



# Variant FCC Test Report

APPLICANT : Quanta Computer Inc.  
EQUIPMENT : LTE sip module  
BRAND NAME : Quanta;Aptos;Topmore  
MODEL NAME : LI170;S901100003  
MARKETING NAME : LI170;S901100003  
FCC ID : HFS-LI170  
STANDARD : FCC 47 CFR FCC Part 15 Subpart B  
CLASSIFICATION : Certification

This is a variant report which is only valid together with the original test report. The product was received on Aug. 20, 2013 and completely tested on Aug. 27, 2013. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.4-2003 and shown to be compliant with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Louis Wu / Manager

Approved by: Jones Tsai / Manager



***SPORTON INTERNATIONAL INC.***  
No. 52, Hwa Ya 1<sup>st</sup> Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

**SPORTON INTERNATIONAL INC.**

TEL : 886-3-327-3456

FAX : 886-3-328-4978

FCC ID : HFS-LI170

Page Number : 1 of 18

Report Issued Date : Sep. 16, 2013

Report Version : Rev. 01



## TABLE OF CONTENTS

|                                                              |           |
|--------------------------------------------------------------|-----------|
| <b>REVISION HISTORY.....</b>                                 | <b>3</b>  |
| <b>SUMMARY OF TEST RESULT .....</b>                          | <b>4</b>  |
| <b>1. GENERAL DESCRIPTION .....</b>                          | <b>5</b>  |
| 1.1. Applicant.....                                          | 5         |
| 1.2. Manufacturer .....                                      | 5         |
| 1.3. Feature of Equipment Under Test.....                    | 5         |
| 1.4. Product Specification of Equipment Under Test .....     | 6         |
| 1.5. Modification of EUT .....                               | 6         |
| 1.6. Test Site .....                                         | 6         |
| 1.7. Applied Standards .....                                 | 6         |
| <b>2. TEST CONFIGURATION OF EQUIPMENT UNDER TEST .....</b>   | <b>7</b>  |
| 2.1. Test Mode .....                                         | 7         |
| 2.2. Connection Diagram of Test System .....                 | 8         |
| 2.3. Support Unit used in test configuration and system..... | 8         |
| 2.4. EUT Operation Test Setup .....                          | 8         |
| <b>3. TEST RESULT.....</b>                                   | <b>9</b>  |
| 3.1. Test of AC Conducted Emission Measurement .....         | 9         |
| 3.2. Test of Radiated Emission Measurement .....             | 13        |
| <b>4. LIST OF MEASURING EQUIPMENT .....</b>                  | <b>17</b> |
| <b>5. UNCERTAINTY OF EVALUATION.....</b>                     | <b>18</b> |

### APPENDIX A. SETUP PHOTOGRAPHS

### APPENDIX B. ORIGINAL REPORT



# REVISION HISTORY



## SUMMARY OF TEST RESULT

| Report Section | FCC Rule | IC Rule                | Description           | Limit                                   | Result | Remark                                               |
|----------------|----------|------------------------|-----------------------|-----------------------------------------|--------|------------------------------------------------------|
| 3.1            | 15.107   | ICES003<br>Section 6.1 | AC Conducted Emission | < 15.107 limits<br>< ICES003 6.1 limits | PASS   | Under limit<br>10.50 dB at<br>0.190 MHz              |
| 3.2            | 15.109   | ICES003<br>Section 6.2 | Radiated Emission     | < 15.109 limits<br>< ICES003 6.2 limits | PASS   | Under limit<br>8.23 dB at<br>462.400 MHz<br>for peak |



## 1. General Description

### 1.1. Applicant

**Quanta Computer Inc.**

211 Wen Hwa 2nd Rd., Kueishan, Taoyuan 33377, Taiwan

### 1.2. Manufacturer

**1. Quanta Computer Inc.**

211 Wen Hwa 2nd Rd., Kueishan, Taoyuan 33377, Taiwan

**2. Aptos Technology Inc.**

No. 398, Youyi Rd., Jhunan Township, Miaoli County 350, Taiwan

**3. Topmore Technology Inc.**

1F., No. 2, Liuji 7thRd., Zhubei City, Hsinchu County 302, Taiwan R.O.C.

### 1.3. Feature of Equipment Under Test

| Product Feature                 |                      |
|---------------------------------|----------------------|
| Equipment                       | LTE sip module       |
| Brand Name                      | Quanta;Aptos;Topmore |
| Model Name                      | LI170;S901100003     |
| Marketing Name                  | LI170;S901100003     |
| Sample 1                        | EUT with PA Source 1 |
| Sample 2                        | EUT with PA Source 2 |
| Sample 3                        | EUT with DDR         |
| FCC ID                          | HFS-LI170            |
| EUT supports Radios application | LTE                  |
| HW Version                      | LI170116             |
| EUT Stage                       | Production Unit      |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.



## 1.4. Product Specification of Equipment Under Test

| Product Specification subjective to this standard |                                    |
|---------------------------------------------------|------------------------------------|
| <b>Tx Frequency</b>                               | LTE Band 13: 779.5 MHz ~ 784.5 MHz |
| <b>Rx Frequency</b>                               | LTE Band 13: 748.5 MHz ~ 753.5 MHz |
| <b>Antenna Type</b>                               | Dipole Antenna                     |
| <b>Type of Modulation</b>                         | QPSK/16QAM                         |

## 1.5. Modification of EUT

No modifications are made to the EUT during all test items.

