

Engineering Test Report No. 2100230-01

Report Date	March 10, 2021	
Manufacturer Name	Chamberlain Group, Inc.	
Manufacturer Address	300 Windsor Dr Oak Brook, IL 60523	
Product Name Brand/Model No.	B6753T Garage Door Opener	
Date Received	February 26, 2021	
Test Dates	March 1, 2021 through March 3, 2021	
Specifications	FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B Innovation, Science, and Economic Development Canada, ICES-003 FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Section 247 Innovation, Science, and Economic Development Canada, RSS-247 FCC KDB 99369	
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107
Signature		
Tested by	Mark E. Longinotti	
Signature		
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894	
PO Number	4900074188	

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B, Subpart C and Innovation, Science, and Economic Development Canada, ICES-003 and RSS-247 test specifications. The data presented in this test report pertains to the EUT on the test date(s) specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	3
2.	Introduction	4
3.	Power Input	4
4.	Grounding	4
5.	Firmware/Software	4
6.	Support Equipment	5
7.	Interconnect Leads.....	5
8.	Modifications Made to the EUT	5
9.	Modes of Operation for Digital Device Testing	5
9.1.	Light on, all transmitters in standby	5
10.	Modes of Operation for Transmitter	5
10.1.	Motor on, 900MHz transmitter on, light on.....	5
10.2.	Transmit at 902.25MHz.....	5
10.3.	Transmit at 914.75MHz.....	5
10.4.	Transmit at 926.75MHz.....	6
11.	Test Specifications	6
12.	Test Plan	6
13.	Deviation, Additions to, or Exclusions from Test Specifications	6
14.	Laboratory Conditions	6
15.	Summary	7
16.	Sample Calculations	7
17.	Statement of Conformity	7
18.	Certification	7
19.	Photographs of EUT.....	9
20.	Equipment List	10
21.	Block Diagram of Test Setup	11
22.	Digital Device RF Radiated Emissions Test	12
23.	Transmitter RF Conducted Emissions Test (AC Mains)	32
24.	Transmitter Peak Effective Isotropic Radiated Power (EIRP).....	38
25.	Transmitter Duty Cycle Factor Measurements	43
26.	Transmitter Case Spurious Radiated Emissions	50
27.	Scope of Accreditation	75

**This report shall not be reproduced, except in full,
without the written approval of Elite Electronic Engineering Inc.**

1. Report Revision History

Revision	Date	Description
–	11 MAR 2021	Initial Release of Engineering Test Report No. 2100230-01

2. Introduction

This document presents the results of a series of electromagnetic compatibility (EMC) tests that were performed on the Model B6753T Garage Door Opener (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was identified as follows:

EUT Identification	
Description	Garage Door Opener
Model/Part No.	B6753T
S/N	* Sample #1 and Sample #2
Software/Firmware Version	See Section 5 for details
Size of EUT	19.5 x 12 x 7
Number of Interconnection Wires	6
Type of Interconnection Wires	3 pairs of wires
Highest Internal Frequency of the EUT:	5825MHz

* Sample #1 was used for all EIRP and spurious radiated emissions. Sample #2 was used for all power line conducted emissions tests.

The EUT contained the following radio transmitters:

900MHz frequency hopping spread spectrum transmitter:

- FCC ID: HBW9612
- IC: 2666A-9612

2.4GHz WiFi LMA transmitter:

- FCC ID: HBW9586

The EUT also contained a camera with a 2.4GHz and 5GHz WiFi module:

- FCC ID: HBW-GDOCAM2

The nature of these measurements is to perform a Class 2 permissive change on the 900MHz transmitter (FCC ID: HBW9612) with the addition of LED boards. No additional testing was performed on the 2.4GHz WiFi LMA transmitter (FCC ID: HBW9586) or the 2.4GHz/5GHz WiFi camera (FCC ID: HBW-GDOCAM2).

3. Power Input

The EUT receives 120V, 60Hz power via a 3 wire power cord.

4. Grounding

The EUT was connected to ground through the third wire of its input power cord.

5. Firmware/Software

RETAIL FCC FIRMWARE VERSIONS			
Sample Setup	Transceiver	FW Version	Description
For Conducted Tests	WiFi Module	3.28.86	SDK, FCC code, Rx mode
	Silicon Labs Processor	1.0 / Special	Sub 1GHz Radio is functional. Motor does not stop after activation. PWM Down Direction is 60%, Up Direction 100%.
	Camera	0.1.28	SDK, FCC code, Rx mode

For Radiated Tests	Wi-Fi Module	6.2	SDK, FCC code, Rx mode. Accepts UART commands
	Silicon Labs Processor	3.28	Sub 1GHz Radio is functional
	Camera	0.1.13	SDK, FCC code, Rx mode. Accepts UART commands

6. Support Equipment

The EUT was submitted for testing along with the following support equipment:

Item	Description
Dell Latitude E6410 Laptop	Used to place the EUT in test mode. The computer was disconnected from the test item and removed from the test chamber prior to testing.
LCD Wall Control	Accessory acting as a load on the board.
Photo Eyes	Accessory acting as a load on the board. Also used to provide continuous modes for some testing.

7. Interconnect Leads

No interconnect leads were used during the tests.

8. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

9. Modes of Operation for Digital Device Testing

The EMC tests were performed with the EUT operating in one or more of the test modes described below. See the specific test section for the applicable test modes.

