
FCC RADIO TEST REPORT

FCC ID : HED-ML60MDSB
Equipment : Metrolinq 60GHz Module
Brand Name : IgniteNet
Model Name : RDO-60-FB-USBB-8
Applicant : Accton Technology Corporation
No. 1, Creation Rd. III, Science-based Industrial
Park Hsin Chu 30077, Taiwan R.O.C.
Manufacturer : Accton Technology Corporation
No. 1, Creation Rd. III, Science-based Industrial
Park Hsin Chu 30077, Taiwan R.O.C.
Standard : 47 CFR FCC Part 15.255

The product was received on Mar. 31, 2018, and testing was started from Mar. 31, 2018 and completed on Jul. 04, 2018. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013, 47 CFR FCC Part 15.255 and Millimeter Wave Test Procedures and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Cliff Chang

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory
No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

History of this test report.....	3
Summary of Test Result.....	4
1 General Description	5
1.1 Information.....	5
1.2 Table for Class II Change.....	6
1.3 Accessories	8
1.4 Support Equipment.....	8
1.5 EUT Operation during Test	8
1.6 Test Setup Diagram	9
1.7 Testing Applied Standards	11
1.8 Testing Location	11
2 Test Configuration of Equipment under Test.....	12
2.1 Test Channel Frequencies	12
2.2 Conformance Tests and Related Test Frequencies.....	12
2.3 Far Field Boundary Calculations	12
3 Transmitter Test Result	13
3.1 Occupied Bandwidth	13
3.2 EIRP Power	16
3.3 Peak Conducted Power.....	19
3.4 Transmitter Spurious Emissions.....	21
3.5 Operation Restriction and Group Installation	32
4 Test Equipment and Calibration Data	33
5 Measurement Uncertainty	35

Appendix A. Test Photos

Photographs of EUT v01

History of this test report

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	FCC 15.255(d)	Occupied Bandwidth	PASS	-
3.2	FCC 15.255(b)(1)	EIRP Power	PASS	-
3.3	FCC 15.255(d)	Peak Conducted Power	PASS	-
3.4	FCC 15.255(c)	Transmitter Spurious Emissions	PASS	-
3.5	FCC 15.255(a),(g)	Operation Restriction and Group Installation	PASS	-

Reviewed by: Sam Chen

Report Producer: Wendy Pan

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information	
Frequency Range	57-71 GHz
The Channel Plan(s)	Channel 1: 58.32 GHz Channel 2: 60.48 GHz Channel 3: 62.64 GHz Channel 4: 64.80 GHz

1.1.2 Table of Modulation

MCS index	Modulation	N _{CBPS}	Repetition	Code rate	Data rate (Mbps)
1	$\pi/2$ -BPSK	1	2	1/2	385
2	$\pi/2$ -BPSK	1	1	1/2	770
3	$\pi/2$ -BPSK	1	1	5/8	962.5
4	$\pi/2$ -BPSK	1	1	3/4	1155
5	$\pi/2$ -BPSK	1	1	13/16	1251.25
6	$\pi/2$ -QPSK	2	1	1/2	1540
7	$\pi/2$ -QPSK	2	1	5/8	1925
8	$\pi/2$ -QPSK	2	1	3/4	2310
9	$\pi/2$ -QPSK	2	1	13/16	2502.5
10	$\pi/2$ -16QAM	4	1	1/2	3080
11	$\pi/2$ -16QAM	4	1	5/8	3850
12	$\pi/2$ -16QAM	4	1	3/4	4620

1.1.3 Antenna Information

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Accton	123400001485A	Dish Ant.	N/A	42
2	Accton	123400001486A	Dish Ant.	N/A	38

Note: Because Ant. 1 and Ant. 2 are the same type antennas, only the higher gain antenna "Ant.1" was tested.

1.2 Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR5N2614-02

Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
1. Changing the module approval to full modular approval from limited modular approval. 2. Remove the console port (Location: J1) 3. Remove the component C29,C30,C31,C32, R42,R43,R44,R45,R46,R47,R48,R49. 4. Change the location for component C29,C30,C31,C32 to U8 from U3. 5. Add the component C87,C88,C89. 6. Add the component U18,U19 for LED function. 7. Add two antennas with the same type and same gain. The antenna information please section 1.1.3.	Channel 3 generated the worst case from original, thus only test channel 3 for below items: 1. Transmitter Spurious Emissions (below 1 GHz) 2. Transmitter Spurious Emissions (1 GHz-40 GHz) 3. Transmitter Spurious Emissions (above 40 GHz)
8. Adding the operating frequency 64.8GHz.	1. Occupied Bandwidth 2. EIRP Power 3. Peak Conducted Power 4. Transmitter Spurious Emissions (1 GHz-40 GHz) 5. Transmitter Spurious Emissions (above 40 GHz)
9. Updating the equipment name to Metrolinq 60GHz Module from Metrolinq 60 GHz Module. 10. Updating the manufacturer name and address to "Accton Technology Corporation" and "No. 1, Creation Rd. III, Science-based Industrial Park Hsin Chu 30077, Taiwan R.O.C."	Do not affect the test results.

1.2.1 EUT Power Type

EUT Power Type	From host system
----------------	------------------

1.2.2 Equipment Use Condition

Equipment Use Condition
<input type="checkbox"/> Fixed field disturbance sensors at 61-61.5GHz
<input type="checkbox"/> Except fixed field disturbance sensors at 61-61.5GHz
<input checked="" type="checkbox"/> Except fixed field disturbance sensors

1.2.3 User Condition

Intended Operation
<input type="checkbox"/> Indoor
<input checked="" type="checkbox"/> Outdoor

1.2.4 Duty Cycle

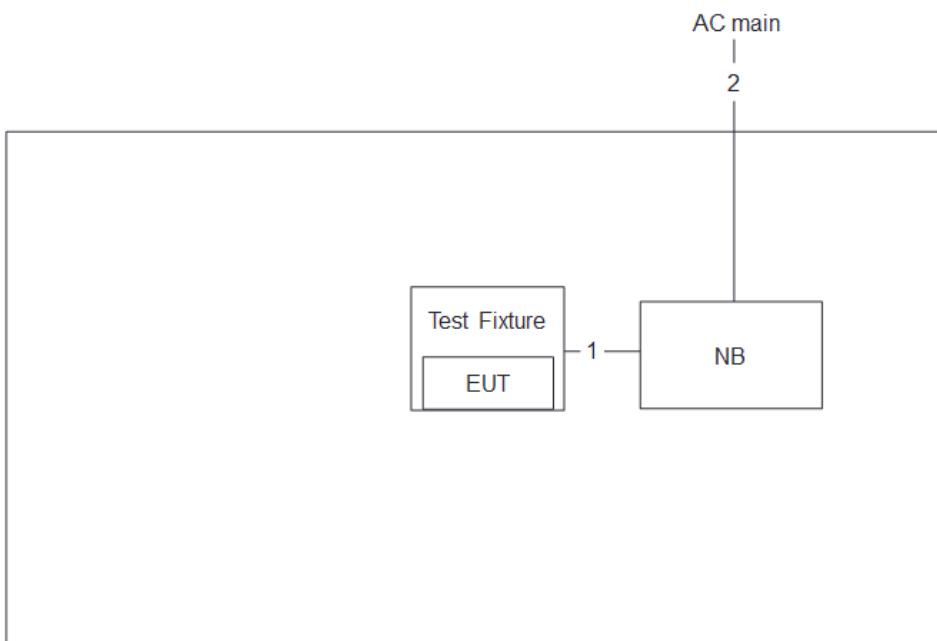
Duty Cycle	Duty Cycle Factor
99.52 %	0.02