## 1.6. Test Site

|                           |                                                                                                                                                                 |           |                                |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|
| <b>Test Site</b>          | SPORTON INTERNATIONAL INC.                                                                                                                                      |           |                                |
| <b>Test Site Location</b> | No. 52, Hwa Ya 1 <sup>st</sup> Rd., Hwa Ya Technology Park,<br>Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.<br>TEL: +886-3-327-3456<br>FAX: +886-3-328-4978 |           |                                |
| <b>Test Site No.</b>      | <b>Sporton Site No.</b>                                                                                                                                         |           | <b>FCC/IC Registration No.</b> |
|                           | CO05-HY                                                                                                                                                         | 03CH06-HY | 722060/4086B-1                 |

## 1.7. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B
- ANSI C63.4-2003

**Remark:** All test items were verified and recorded according to the standards and without any deviation during the test.



## 2. Test Configuration of Equipment Under Test

### 2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2003 and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

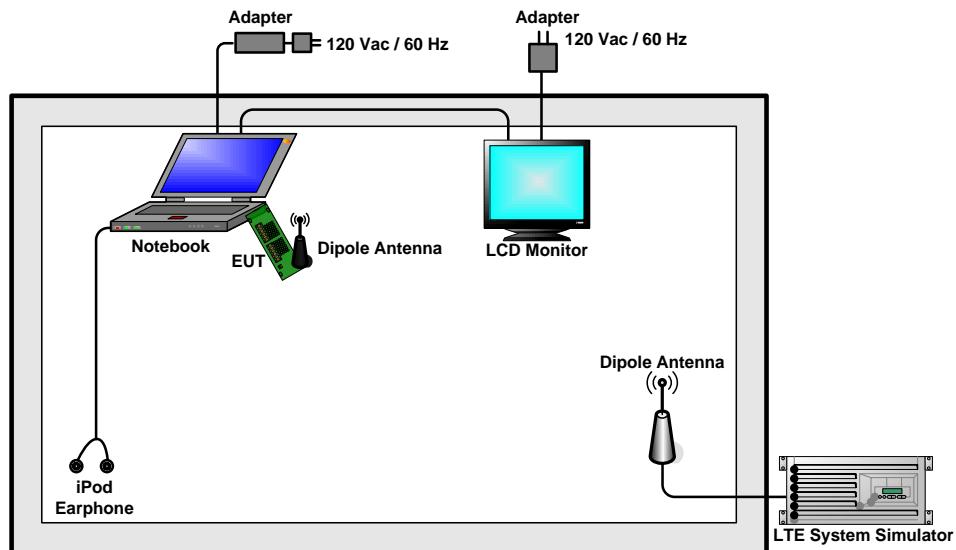
Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

The EUT uses a USB interface and microprocessor operating 26MHz which is the maximum frequency used.

The following tables are showing the test modes as the worst cases and recorded in this report.

| Item | EUT Configuration                  | Test Condition                      |                                     |
|------|------------------------------------|-------------------------------------|-------------------------------------|
|      |                                    | EMI<br>AC                           | EMI<br>RE                           |
| 1.   | Operating Mode (EUT with notebook) | <input checked="" type="checkbox"/> | <input checked="" type="checkbox"/> |

#### Abbreviations:


- EMI AC: AC conducted emissions
- EMI RE: EUT radiated emissions

| Test Items                     | EUT<br>Configure<br>Mode | Function Type                                                                                                                                                                                   |
|--------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC Conducted Emission          | 1                        | Mode 1: LTE Band 13 Idle + Connect with Notebook for Sample 1<br>Mode 2: LTE Band 13 Idle + Connect with Notebook for Sample 2<br>Mode 3: LTE Band 13 Idle + Connect with Notebook for Sample 3 |
| Radiated Emissions < 1GHz      | 1                        | Mode 1: LTE Band 13 Idle + Connect with Notebook for Sample 1<br>Mode 2: LTE Band 13 Idle + Connect with Notebook for Sample 2<br>Mode 3: LTE Band 13 Idle + Connect with Notebook for Sample 3 |
| Radiated Emissions $\geq$ 1GHz | 1                        | Mode 1: LTE Band 13 Idle + Connect with Notebook for Sample 1                                                                                                                                   |

**Remark:**

1. The worst case of AC is mode 3; only the test data of this mode was reported.
2. The worst case of RE < 1G is mode 1; only the test data of this mode was reported.

## 2.2. Connection Diagram of Test System



## 2.3. Support Unit used in test configuration and system

| Item | Equipment        | Trade Name | Model Name     | FCC ID  | Data Cable        | Power Cord                                           |
|------|------------------|------------|----------------|---------|-------------------|------------------------------------------------------|
| 1.   | LTE Base Station | Anritsu    | MT8820C        | N/A     | N/A               | Unshielded, 1.8 m                                    |
| 2.   | Notebook         | DELL       | Latitude E6320 | FCC DoC | N/A               | AC I/P: Unshielded, 1.2 m<br>DC O/P: Shielded, 1.8 m |
| 3.   | LCD Monitor      | Dell       | U2410          | FCC DoC | Shielded, 1.6 m   | Unshielded, 1.8 m                                    |
| 4.   | iPod Earphone    | Apple      | N/A            | FCC DoC | Unshielded, 1.0 m | N/A                                                  |
| 5.   | SD Card          | SanDisk    | Mico SD HC     | FCC DoC | N/A               | N/A                                                  |

## 2.4. EUT Operation Test Setup

The EUT was in LTE idle mode during the testing. The EUT was synchronized to the BCCH, and is in continuous receiving mode by setting system simulator's paging reorganization.