9.1. Light on, all transmitters in standby

The EUT was powered up. Upon power up, the light turned on and remained on. The EUT was programmed so that all transmitters were not transmitting.

10. Modes of Operation for Transmitter

10.1. Motor on, 900MHz transmitter on, light on

For power line conducted emissions tests, the EUT was powered up. Upon power up, the 900MHz transmitter was on, the motor was on and turning, and the light was on.

10.2. Transmit at 902.25MHz

For EIRP measurements and transmitter case spurious radiated emissions measurements, the EUT was powered up. The laptop computer was connected to the EUT and was used to program the device to transmit continuously at 902.25MHz.

10.3. Transmit at 914.75MHz

For EIRP measurements and transmitter case spurious radiated emissions measurements, the EUT was powered up. The laptop computer was connected to the EUT and was used to program the device to transmit continuously at 902.25MHz.

10.4. Transmit at 926.75MHz

For EIRP measurements and transmitter case spurious radiated emissions measurements, the EUT was powered up. The laptop computer was connected to the EUT and was used to program the device to transmit continuously at 902.25MHz.

11. Test Specifications

The tests were performed to selected portions of, and in accordance with the following test specifications:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart B
- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart C
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- ICES-003, Issue 7, October 2020, "Spectrum Management and Telecommunications, Interference-Causing Equipment Standard, Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement"
- RSS-Gen Issue 5, March 2019, Amendment 1, Innovation, Science, and Economic Development Canada, "Spectrum Management and Telecommunications, Radio Standards Specification, General Requirements for Compliance of Radio Apparatus"
- RSS-247 Issue 2, February 2017, Innovation, Science, and Economic Development Canada, "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices"

12. Test Plan

No test plan was provided. Instructions were provided by personnel from Chamberlain Group, Inc. and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B, Subpart C, Innovation, Science, and Economic Development Canada, ICES-003, RSS-247, ANSI C63.4-2014, ANSI C63.10-2013, and FCC KDB 996369 specifications.

13. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

14. Laboratory Conditions

Ambient Parameters	Value
Temperature	22°C
Relative Humidity	18%
Atmospheric Pressure	1025mb

15. Summary

The following EMC tests were performed and the results are shown below:

Test Description	Test Requirements	Test Methods	Equipment Class	Results
Digital Device RF Radiated Emissions Test	FCC 15B 15.109 ISED ICES-003, Section 6.2	ANSI C63.4-2014	B	Conforms
Transmitter RF Conducted Emissions Test (AC Mains)	FCC 15C 15.207 RSS-Gen, Section 8.8	ANSI C63.10-2013	N/A	Conforms
Transmitter Peak Effective Isotropic Radiated Power (EIRP)	FCC 15C 15.247 (b) RSS-247, Section 5.4(d)	ANSI C63.10-2013	N/A	Conforms
Transmitter Duty Cycle Factor Measurements	FCC 15B, 15.35(c) RSS-Gen, Section 8.2	ANSI C63.10-2013	N/A	N/A
Transmitter Case Spurious Radiated Emissions	FCC 15C 15.247(d) RSS-247, Section 5.5 RSS-Gen, Table 5 and Table 6	ANSI C63.10-2013	N/A	Conforms

16. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

$$\text{Formula 1: } VL \text{ (dBuV)} = MTR \text{ (dBuV)} + CF \text{ (dB)}.$$

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

$$\text{Formula 1: } FS \text{ (dBuV/m)} = MTR \text{ (dBuV)} + AF \text{ (dB/m)} + CF \text{ (dB)} + (-PA \text{ (dB)}) + DC \text{ (dB)}$$

To convert the Field Strength dBuV/m term to uV/m, the dBuV/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in uV/m terms.

$$\text{Formula 2: } FS \text{ (uV/m)} = \text{AntiLog} [(FS \text{ (dBuV/m)})/20]$$

17. Statement of Conformity

The Chamberlain Group, Inc. Garage Door Opener, Model No. B6753T, with FCC ID: HBW9612 900MHz frequency hopping spread spectrum transmitter, did meet the Class II permissive change requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 247 and met the requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B for Class B equipment.

The Chamberlain Group, Inc. Garage Door Opener, Model No. B6753T, with IC: Z64-CC3220MOD 900MHz frequency hopping spread spectrum transmitter, did meet the Class II permissive change requirements of Innovation, Science, and Economic Development Canada RSS-247 and met the requirements of Innovation, Science, and Economic Development Canada, ICES-003 for Class B equipment.

18. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part

15, Subpart B and Subpart C and Innovation, Science, and Economic Development Canada, ICES-003 and RSS-247 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

19. Photographs of EUT

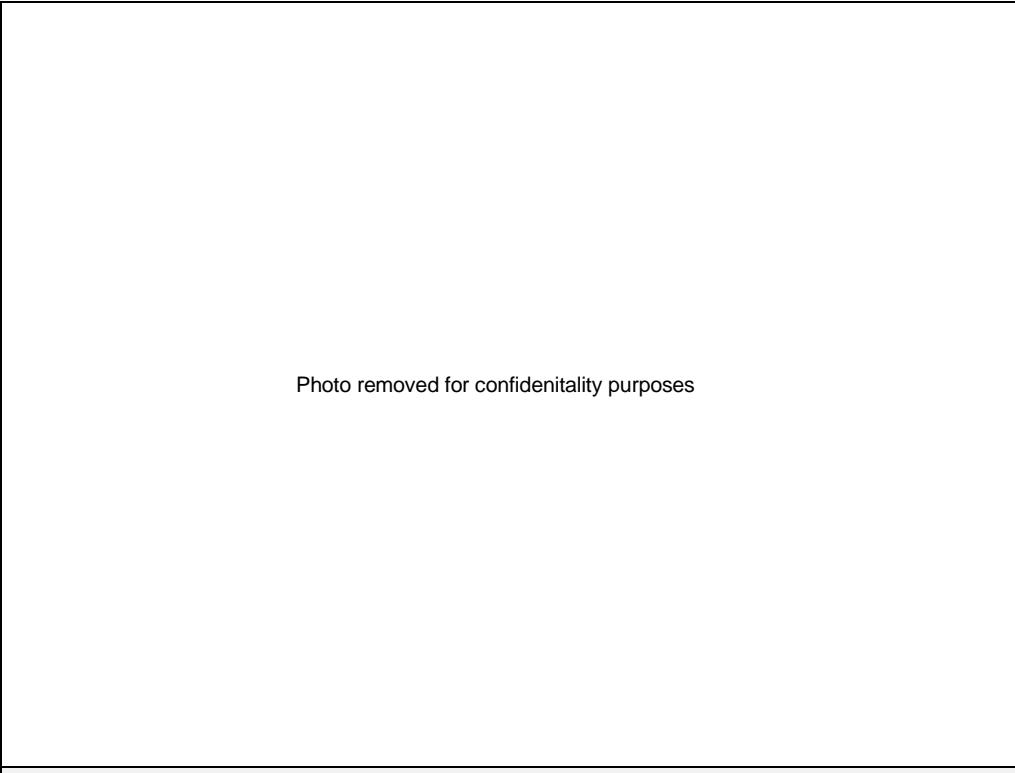


Photo removed for confidentiality purposes

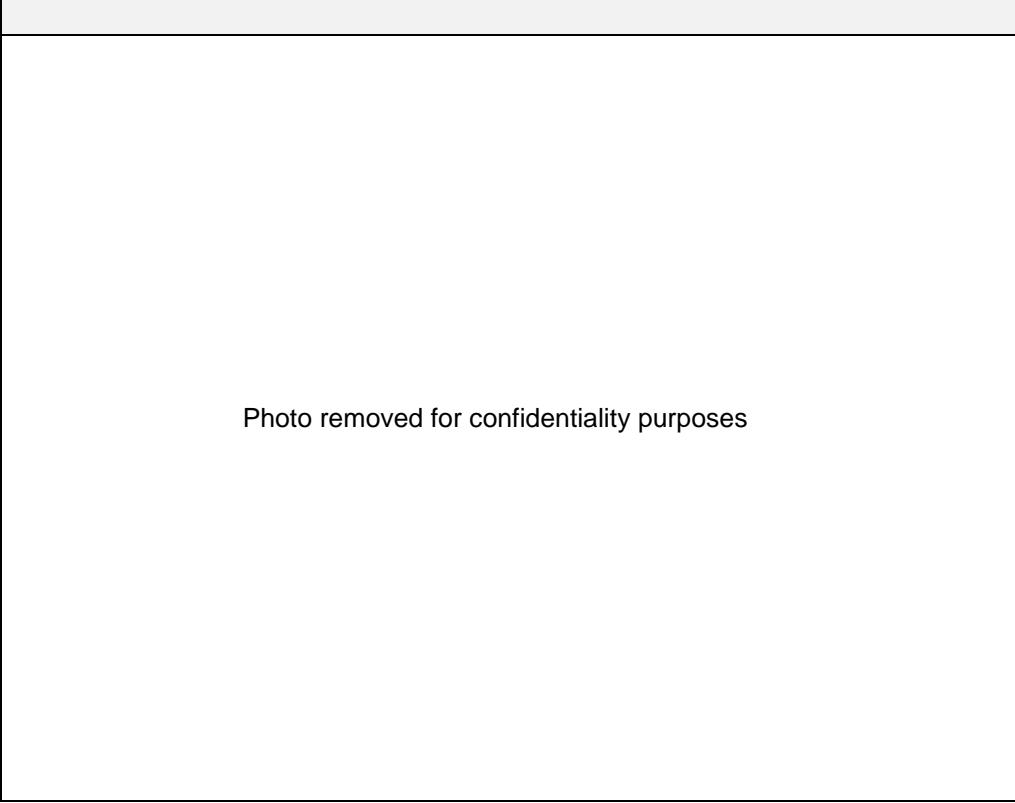
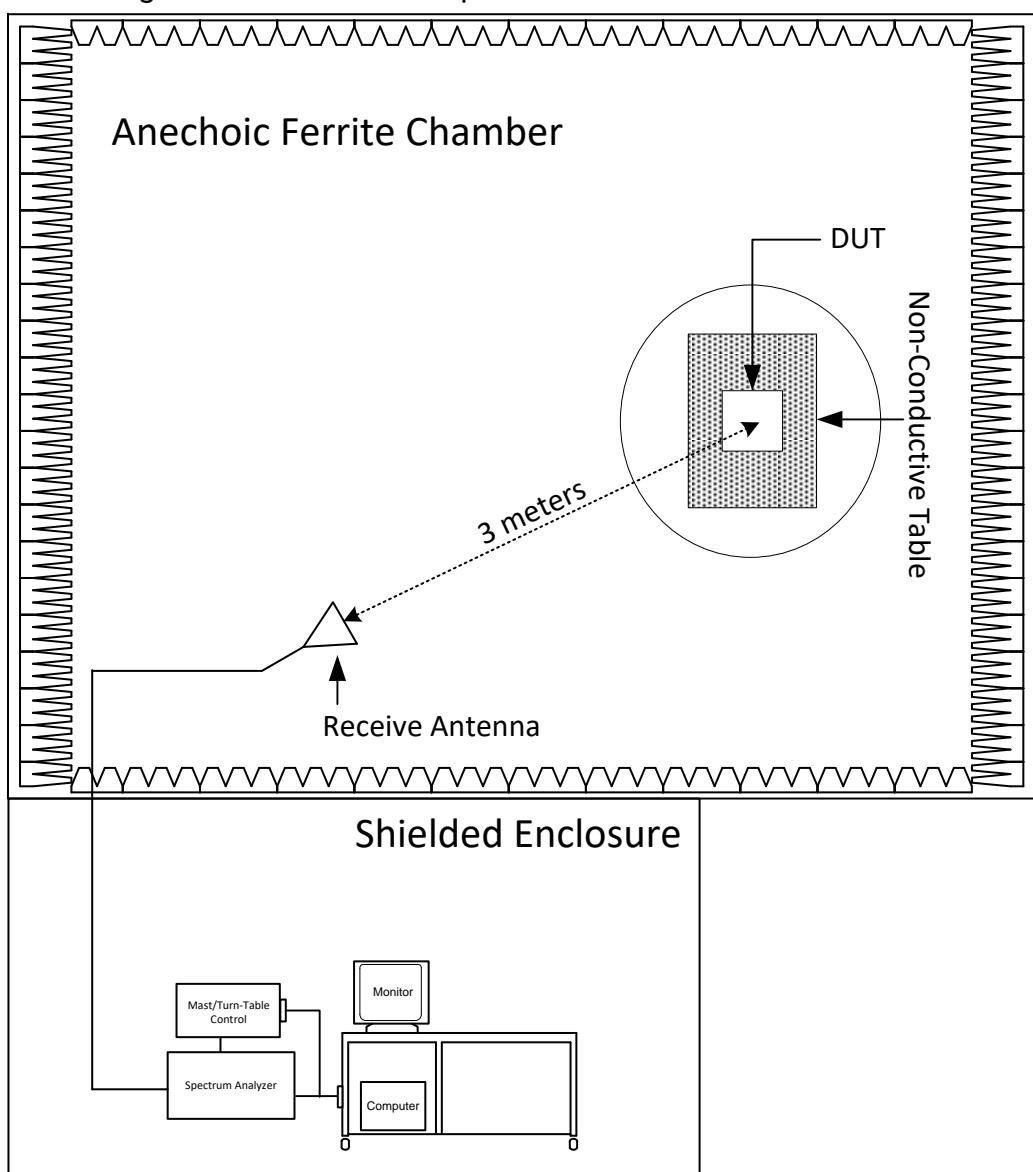


Photo removed for confidentiality purposes

20. Equipment List

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW0	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-30-20G20R6G	PL2926/0646	20GHZ-26.5GHZ	9/24/2020	9/24/2021
APW3	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-35-120-5R0-10-12	PL2924	1GHZ-20GHZ	3/23/2020	3/23/2021
APW5	PREAMPLIFIER	PLANAR	PE2-36-26D540G-5R0-1	PL3044/0651	26.5GHZ-40GHZ	7/18/2020	7/18/2021
CDW5	DESKTOP COMPUTER	ELITE	PENTIUM 4	006	3.8GHZ	N/A	
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
GBR7	SIGNAL GENERATOR	HEWLETT PACKARD	8648D	3847M00602	9KHZ-4000MHZ	2/22/2021	2/22/2022
NDQ0	TUNED DIPOLE ANTENNA	EMCO	3121C-DB4	311	400-1000MHZ	5/8/2020	5/8/2022