1.3 Accessories

Accessories
Reflection board of antenna*1
USB cable*1, shielded, 0.7m

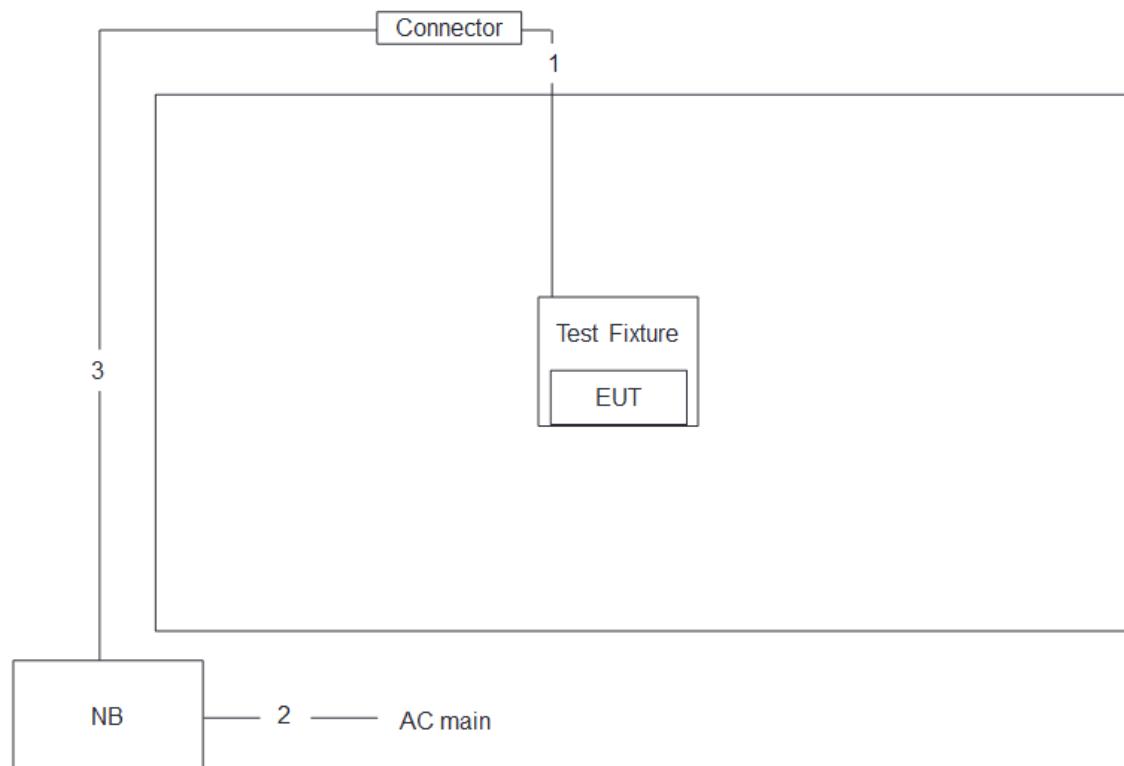
1.4 Support Equipment

Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID
1	NB	DELL	E4300	N/A
2	Test fixture	Accton	OAP920920	N/A


1.5 EUT Operation during Test

During the test, "Tera Term" under WIN 7 was executed the test program to control the EUT continuously transmit RF signal.

1.6 Test Setup Diagram


Test Setup Diagram - Transmitter Spurious Emissions < 40GHz

Item	Connection	Shielded	Length
1	USB Cable	Yes	0.7m
2	Power Cable	No	2.6m

Test Setup Diagram - Transmitter Spurious Emissions > 40GHz

Item	Connection	Shielded	Length
1	USB Cable	Yes	0.7m
2	Power Cable	No	2.6m
3	USB Cable	Yes	10m

1.7 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ♦ 47 CFR FCC Part 15.255
- ♦ ANSI C63.10-2013 Section 9. "Procedures for testing millimeter-wave systems"

1.8 Testing Location

Testing Location			
<input type="checkbox"/>	HWA YA	ADD : No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL : 886-3-327-3456 FAX : 886-3-327-0973	
<input checked="" type="checkbox"/>	JHUBEI	ADD : No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C. TEL : 886-3-656-9065 FAX : 886-3-656-9085	
Test Site No.			
03CH01-CB			

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086D with Industry Canada.

2 Test Configuration of Equipment under Test

2.1 Test Channel Frequencies

Test Channel Frequencies Configuration	
Channel 1	58.32
Channel 2	60.48
Channel 3	62.64
Channel 4	64.80

2.2 Conformance Tests and Related Test Frequencies

Test Item	Test Frequencies (GHz)
Occupied Bandwidth	64.80
EIRP Power	64.80
Peak Conducted Power	64.80
Transmitter Spurious Emissions (below 1 GHz)	62.64
Transmitter Spurious Emissions (1 GHz-40 GHz)	62.64, 64.80
Transmitter Spurious Emissions (above 40 GHz)	62.64, 64.80

Note: The EUT can only be used in Y axis.