### 3. Test Result

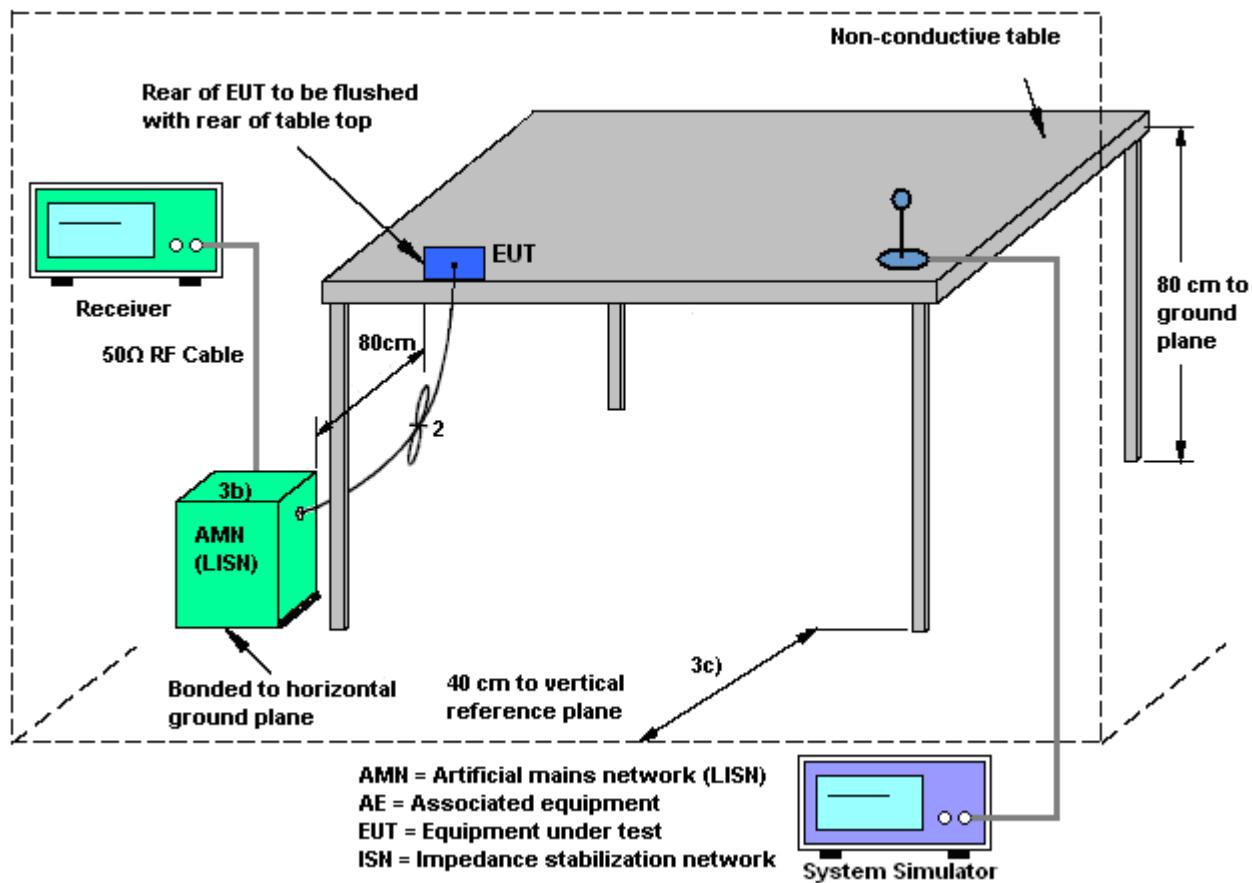
#### 3.1. Test of AC Conducted Emission Measurement