NHG0	STANDARD GAIN HORN ANTENNA	NARDA	638	---	18-26.5GHZ	NOTE 1	
NHH1	STANDARD GAIN HORN ANTENNA	NARDA	V637	---	26.5-40GHZ	NOTE 1	
NTA4	BILOG ANTENNA	TESEQ	6112D	46660	20-2000GHZ	10/5/2020	10/5/2021
NWQ1	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS-LINDGREN	3117	66655	1GHZ-18GHZ	4/28/2020	4/28/2022
PLF1	CISPR16 50UH LISN	ELITE	CISPR16/70A	001	.15-30MHz	4/24/2020	4/24/2021
PLF3	CISPR16 50UH LISN	ELITE	CISPER16/70A	003	.15-30MHz	4/24/2020	4/24/2021
RBDO	EMI TEST RECIEVER	ROHDE & SCHWARZ	ESU40	100010	20Hz-40GHz	8/27/2020	8/27/2021
RBE1	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESU26	100096	20Hz-26GHz	7/29/2020	7/29/2021
SES0	24VDC POWER SUPPLY	P-TRANS	FS-32024-1M	001	18-27VDC	NOTE 1	
T1EA	10DB 25W ATTENUATOR	WEINSCHEL	46-10-34	BN2316	DC-18GHZ	1/9/2020	1/9/2022
VBR8	CISPR EN FCC CE VOLTAGE.exe					N/A	
VBV2	CISPR EN FCC ICES RE.EXE	ELITE	CISPR EN FCC ICES RE.EXE	---	---	N/A	
XOA2	WAVE-TO-COAX ADAPTER	HEWLETT PACKARD	R281B	01138	26.5-65GHZ	NOTE 1	
XOB2	ADAPTER	HEWLETT PACKARD	K281C,012	09407	18-26.5GHZ	NOTE 1	
XPQ8	HIGH PASS FILTER	K&L MICROWAVE	4IH30-1804/T10000-0	6	1.8-10GHZ	2/3/2021	2/3/2023