2.3 Far Field Boundary Calculations

The far-field boundary is given as:

$$\text{far field} = (2 * L^2) / \lambda$$

where:

L = Largest Antenna Dimension, including the reflector, in meters

λ = wavelength in meters

Far Field (m)				
Frequency (GHz)	L (m)	Lambda (m)	d(Far Field) (m)	d(Far Field) (cm)
64.80	0.35	0.0046296	52.920	5292.00

3 Transmitter Test Result

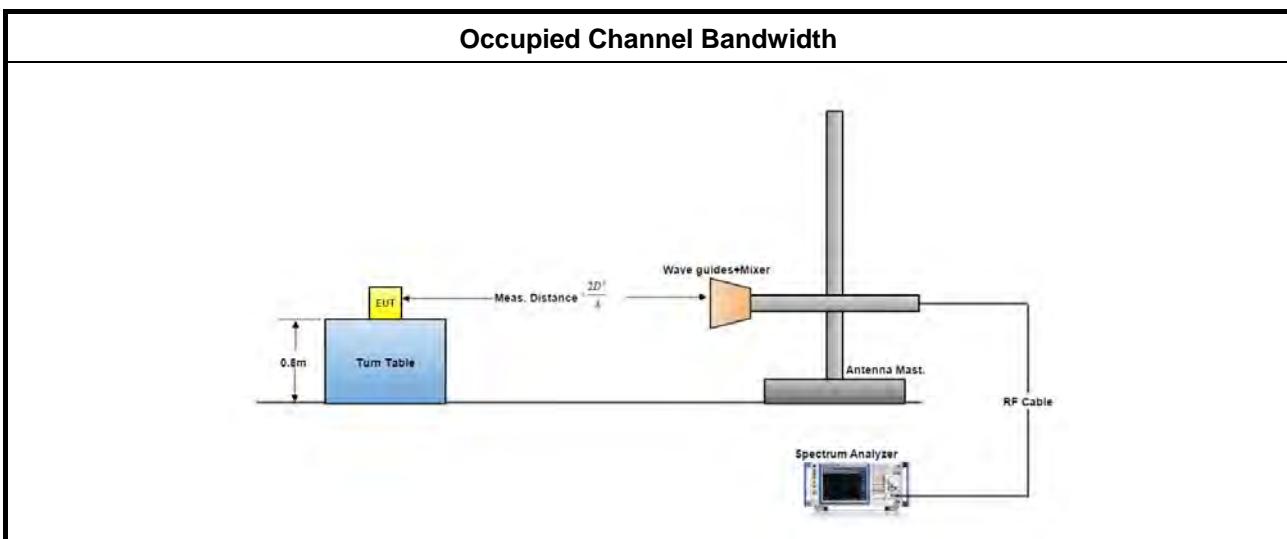
3.1 Occupied Bandwidth

3.1.1 Limit of Occupied Bandwidth

6dBc Bandwidth (see Note 1)	None
26dBc Bandwidth	None
99% Occupied Bandwidth (see Note 2)	None

NOTE 1: The 6dBc bandwidth is the frequency bandwidth of the signal power at the -6 dBc points when measured with a 100 kHz resolution bandwidth. These measurements shall also be performed at normal test conditions.

NOTE 2: The 99% occupied bandwidth is the frequency bandwidth of the signal power at the 99% channel power of occupied bandwidth when resolution bandwidth should be approximately 1 % to 5 % of the occupied bandwidth (OBW). These measurements shall also be performed at normal test conditions.

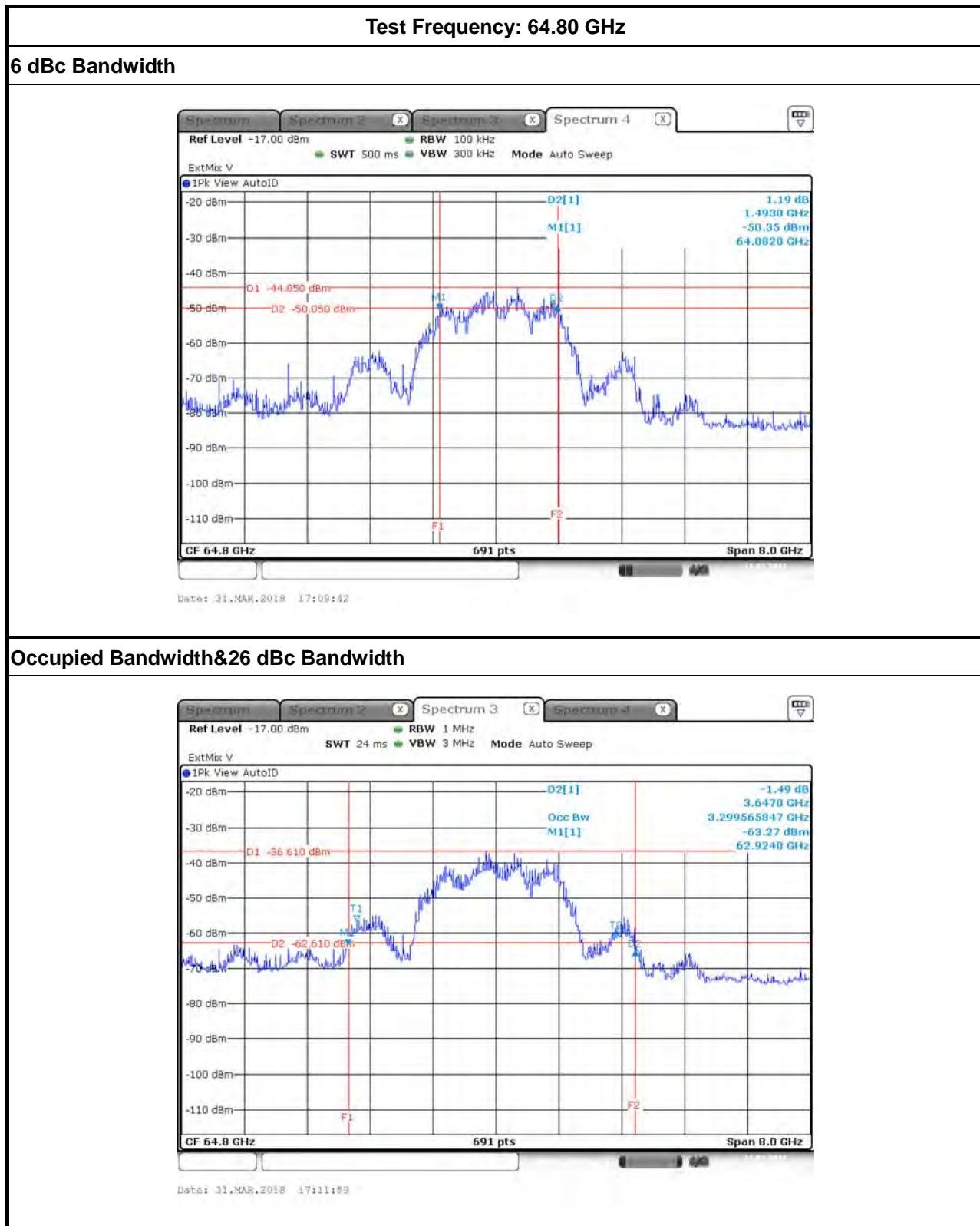

3.1.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.1.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clauses 6.9.2.

