	90.31		96.81	28.38	6.31	41.19	Peak	---
2 X	2478.000	70.39		76.89	28.38	6.31	41.19	Average	---

(B) Polarization: Vertical

Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Ant	Table
		Limit	Line	Level	Factor	Loss	Factor		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	Pos	Pos
1	1732.000	44.19	-29.81	74.00	53.47	26.31	5.16	40.75	Peak
2	1732.000	31.09	-22.91	54.00	40.37	26.31	5.16	40.75	Average
3	1806.000	43.72	-30.28	74.00	52.58	26.62	5.31	40.79	Peak
4	1806.000	32.40	-21.60	54.00	41.26	26.62	5.31	40.79	Average
5 X	2478.000	89.87		96.37	28.38	6.31	41.19	Peak	---
6 X	2478.000	69.38		75.88	28.38	6.31	41.19	Average	---

Remark : X : Fundamental Frequency

➤ For 3GHz ~ 25GHz

Remark: Frequency from 3000MHz to 25000MHz, the emission emitted by the EUT is too low to be measured.

FCC ID: HLEMS086
Issued on Feb. 17, 2004

Report No.: F390903

5.9.5. Photographs of Radiated Emission Test Configuration

- The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

5.10. Antenna Requirements

5.10.1. Standard Applicable

47 CFR Part15 Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

47 CFR Part15 Section 15.247 (b):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.10.2. Antenna Connected Construction

The maximum Gain antenna used in this product is a dipole antenna. The antenna is soldered on the PCB, No antenna connected construction.

5.11. RF Exposure

5.11.1. Limit For Maximum Permissible Exposure (MPE)

This product can be classified as mobile device, so the 20cm separation distance warning is required. In this section, the power density at 20cm location is calculated to examine if it is lower than the limit.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

F = frequency in MHz

*Plane-wave equivalent power density

5.11.2. MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 \times P \times G}}{d}$$

Power Density: $Pd \text{ (mW/cm}^2\text{)} = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (mW)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=20cm, as well as the gain of the used antenna, the RF power density can be obtained.

5.11.3. Calculated Result and Limit

Channel No.	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)
Channel 00	2.00	1.58	-1.06	0.78	0.31	20
Channel 39	2.00	1.58	-1.42	0.72	0.30	20
Channel 78	2.00	1.58	-1.97	0.64	0.28	20

From the calculated result shown in above table, the power density is lower than limit at location 20cm far away.

6. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	EMC Receiver	R&S	ESCS 30	100132	9 KHz – 2.75 GHz	Jun. 12, 2003	Conduction (CO01-HY)
2	LISN	MessTec	NNB-2/16Z	2001-008	9 KHz – 30 MHz	Apr. 29, 2003	Conduction (CO01-HY)
3	LISN (Support Unit)	MessTec	NNB-2/16Z	2001-009	9 KHz – 30 MHz	Apr. 29, 2003	Conduction (CO01-HY)
4	EMI Filter	LINDGREN	LRE-2060	1004	< 450 Hz	N/A	Conduction (CO01-HY)
5	EMI Filter	LINDGREN	N6006	201052	0 ~ 60 Hz	N/A	Conduction (CO01-HY)
6	RF Cable-CON	Suhner Switzerland	RG223/U	CB029	9KHz~30MHz	Jan. 07, 2003	Conduction (CO01-HY)
7	50 ohm BNC type Terminal	NOBLE	50ohm	TM009	50 ohm	Apr. 24, 2003	Conduction (CO01-HY)
8	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 21, 2003	Radiation (03CH03-HY)
9	Spectrum analyzer	R&S	FSP40	100004	9KHZ~40GHz	Aug. 07, 2003	Radiation (03CH03-HY)
10	Receiver	SCHAFFNER	SCR 3501	417	9 KHz –1GHz	Feb. 20, 2003	Radiation (03CH03-HY)
11	Amplifier	HP	8447D	2944A09072	100KHz – 1.3GHz	Oct. 21, 2002	Radiation (03CH03-HY)
12	Bilog Antenna	SCHAFFNER	CBL6112B	2687	30MHz –2GHz	Dec. 21, 2002	Radiation (03CH03-HY)
13	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Jan. 02, 2003	Radiation (03CH03-HY)
14	Amplifier	MITEQ	AFS44	879981	100MHz~26.5GHz	Jul. 23, 2003	Radiation (03CH03-HY)
15	Horn Antenna	COM-POWER	AH-118	10094	1GHz – 18GHz	Apr. 10, 2003	Radiation (03CH03-HY)
16	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
17	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
18	Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170154	15GHz~40GHz	Jun. 02, 2003	Radiation (03CH03-HY)
19	RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Mar. 14, 2003	Radiation (03CH03-HY)
20	Power meter	R&S	NRVS	100444	DC~40GHz	May 28, 2003	Conducted
21	Power sensor	R&S	NRV-Z55	100049	DC~40GHz	May 28, 2003	Conducted
22	Power Sensor	R&S	NRV-Z32	100057	30MHz-6GHz	May 28, 2003	Conducted
23	AC power source	HPC	HPA-500W	HPA-9100024	AC 0~300V	May 27, 2003	Conducted
24	Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 02, 2002	Conducted
25	Power meter	R&S	NRVS	100444	DC~40GHz	May 28, 2003	Conducted

Calibration Interval of instruments listed above is one year.