N/A: Not Applicable

I/O: Initial Only

CNR: Calibration Not Required

NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

21. Block Diagram of Test Setup

Radiated Measurements Test Setup

22. Digital Device RF Radiated Emissions Test

Manufacturer	Chamberlain Group, Inc.
Product	Garage Door Opener
Model	B6753T
Serial No	Sample #1
Mode	Light on, all transmitters in standby

Information	
Setup Format	Tabletop
Height of Support	N/A
Type of Test Site	Semi-Anechoic Chamber
Type of Antennas Used	Below 1GHz: Bilog (or equivalent) Above 1GHz: Double-ridged waveguide (or equivalent)
Highest Internal Frequency of the EUT:	5825MHz
Highest Measurement Frequency:	30GHz
Notes	The cables were manually maximized during the preliminary emissions sweeps. The cable arrangement which resulted in the worst-case emissions was utilized.

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4

Requirements	
The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:	
Frequency of Emission (MHz)	Field Strength (µV/m)
30-88	100
88-216	150
216-960	200
Above 960	500

Procedures	
Since a quasi-peak detector and an average detector require long integration times, it is not practical to automatically sweep through the quasi-peak and average levels. Therefore, radiated emissions from the EUT were first scanned using a peak detector and automatically plotted. The frequencies where significant emission levels were noted were then remeasured using the quasi-peak detector or average detector.	
The EUT and all peripheral equipment were placed on an 80cm high non-conductive stand. The broadband measuring antenna was positioned at a 3 meter distance from the EUT. The frequency range from 30MHz to 1GHz was investigated using a peak detector function with the bilog antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The frequency range from 1GHz to 30GHz was investigated using a peak detector function with the double ridged waveguide antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The maximum levels for each antenna polarization were plotted.	
Final radiated emissions were performed on all significant broadband and narrowband emissions found in the exploratory sweeps using the following methods:	

1) Measurements from 30MHz to 1GHz were made using a quasi-peak detector and a broadband bilog antenna. Measurements above 1GHz were made using an average detector and a broadband double ridged waveguide antenna.

2) To ensure that maximum or worst case, emission levels were measured, the following steps were taken:

- The EUT was rotated so that all sides were exposed to the receiving antenna.
- Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
- The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.