3.1.4 Test Setup


3.1.5 Test Result of Occupied Bandwidth

Test Conditions	see ANSI C63.10, clause 5.11
Test Setup	see ANSI C63.10, clause 6.9.2
NOTE: If equipment having different transmit operating modes (see test report clause 1.1.2), the measurements are uninfluenced by different transmit operating modes, may not need to be repeated for all the operating modes. Similar, if the equipment supports different modulations and/or data rates, the measurements described in ANSI C63.10, clause 5.11 may not need to be repeated for all these modulations and data rates. Simple comparison of engineering test across all operating modes, modulations and data rates may need to be performed to define the worse case combination to be used for the conformance testing. Refer as ANSI C63.10, clause 15, observe and record with plotted graphs or photographs the worst-case (i.e., widest) occupied bandwidth produced by these different modulation sources.	

Temp	22°C	Humidity	54%	
Test Engineer	Lucas Huang			
Test Results				
Test Freq. (GHz)	6 dBc Bandwidth (MHz)	Occupied Bandwidth (MHz)	26 dBc Bandwidth (MHz)	Limit (MHz)
64.80	1493.00	3299.57	3647.00	N/A

3.1.5.1 Bandwidth Plots

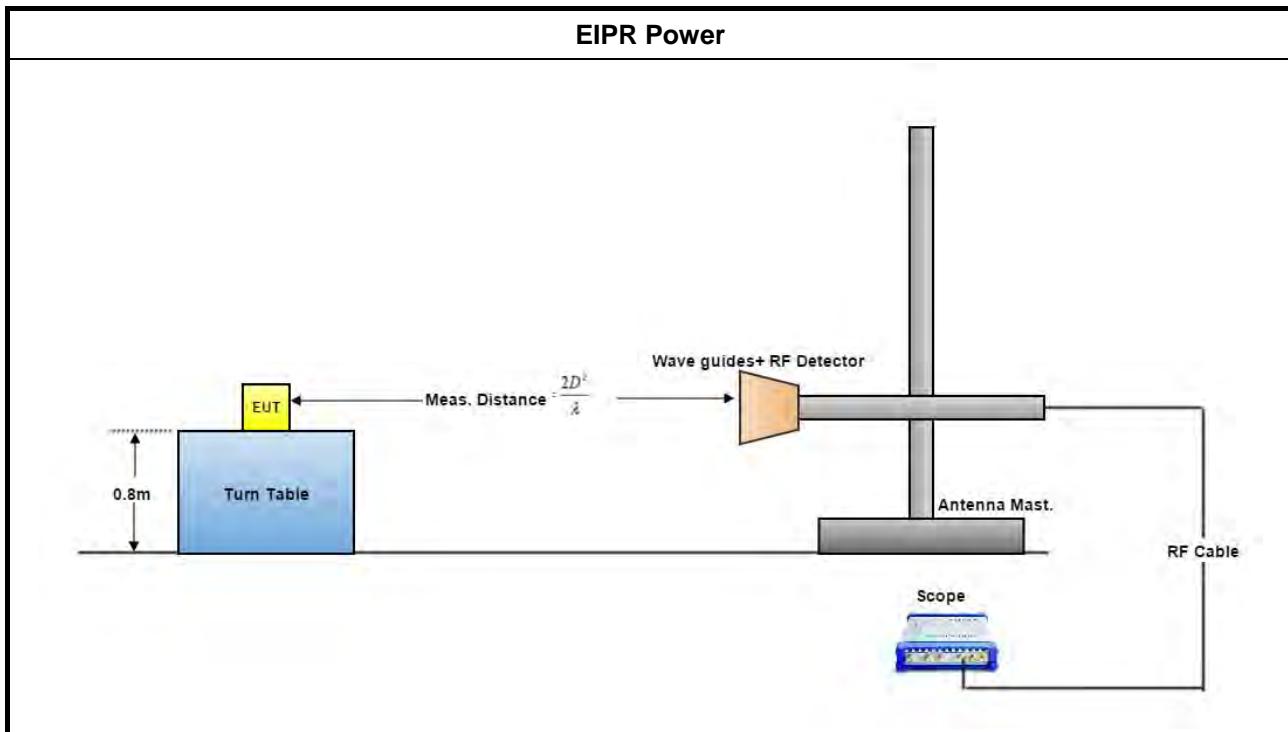
3.2 EIRP Power

3.2.1 Limit of EIRP Power

EIRP Power Limit		
Use Condition	EIRP Average Power	EIRP Peak Power
Fixed field disturbance sensors at within the frequency band 61-61.5GHz	40 dBm	43 dBm
Fixed field disturbance sensors at outside of the band 61-61.5GHz	10 dBm	13 dBm
Except fixed field disturbance sensors at 61-61.5GHz	N/A	10 dBm
Except fixed field disturbance sensors(indoor)	40 dBm	43 dBm
Except fixed field disturbance sensors(outdoor)	82 dBm	85 dBm

NOTE: For the applicable limit, see FCC 15.255 (b)

3.2.2 Measuring Instruments


Refer a measuring instruments list in this test report.

3.2.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013 clause 9.3 & 9.5.

3.2.4 Test Setup

3.2.5 Test Result of EIRP Power

Test Conditions see ANSI C63.10, clause 5.11 & clause 9

Test Setup see ANSI C63.10, clause 9.11

NOTE: If the equipment supports different modulations and/or data rates, the measurements described in ANSI C63.10, clause 5.11 may not need to be repeated for all these modulations and data rates. Simple comparison of engineering test across all operating modes, modulations and data rates may need to be performed to define the worst case combination to be used for the conformance testing.

3.2.5.1 Test Result of EIRP Power

Temp		22°C		Humidity		54%							
Test Engineer		Lucas Huang			Test Distance	55m							
Test Date		Mar. 31, 2018 ~ Apr. 03, 2018											
Test Results													
Test Freq. (GHz)	Rx Gain (dBi)	DSO (mV)		Power Measured (dBm)		E _{Meas} (dB _μ V/m)		EIRP (dBm)		EIRP Limit (dBm) (note 1)			
		Peak	AV	Peak	AV	Peak	AV	Peak	AV	Peak	AV		
64.80	23	2.310	0.262	-28.94	-42.82	121.55	107.67	51.66	37.78	67	64		

The measured power level is converted to EIRP using the Friis equation:

For radiated emissions, calculate the field strength (E) in dB_μV/meter.

$$E = 126.8 - 20\log(\lambda) + P - G$$

where:

E : is the field strength of the emission at the measurement distance, in dB_μV/m

P : is the power measured at the output of the test antenna, in dBm

λ : is the wavelength of the emission under investigation [300/fMHz], in m

G : is the gain of the test antenna, in dBi For radiated emissions, calculate the EIRP (dBm). If the measurement was performed in the far field, calculate the EIRP.

$$\text{EIRP} = E\text{-meas} + 20\log(d\text{-meas}) - 104.7$$

where:

EIRP : is the equivalent isotropically radiated power, in dBm

E-meas. : is the field strength of the emission at the measurement distance, in dB_μV/m

d-meas. : is the measurement distance, in m

NOTE 1: For the applicable limit, see FCC 15.255 (b)

NOTE 2: The comparison method which replaces EUT with a signal generator is used to find the correct conversion factor between "DSO(mV)" & "Power Measured(dBm)".