##### 3.1.1 Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

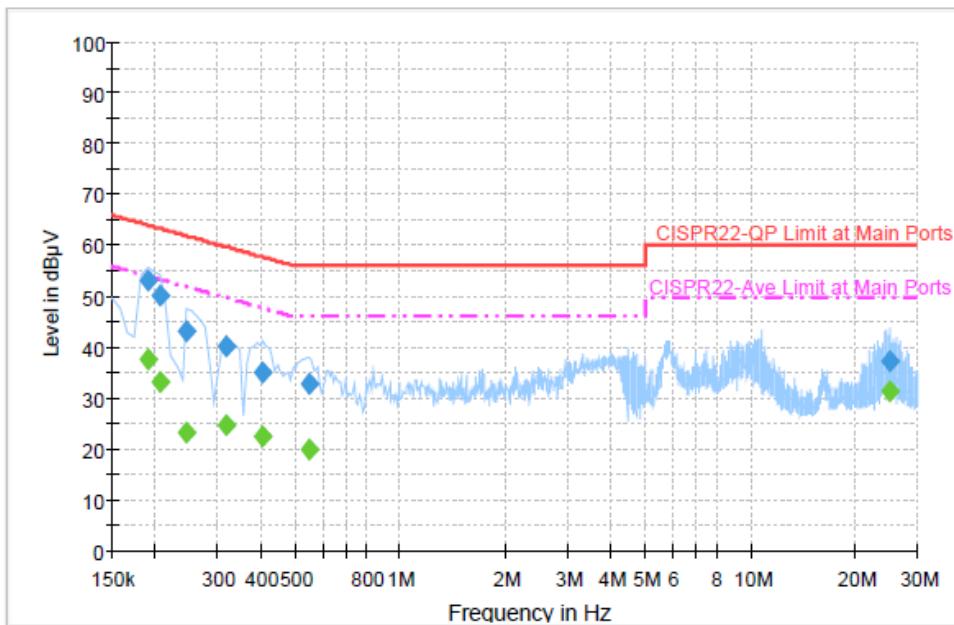
| Frequency of emission<br>(MHz) | Conducted limit (dBuV) |           |
|--------------------------------|------------------------|-----------|
|                                | Quasi-peak             | Average   |
| 0.15-0.5                       | 66 to 56*              | 56 to 46* |
| 0.5-5                          | 56                     | 46        |
| 5-30                           | 60                     | 50        |

\*Decreases with the logarithm of the frequency.


##### 3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

##### 3.1.3 Test Procedure


1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
6. Both sides of AC line were checked for maximum conducted interference.
7. The frequency range from 150 kHz to 30 MHz was searched.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

### 3.1.4 Test Setup

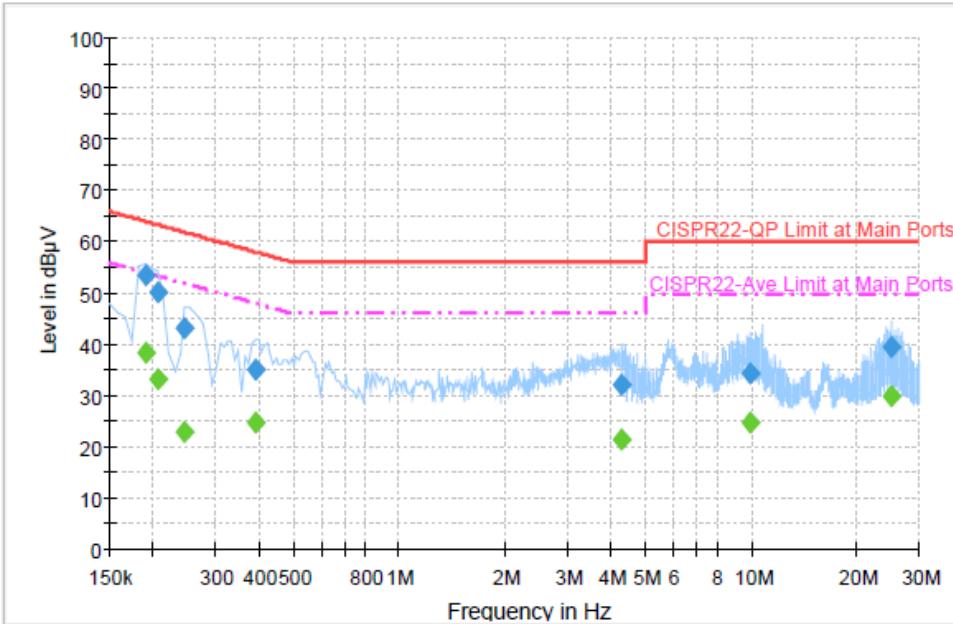


### 3.1.5 Test Result of AC Conducted Emission

|                                                                              |               |                            |         |
|------------------------------------------------------------------------------|---------------|----------------------------|---------|
| <b>Test Mode :</b>                                                           | Mode 3        | <b>Temperature :</b>       | 20~22°C |
| <b>Test Engineer :</b>                                                       | Kai-Chun Chu  | <b>Relative Humidity :</b> | 46~48%  |
| <b>Test Voltage :</b>                                                        | 120Vac / 60Hz | <b>Phase :</b>             | Line    |
| <b>Function Type :</b> LTE Band 13 Idle + Connect with Notebook for Sample 3 |               |                            |         |



#### Final Result : Quasi-Peak


| Frequency (MHz) | Quasi-Peak (dB $\mu$ V) | Filter | Line | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V) |
|-----------------|-------------------------|--------|------|------------|-------------|--------------------|
| 0.190000        | 53.1                    | Off    | L1   | 19.4       | 10.9        | 64.0               |
| 0.206000        | 50.4                    | Off    | L1   | 19.4       | 13.0        | 63.4               |
| 0.246000        | 43.0                    | Off    | L1   | 19.4       | 18.9        | 61.9               |
| 0.318000        | 40.2                    | Off    | L1   | 19.4       | 19.6        | 59.8               |
| 0.406000        | 35.0                    | Off    | L1   | 19.4       | 22.7        | 57.7               |
| 0.550000        | 33.0                    | Off    | L1   | 19.4       | 23.0        | 56.0               |
| 25.070000       | 37.2                    | Off    | L1   | 19.9       | 22.8        | 60.0               |