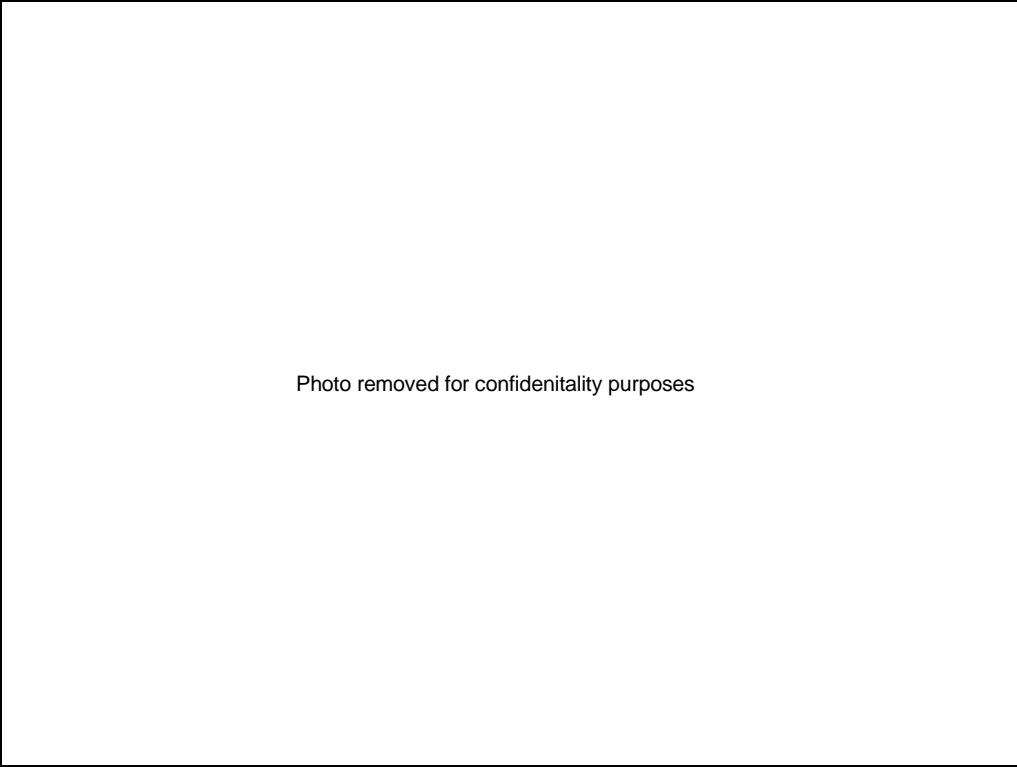


Photo removed for confidentiality purposes

Test Setup for Radiated Emissions: 30MHz to 1GHz, Horizontal Polarization

Photo removed for confidentiality purposes

Test Setup for Radiated Emissions: 30MHz to 1GHz, Vertical Polarization

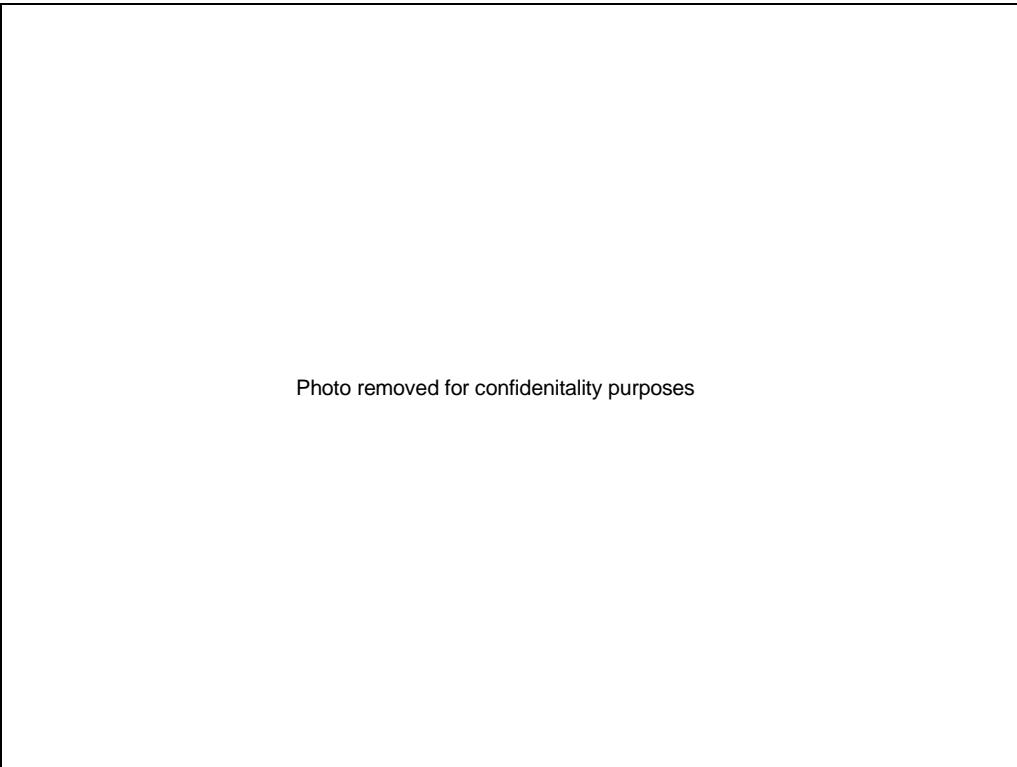

A large, empty rectangular box with a thin black border, occupying the top half of the page.

Photo removed for confidentiality purposes

Test Setup for Radiated Emissions: 1GHz to 18GHz, Horizontal Polarization

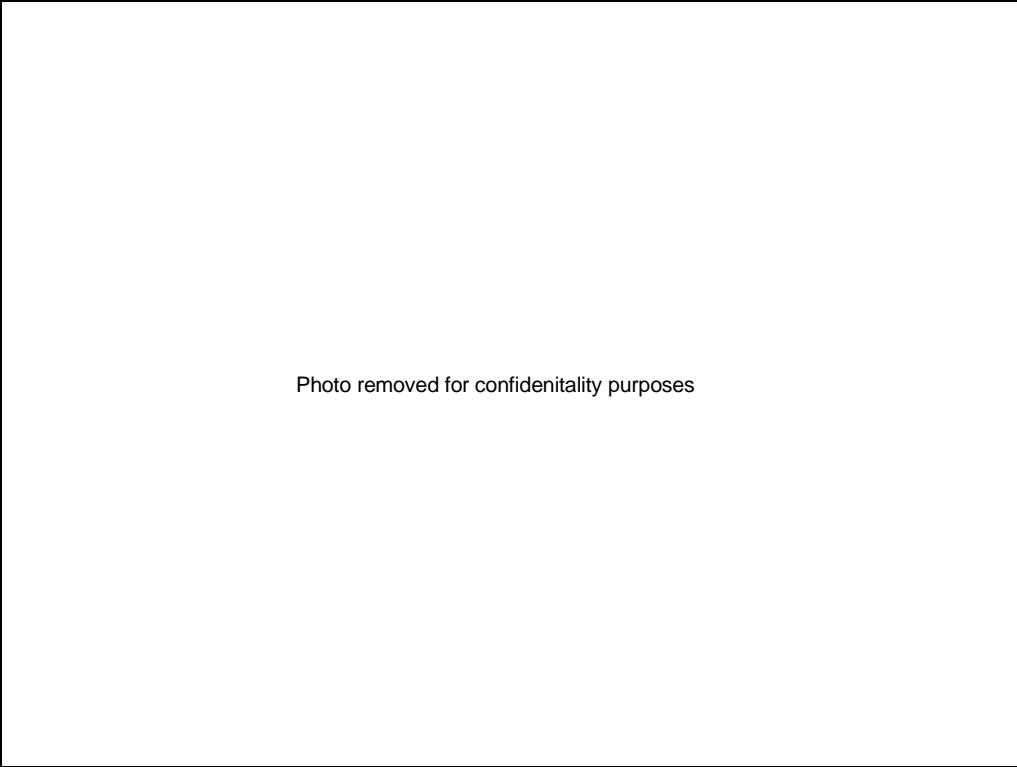
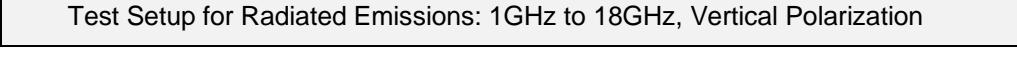