3.3 Peak Conducted Power

3.3.1 Limit of Peak Conducted Power

Peak Conducted Power Limit	
6dBc Bandwidth	Peak Conducted Power (note 1)
> 100MHz	500mW
≤ 100MHz	500mW x (BW/100) (see note 2)

NOTE 1: For the applicable limit, see FCC 15.255(e)

NOTE 2: BW= 6dB bandwidth (measured at RBW 100kHz)

3.3.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.3.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clause 9.5

3.3.4 Test Result of Peak Conducted Power

Test Conditions	see ANSI C63.10, clause 5.11 & clause 9
Test Setup	see ANSI C63.10, clause 9.11
NOTE: If the equipment supports different modulations and/or data rates, the measurements described in ANSI C63.10, clause 5.11 may not need to be repeated for all these modulations and data rates. Simple comparison of engineering test across all operating modes, modulations and data rates may need to be performed to define the worst case combination to be used for the conformance testing.	

3.3.4.1 Peak Conducted Power

Temp	22°C		Humidity	54%					
Test Engineer	Lucas Huang								
Test Date	Mar. 31, 2018 ~ Apr. 03, 2018								
Test Results									
Test Freq. (GHz)	EIRP (dBm)	Max. Ant. Gain (dBi)	Peak Power (dBm) (note1)	Peak Power (mW)	6dBc BW (MHz) (note2)	Peak Power Limit (mW) (note3)			
64.80	51.66	42	9.66	9.239	1493.00	500.00			

NOTE 1: Because EUT used for the integral antenna without temporary RF connector provided. Therefore peak conducted power is equal to EIRP power subtract the antenna gain.

NOTE 2: For the 6dBc bandwidth, see test report clause 3.1.5.

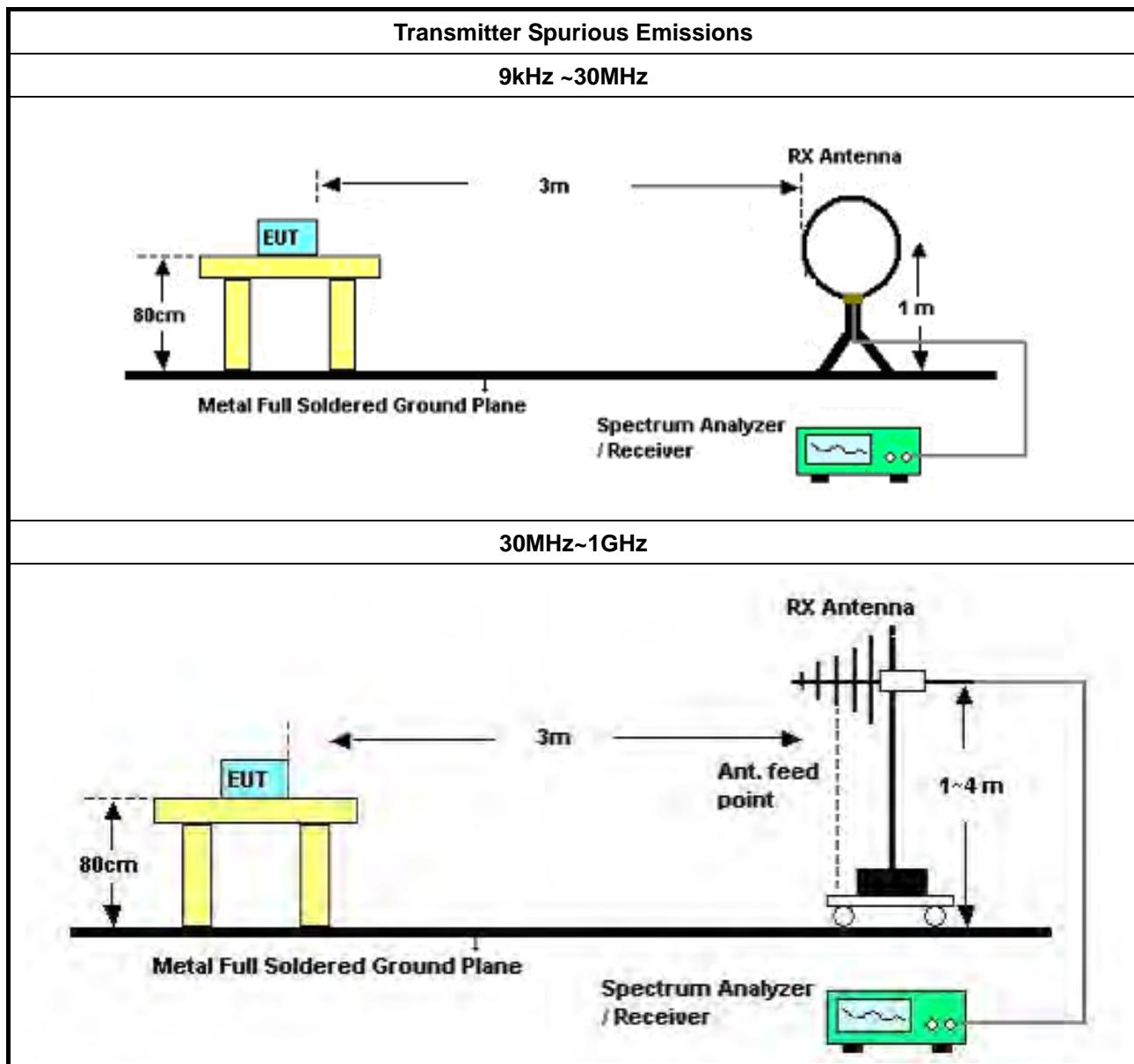
NOTE 3: For the applicable limit, see FCC 15.255(e)