#### Final Result : Average

| Frequency (MHz) | Average (dB $\mu$ V) | Filter | Line | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V) |
|-----------------|----------------------|--------|------|------------|-------------|--------------------|
| 0.190000        | 37.8                 | Off    | L1   | 19.4       | 16.2        | 54.0               |
| 0.206000        | 33.1                 | Off    | L1   | 19.4       | 20.3        | 53.4               |
| 0.246000        | 23.3                 | Off    | L1   | 19.4       | 28.6        | 51.9               |
| 0.318000        | 24.6                 | Off    | L1   | 19.4       | 25.2        | 49.8               |
| 0.406000        | 22.5                 | Off    | L1   | 19.4       | 25.2        | 47.7               |
| 0.550000        | 19.8                 | Off    | L1   | 19.4       | 26.2        | 46.0               |
| 25.070000       | 31.3                 | Off    | L1   | 19.9       | 18.7        | 50.0               |



|                                                                              |               |                            |         |
|------------------------------------------------------------------------------|---------------|----------------------------|---------|
| <b>Test Mode :</b>                                                           | Mode 3        | <b>Temperature :</b>       | 20~22°C |
| <b>Test Engineer :</b>                                                       | Kai-Chun Chu  | <b>Relative Humidity :</b> | 46~48%  |
| <b>Test Voltage :</b>                                                        | 120Vac / 60Hz | <b>Phase :</b>             | Neutral |
| <b>Function Type :</b> LTE Band 13 Idle + Connect with Notebook for Sample 3 |               |                            |         |

**Final Result : Quasi-Peak**

| Frequency (MHz) | Quasi-Peak (dB $\mu$ V) | Filter | Line | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V) |
|-----------------|-------------------------|--------|------|------------|-------------|--------------------|
| 0.190000        | 53.5                    | Off    | N    | 19.4       | 10.5        | 64.0               |
| 0.206000        | 50.3                    | Off    | N    | 19.4       | 13.1        | 63.4               |
| 0.246000        | 43.0                    | Off    | N    | 19.4       | 18.9        | 61.9               |
| 0.390000        | 35.2                    | Off    | N    | 19.4       | 22.9        | 58.1               |
| 4.294000        | 32.2                    | Off    | N    | 19.6       | 23.8        | 56.0               |
| 9.926000        | 34.4                    | Off    | N    | 19.7       | 25.6        | 60.0               |
| 24.878000       | 39.4                    | Off    | N    | 20.0       | 20.6        | 60.0               |

**Final Result : Average**

| Frequency (MHz) | Average (dB $\mu$ V) | Filter | Line | Corr. (dB) | Margin (dB) | Limit (dB $\mu$ V) |
|-----------------|----------------------|--------|------|------------|-------------|--------------------|
| 0.190000        | 38.2                 | Off    | N    | 19.4       | 15.8        | 54.0               |
| 0.206000        | 33.1                 | Off    | N    | 19.4       | 20.3        | 53.4               |
| 0.246000        | 23.0                 | Off    | N    | 19.4       | 28.9        | 51.9               |
| 0.390000        | 24.7                 | Off    | N    | 19.4       | 23.4        | 48.1               |
| 4.294000        | 21.4                 | Off    | N    | 19.6       | 24.6        | 46.0               |
| 9.926000        | 24.9                 | Off    | N    | 19.7       | 25.1        | 50.0               |
| 24.878000       | 29.9                 | Off    | N    | 20.0       | 20.1        | 50.0               |



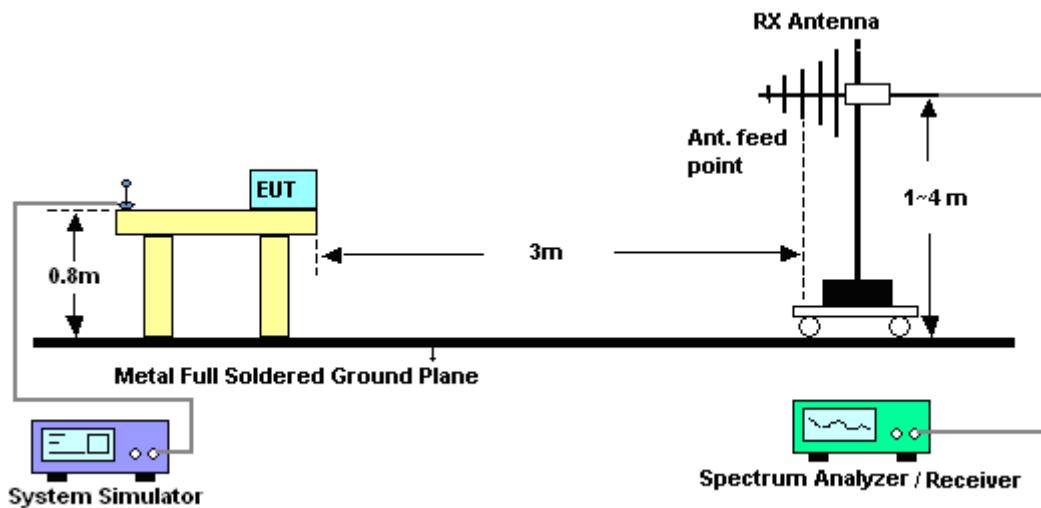
## 3.2. Test of Radiated Emission Measurement