A large, empty rectangular box with a thin black border, occupying the middle section of the page.

Photo removed for confidentiality purposes

Test Setup for Radiated Emissions: 1GHz to 18GHz, Vertical Polarization

A large, empty rectangular box with a thin black border, occupying the bottom section of the page.

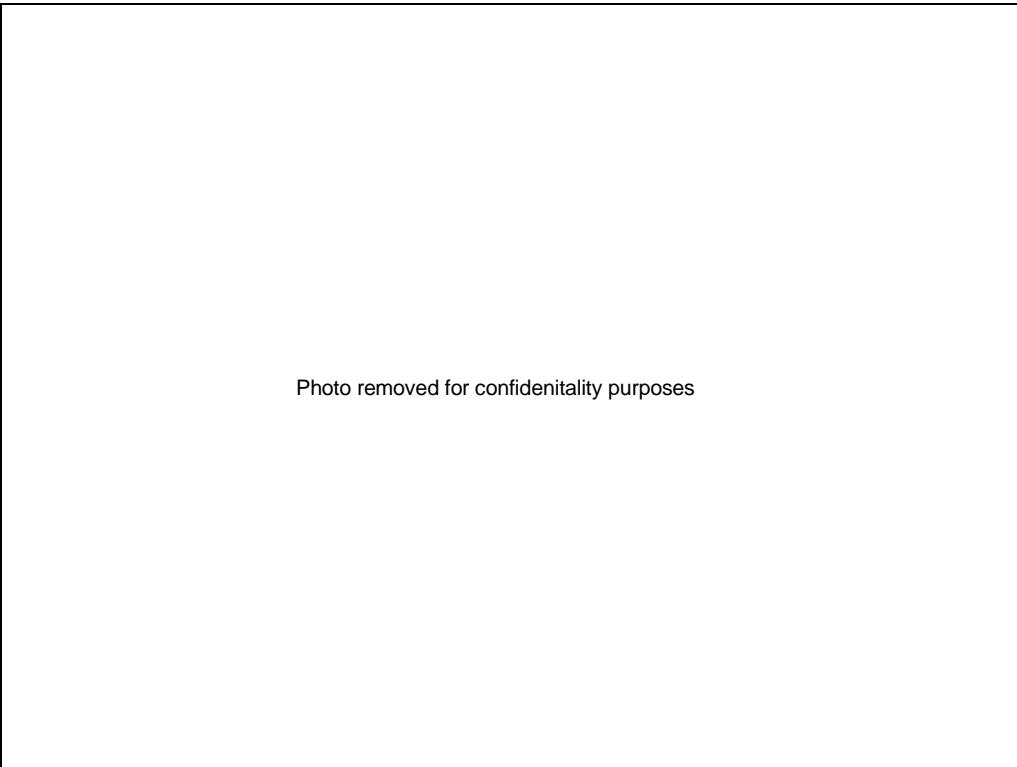

A large, empty rectangular box with a thin black border, occupying the top half of the page. It is used to redact a photograph.