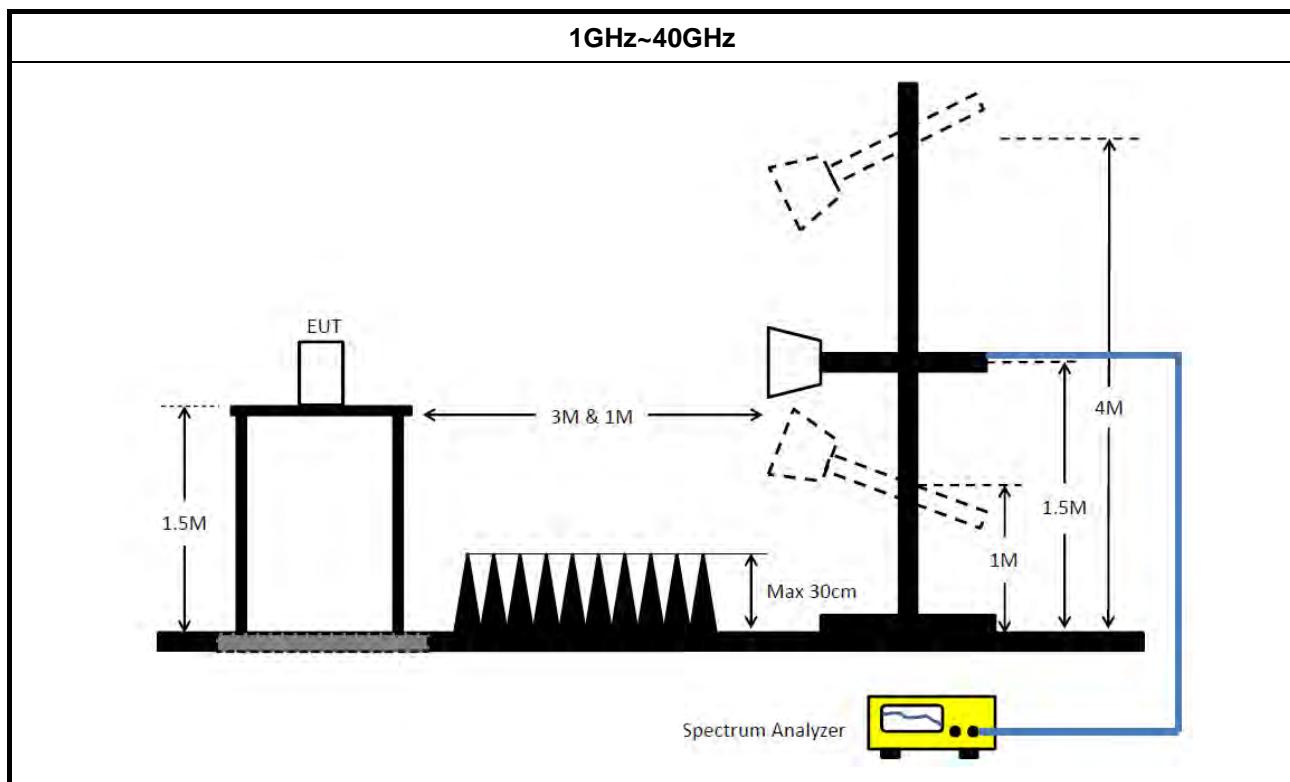
NOTE 4: For radiated emission measurements, calculate conducted transmitter output power P(cond)(dBm)
$$P(\text{cond}) = \text{EIRP} - G(\text{dBi})$$
where:
G(dBi) is gain of EUT antenna.

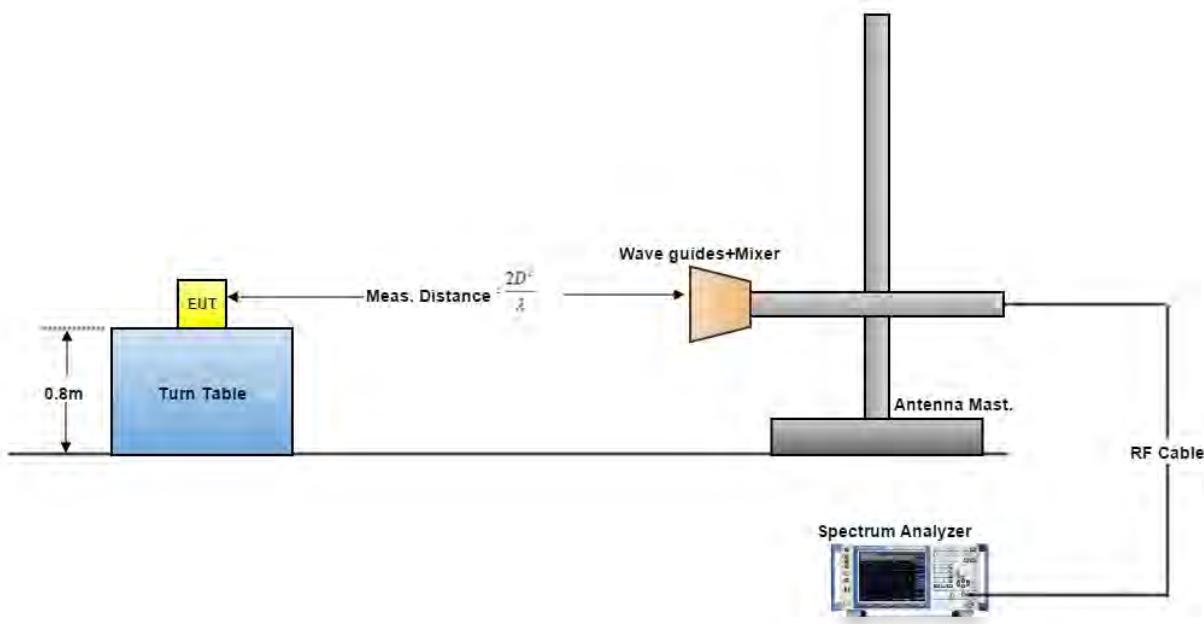
3.4 Transmitter Spurious Emissions

3.4.1 Limit of Transmitter Spurious Emissions

Frequency Range	Limit
Radiated emissions below 40 GHz	FCC 15.209
Radiated emissions above 40 GHz – 200GHz	90 pW/cm ² @ 3 m (Equivalent EIRP 102 µW, -9.91dBm)


NOTE 1: For the applicable limit, see FCC 15.255(c)


NOTE 2: Spurious emissions shall not exceed the level of the fundamental emission.


3.4.2 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clause 9.12

3.4.3 Test Setup

Above 40GHz

A measuring distance of at 3 m shall be used for measurements at frequencies up to 15 GHz. For frequencies above 15 GHz, any suitable measuring distance may be used. The measurement distance is chosen up to far field distance, depending on the test system noise floor for detecting spurious emission signals. Then above 15 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from spec. distance (3 m) to measurement distance. Distance extrapolation factor = $20 \log (\text{spec. distance [3 m]} / \text{measurement distance [N m]})$ (dB). The measurements described in ANSI C63.10, clause 7.8.6. If the emission cannot be detected at 1 m, reduce the RBW to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.