### 3.2.1. Limit of Radiated Emission

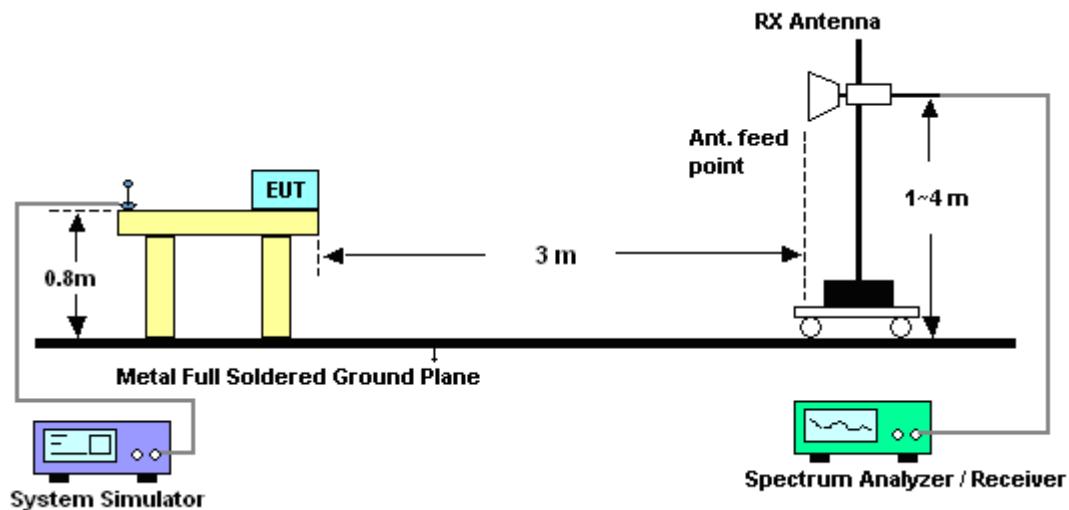
The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|--------------------|--------------------------------------|----------------------------------|
| 30 – 88            | 100                                  | 3                                |
| 88 – 216           | 150                                  | 3                                |
| 216 - 960          | 200                                  | 3                                |
| Above 960          | 500                                  | 3                                |