3.4.4 Test Result of Transmitter Spurious Emissions

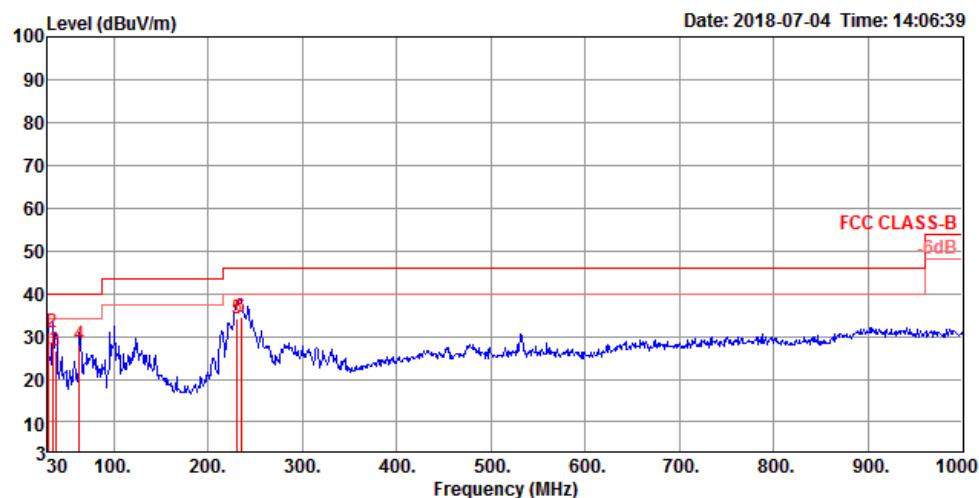
Test Conditions	see ANSI C63.10, clause 5.11 & clause 9
------------------------	---

Test Setup	see ANSI C63.10, clause 9.12 、 9.13
-------------------	-------------------------------------

NOTE: If equipment having different channel plan and nominal channel bandwidth modes (see test report clause 1.1.1), the measurements are uninfluenced by different channel plan and nominal channel bandwidth modes, may not need to be repeated for all modes.
--

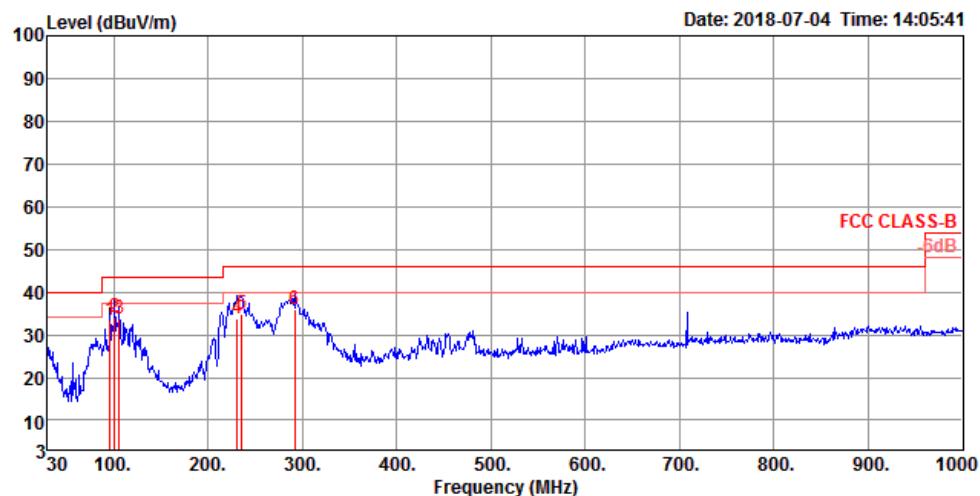
3.4.4.1 Test Result of Transmitter Spurious Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.


The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate.

3.4.4.2 Test Result of Transmitter Spurious Emissions

Temp	22°C	Humidity	54%
Test Engineer	Lucas Huang	Test Distance	3 m
Test Range	30 MHz – 1000 MHz	Test Frequencies	62.64 GHz
Test Configuration	CTX		


Vertical

Freq	Level	Limit	Over Line	Read Limit	Cable	Antenna	Preamp	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	30.00	31.06	40.00	-8.94	36.79	0.00	25.70	31.43	100	216 QP	VERTICAL
2	34.85	30.78	40.00	-9.22	39.48	0.00	22.87	31.57	100	255 QP	VERTICAL
3	38.73	26.54	40.00	-13.46	37.67	0.00	20.51	31.64	200	107 QP	VERTICAL
4	63.95	28.18	40.00	-11.82	47.41	0.00	12.60	31.83	200	75 QP	VERTICAL
5	230.79	34.04	46.00	-11.96	48.79	0.00	17.18	31.93	200	0 QP	VERTICAL
6	234.67	34.32	46.00	-11.68	48.65	0.00	17.60	31.93	200	0 QP	VERTICAL

Horizontal

Freq	Level	Limit	Over	Read	Cable			A/Pos	T/Pos	Remark	Pol/Phase
					Line	Limit	Level				
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	95.96	33.54	43.50	-9.96	49.00	0.00	16.40	31.86	300	30 QP	HORIZONTAL
2	100.81	34.27	43.50	-9.23	48.92	0.00	17.22	31.87	300	172 QP	HORIZONTAL
3	105.66	33.83	43.50	-9.67	47.97	0.00	17.73	31.87	200	161 QP	HORIZONTAL
4	230.79	33.75	46.00	-12.25	48.50	0.00	17.18	31.93	125	198 QP	HORIZONTAL
5	235.64	34.95	46.00	-11.05	49.20	0.00	17.68	31.93	125	99 QP	HORIZONTAL
6	291.90	35.87	46.00	-10.13	48.23	0.00	19.64	32.00	125	126 QP	HORIZONTAL

Temp	22°C	Humidity	54%
Test Engineer	Ekko Hsieh	Test Distance	3 m
Test Range	1 GHz – 18 GHz	Test Frequencies	62.64 GHz
Test Date	Apr. 03, 2018	Test Configuration	CTX

Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable Loss	Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		Line	dBuV/m									
1	1596.04	48.54	74.00	-25.46	52.44	5.58	25.53	35.01	164	192	Peak	VERTICAL
2	1597.29	37.85	54.00	-16.15	41.75	5.58	25.53	35.01	164	192	Average	VERTICAL

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable Loss	Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		Line	dBuV/m									
1	1597.71	37.90	54.00	-16.10	41.80	5.58	25.53	35.01	159	216	Average	HORIZONTAL
2	1598.03	48.85	74.00	-25.15	52.75	5.58	25.53	35.01	159	216	Peak	HORIZONTAL

Temp	22°C	Humidity	54%
Test Engineer	Ekko Hsieh	Test Distance	1 m
Test Range	18 GHz – 40 GHz	Test Frequencies	62.64 GHz
Test Date	Apr. 03, 2018	Test Configuration	CTX

Vertical

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	A/Pos	T/Pos	Remark	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor	cm	deg		
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	20673.79	46.15	63.54	-17.39	45.02	12.53	37.93	49.33	173	224	Average
2	20674.89	58.23	83.54	-25.31	57.08	12.53	37.95	49.33	173	224	Peak

Horizontal

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	A/Pos	T/Pos	Remark	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor	cm	deg		
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	20672.24	45.56	63.54	-17.98	44.43	12.53	37.93	49.33	154	173	Average
2	20674.71	59.35	83.54	-24.19	58.22	12.53	37.93	49.33	154	173	Peak