### 3.2.2. Measuring Instruments

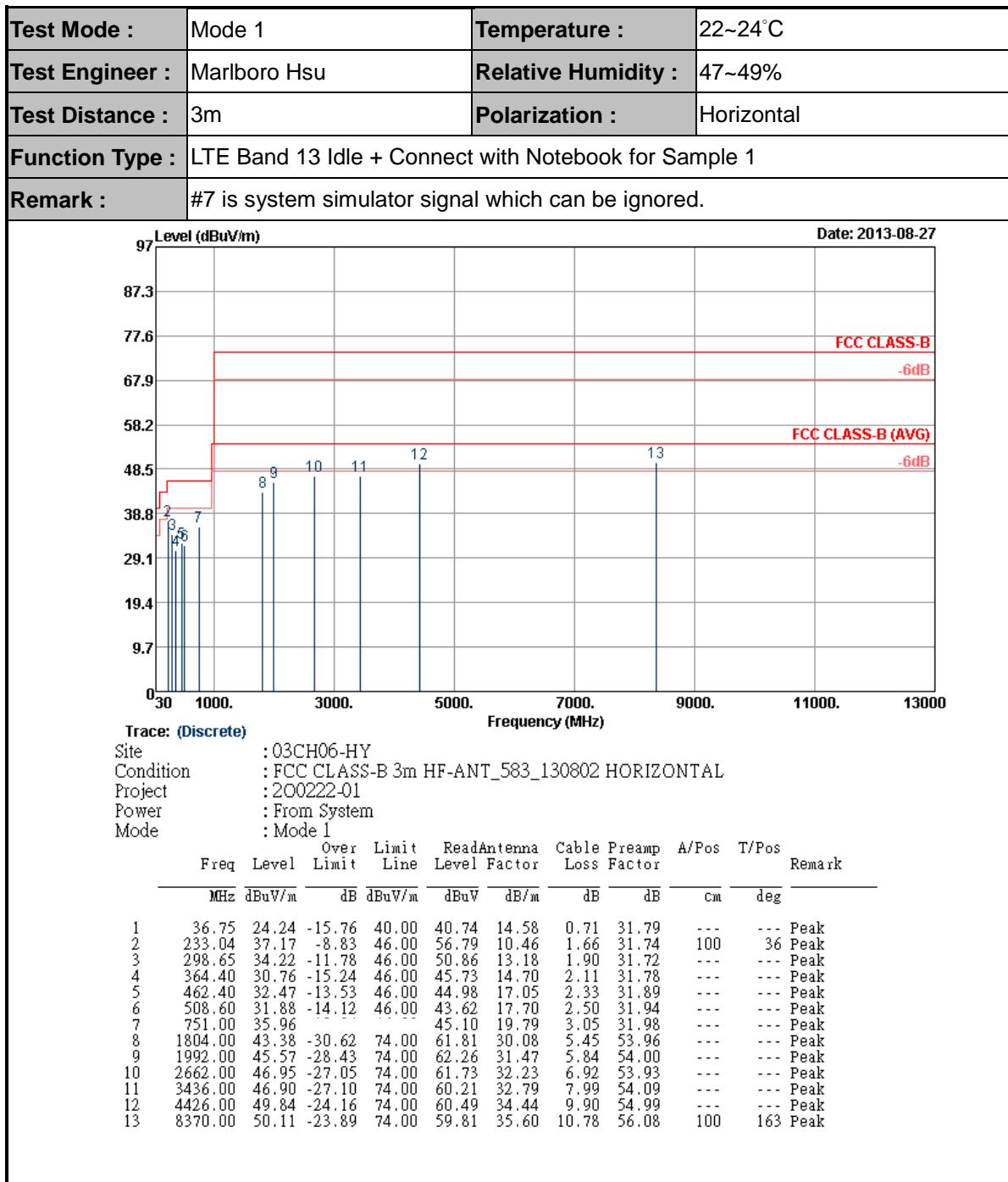

See list of measuring instruments of this test report.

### 3.2.3. Test Procedures


1. The EUT was placed on a turntable with 0.8 meter above ground.
2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
3. The table was rotated 360 degrees to determine the position of the highest radiation.
4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
6. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
8. Emission level (dB $\mu$ V/m) = 20 log Emission level ( $\mu$ V/m)
9. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

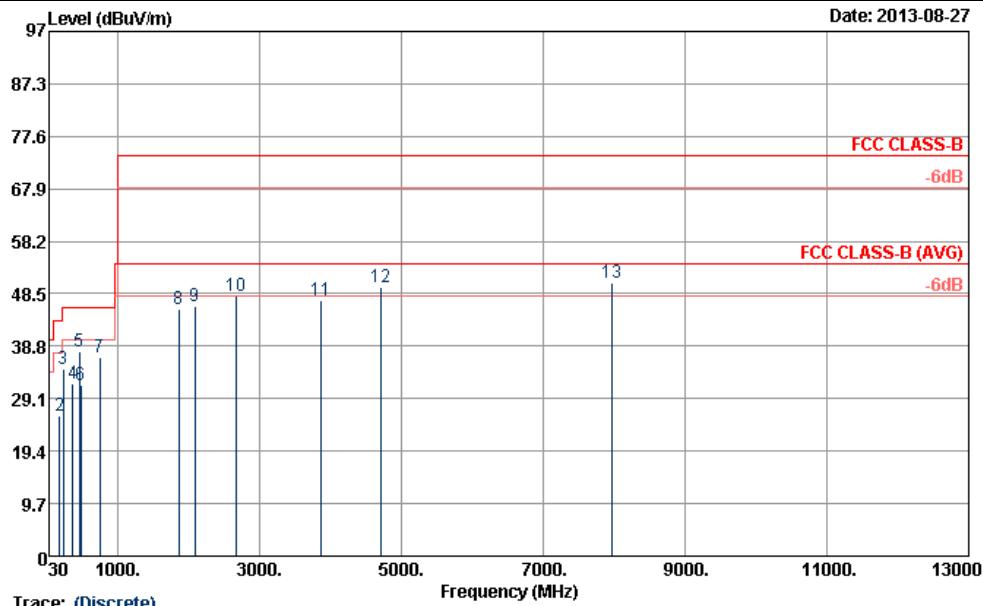
### 3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz




For radiated emissions above 1GHz






## 3.2.5. Test Result of Radiated Emission





|                        |                                                       |                            |          |
|------------------------|-------------------------------------------------------|----------------------------|----------|
| <b>Test Mode :</b>     | Mode 1                                                | <b>Temperature :</b>       | 22~24°C  |
| <b>Test Engineer :</b> | Marlboro Hsu                                          | <b>Relative Humidity :</b> | 47~49%   |
| <b>Test Distance :</b> | 3m                                                    | <b>Polarization :</b>      | Vertical |
| <b>Function Type :</b> | LTE Band 13 Idle + Connect with Notebook for Sample 1 |                            |          |
| <b>Remark :</b>        | #7 is system simulator signal which can be ignored.   |                            |          |