Temp	22°C	Humidity	54%
Test Engineer	Ekko Hsieh	Test Distance	3 m
Test Range	1 GHz – 18 GHz	Test Frequencies	64.80 GHz
Test Date	Apr. 03, 2018	Test Configuration	CTX

Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		Line	dBuV/m			dB	dBuV			dB	cm	deg	
1	1597.72	46.18	74.00	-27.82	50.08	5.58	25.53	35.01	154	207	Peak	VERTICAL	
2	1598.82	34.04	54.00	-19.96	37.94	5.58	25.53	35.01	154	207	Average	VERTICAL	

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		Line	dBuV/m			dB	dBuV			dB	cm	deg	
1	1598.41	47.39	74.00	-26.61	51.29	5.58	25.53	35.01	177	191	Peak	HORIZONTAL	
2	1598.79	35.37	54.00	-18.63	39.27	5.58	25.53	35.01	177	191	Average	HORIZONTAL	

Temp	22°C	Humidity	54%
Test Engineer	Ekko Hsieh	Test Distance	1 m
Test Range	18 GHz – 40 GHz	Test Frequencies	64.80 GHz
Test Date	Apr. 03, 2018	Test Configuration	CTX

Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable Loss	Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		Line	dB									
1	20666.11	57.30	83.54	-26.24	56.17	12.53	37.93	49.33	166	258	Peak	VERTICAL
2	20670.70	44.04	63.54	-19.50	42.91	12.53	37.93	49.33	166	258	Average	VERTICAL

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable Loss	Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		Line	dB									
1	20668.22	43.63	63.54	-19.91	42.50	12.53	37.93	49.33	181	312	Average	HORIZONTAL
2	20668.38	56.34	83.54	-27.20	55.21	12.53	37.93	49.33	181	312	Peak	HORIZONTAL

Temp	22°C	Humidity	54%
Test Engineer	Lucas Huang	Test Date	Apr. 03, 2018
Test Range	40GHz – 200GHz		

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
62.64	23.00	3.00	40.57	-78.66
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-27.51	3.00	1.5681	90.00	PASS

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
64.80	23.00	3.00	41.22	-78.41
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-27.12	3	1.7147	90.00	PASS

Note:

$$\text{EIRP} = \text{Prx} - \text{Grx} + \text{Free Space Path Loss} = \text{Prx} - \text{Grx} + 20\log(4\pi d/\lambda)^2$$

Which

Prx = Read Level.

Grx = Rx Antenna Gain.

A distance factor is offset and the formula is $20\log(D1/D2)$

Which

D1 = Specification Distance

D2 = Measurement Distance

3.5 Operation Restriction and Group Installation

3.5.1 Limit of Operation Restriction and Group Installation

Item	Limit
Operation Restriction	<p>Operation is not permitted for the following products:</p> <ul style="list-style-type: none">• Equipment used on aircraft or satellites. (Refer as FCC 15.255 (a))• Field disturbance sensors, including vehicle radar systems, unless the field disturbance sensors are employed for fixed operation. (Refer as FCC 15.255 (a))
Group Installation	<p>Operation is not permitted for the following products:</p> <ul style="list-style-type: none">• External phase-locking (Refer as FCC 15.255 (g))

3.5.2 Result of Operation Restriction

Manufacturer declares that EUT will not be used on aircraft or satellites. Then user manual will include a statement to caution EUT is not permitted for used on aircraft or satellites. EUT is a wireless video area network (WVAN) for the connection of consumer electronic (CE) audio and video devices.

3.5.3 Result of Group Installation

The frequency, amplitude and phase of the transmit signal are set within the EUT. There are no external phase-locking inputs or any other means of combining two or more units together to realize a beam-forming array.

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Loop Antenna	R&S	HFH2-Z2	100330	9kHz - 30 MHz	Nov. 13, 2017	Nov. 12, 2018	Radiation (03CH01-CB)
BILOG ANTENNA with 6dB Attenuator	TESEQ & EMCI	CBL6112D & N-06	37880 & AT-N0609	20MHz ~ 2GHz	Aug. 30, 2017	Aug. 29, 2018	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Nov. 20, 2017	Nov. 19, 2018	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 05, 2017	Jul. 04, 2018	Radiation (03CH01-CB)
Pre-Amplifier	EMCI	EMC330N	980332	20MHz ~ 3GHz	May 02, 2017	May 01, 2018	Radiation (03CH01-CB)
Pre-Amplifier	EMCI	EMC330N	980332	20MHz ~ 3GHz	May 02, 2018	May 01, 2019	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 09, 2018	Jan. 08, 2019	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz	Jul. 10, 2017	Jul. 09, 2018	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Nov. 23, 2017	Nov. 22, 2018	Radiation (03CH01-CB)
EMI Test	R&S	ESCS	100354	9kHz ~ 2.75GHz	Dec. 08, 2017	Dec. 07, 2018	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-16+17	N/A	30 MHz ~ 1 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16+17	N/A	1 GHz ~ 18 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G#1	N/A	18GHz ~ 40 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G#2	N/A	18GHz ~ 40 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-I0-7	N/A	N/A	N/A	Radiation (03CH01-CB)
Mixer	OML	M19HW/A	U91113-1	40 ~ 60 GHz	Oct. 12, 2017	Oct. 11, 2018	Radiation (03CH01-CB)
Mixer	OML	M15HW/A	V91113-1	50 ~ 75 GHz	Oct. 12, 2017	Oct. 11, 2018	Radiation (03CH01-CB)
Mixer	OML	M12HW/A	E91113-1	60 ~ 90 GHz	Oct. 12, 2017	Oct. 11, 2018	Radiation (03CH01-CB)
Mixer	OML	M08HW/A	F91113-1	90 ~ 140 GHz	Oct. 12, 2017	Oct. 11, 2018	Radiation (03CH01-CB)
Mixer	OML	M05HW/A	G91113-1	140 ~ 220 GHz	Oct. 12, 2017	Oct. 11, 2018	Radiation (03CH01-CB)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Standard Horn Antenna	Custom Microwave	M19RH	U91113-A	40 ~ 60 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M15RH	V91113-A	50 ~ 75 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M12RH	E91113-A	60 ~ 90 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M08RH	F91113-A	90 ~ 140 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M05RH	G91113-A	140 ~ 220 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Detector	Millitech	DET-15-RPFW 0	#A18185(074)	50 ~ 75 GHz	Jan. 29, 2018*	Jan. 29, 2020*	Radiation (03CH01-CB)
Pico Scope	Pico	Pico Scope 6402C	CX372/002	N/A	Jul. 26, 2017	Jul. 25, 2018	Radiation (03CH01-CB)

Note: Calibration Interval of instruments listed above is one year.

*** Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Radiated Emission (40GHz ~ 220GHz)	4.7 dB	Confidence levels of 95%