| Freq | Over Level | Limit | Read   | Antenna Line | Cable Factor | Preamp Loss | A/Pos Factor | T/Pos | Remark |         |
|------|------------|-------|--------|--------------|--------------|-------------|--------------|-------|--------|---------|
|      |            |       |        |              |              |             |              |       | MHz    | dBuV/m  |
| 1    | 35.40      | 25.97 | -14.03 | 40.00        | 42.02        | 15.04       | 0.70         | 31.79 | ---    | ---     |
| 2    | 184.44     | 25.82 | -17.68 | 43.50        | 46.97        | 9.14        | 1.46         | 31.75 | ---    | ---     |
| 3    | 233.04     | 34.56 | -11.44 | 46.00        | 54.18        | 10.46       | 1.66         | 31.74 | ---    | ---     |
| 4    | 366.50     | 31.96 | -14.04 | 46.00        | 46.94        | 14.70       | 2.11         | 31.79 | ---    | ---     |
| 5    | 462.40     | 37.77 | -8.23  | 46.00        | 50.28        | 17.05       | 2.33         | 31.89 | 100    | 21 Peak |
| 6    | 483.40     | 31.53 | -14.47 | 46.00        | 43.65        | 17.46       | 2.33         | 31.91 | ---    | ---     |
| 7    | 751.00     | 36.67 | ---    | 45.81        | 19.79        | 3.05        | 31.98        | ---   | ---    | Peak    |
| 8    | 1858.00    | 45.56 | -28.44 | 74.00        | 63.50        | 30.46       | 5.57         | 53.97 | ---    | ---     |
| 9    | 2092.00    | 46.26 | -27.74 | 74.00        | 62.53        | 31.67       | 6.04         | 53.98 | ---    | ---     |
| 10   | 2666.00    | 48.15 | -25.85 | 74.00        | 62.93        | 32.23       | 6.92         | 53.93 | ---    | ---     |
| 11   | 3858.00    | 47.38 | -26.62 | 74.00        | 60.16        | 33.23       | 8.67         | 54.68 | ---    | ---     |
| 12   | 4706.00    | 49.68 | -24.32 | 74.00        | 60.45        | 34.48       | 10.12        | 55.37 | ---    | ---     |
| 13   | 7976.00    | 50.51 | -23.49 | 74.00        | 59.65        | 35.59       | 10.98        | 55.71 | 100    | 60 Peak |



## 4. List of Measuring Equipment

| Instrument                         | Manufacturer    | Model No. | Serial No.  | Characteristics | Calibration Date | Test Date     | Due Date      | Remark                |
|------------------------------------|-----------------|-----------|-------------|-----------------|------------------|---------------|---------------|-----------------------|
| EMI Test Receiver                  | Rohde & Schwarz | ESCS 30   | 100356      | 9kHz ~ 2.75GHz  | Nov. 13, 2012    | Aug. 27, 2013 | Nov. 12, 2013 | Conduction (CO05-HY)  |
| Two-LISN (for auxiliary equipment) | Rohde & Schwarz | ENV216    | 100081      | 9kHz ~ 30MHz    | Dec. 12, 2012    | Aug. 27, 2013 | Dec. 11, 2013 | Conduction (CO05-HY)  |
| Two-LISN                           | Rohde & Schwarz | ENV216    | 100080      | 9kHz ~ 30MHz    | Dec. 06, 2012    | Aug. 27, 2013 | Dec. 05, 2013 | Conduction (CO05-HY)  |
| AC Power Source                    | APC             | APC-1000W | N/A         | N/A             | N/A              | Aug. 27, 2013 | N/A           | Conduction (CO05-HY)  |
| Spectrum Analyzer                  | R&S             | FSP30     | 101352      | 9kHz~30GHz      | Nov. 07, 2012    | Aug. 27, 2013 | Nov. 06, 2013 | Radiation (03CH06-HY) |
| Spectrum Analyzer                  | Agilent         | E4408B    | MY44211030  | 9kHz ~ 26.5GHz  | Nov. 26, 2012    | Aug. 27, 2013 | Nov. 25, 2013 | Radiation (03CH06-HY) |
| EMI Test Receiver                  | R&S             | ESVS10    | 834468/0003 | 20MHz ~ 1000MHz | May 06, 2013     | Aug. 27, 2013 | May 05, 2014  | Radiation (03CH06-HY) |
| Bilog Antenna                      | SCHAFFNER       | CBL6112B  | 2885        | 30MHz ~ 2GHz    | Oct. 06, 2012    | Aug. 27, 2013 | Oct. 05, 2013 | Radiation (03CH06-HY) |
| Double Ridge Horn Antenna          | EMCO            | 3117      | 00066583    | 1GHz ~ 18GHz    | Aug. 02, 2013    | Aug. 27, 2013 | Aug. 01, 2014 | Radiation (03CH06-HY) |
| Amplifier                          | Agilent         | 310N      | 186713      | 9kHz ~ 1GHz     | Apr. 12, 2013    | Aug. 27, 2013 | Apr. 11, 2014 | Radiation (03CH06-HY) |
| Pre Amplifier                      | EMCI            | EMC051845 | SN980048    | 1GHz ~ 18GHz    | Jul. 18, 2013    | Aug. 27, 2013 | Jul. 17, 2014 | Radiation (03CH06-HY) |
| Turn Table                         | INN-CO          | DS2000    | 420/650/00  | 0 - 360 degree  | N/A              | Aug. 27, 2013 | N/A           | Radiation (03CH06-HY) |
| Antenna Mast                       | MF              | MF-7802   | MF780208212 | 1 m ~ 4 m       | N/A              | Aug. 27, 2013 | N/A           | Radiation (03CH06-HY) |



## 5. Uncertainty of Evaluation

### Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

|                                                                     |      |
|---------------------------------------------------------------------|------|
| Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y)) | 2.26 |
|---------------------------------------------------------------------|------|

### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

|                                                                     |      |
|---------------------------------------------------------------------|------|
| Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y)) | 2.54 |
|---------------------------------------------------------------------|------|

### Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

|                                                                     |      |
|---------------------------------------------------------------------|------|
| Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y)) | 4.72 |
|---------------------------------------------------------------------|------|



## **Appendix B. Original Report**

Please refer to Sporton report number FC2O0222 as below.