Photo removed for confidentiality purposes

Test Setup for Radiated Emissions: 18GHz to 26.5GHz, Horizontal Polarization

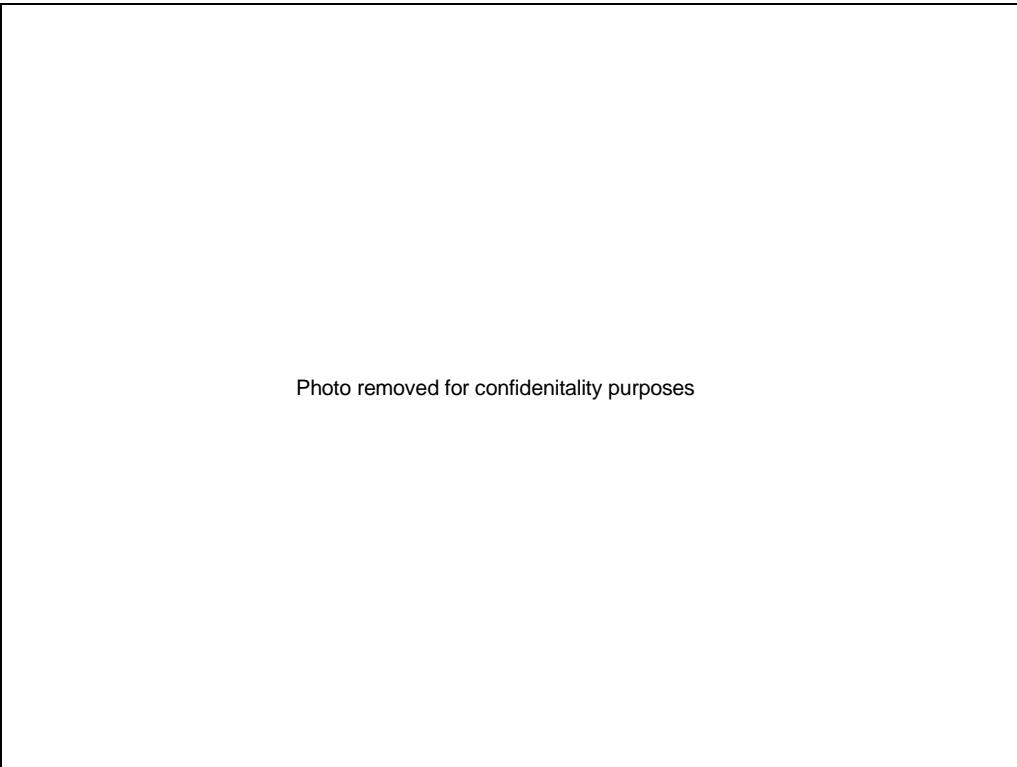
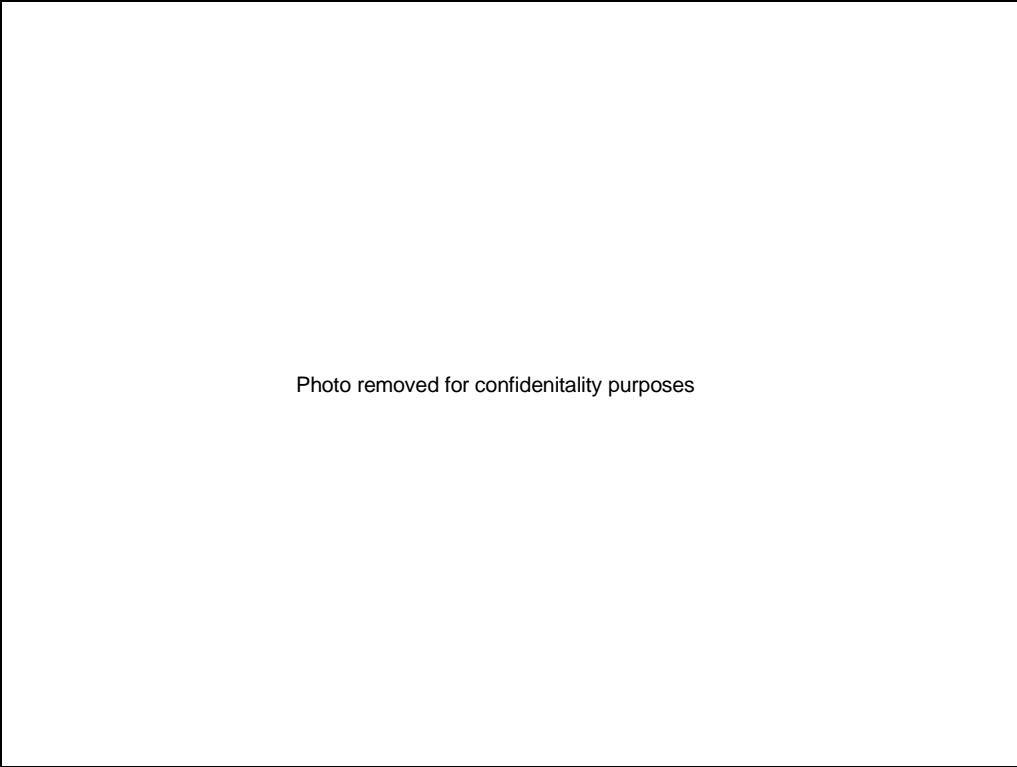



A large, empty rectangular box with a thin black border, occupying the middle section of the page. It is used to redact a photograph.

Photo removed for confidentiality purposes

Test Setup for Radiated Emissions: 18GHz to 26.5GHz, Vertical Polarization

A large, empty rectangular box with a thin black border, occupying the top half of the page. It contains the text "Photo removed for confidentiality purposes".

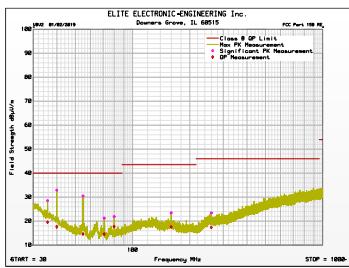
Test Setup for Radiated Emissions: 26.5GHz to 30MHz, Horizontal Polarization

A large, empty rectangular box with a thin black border, occupying the middle section of the page. It contains the text "Photo removed for confidentiality purposes".

Test Setup for Radiated Emissions: 26.5GHz to 30GHz, Vertical Polarization

FCC Part 15B Class B Radiated RF Emissions Test

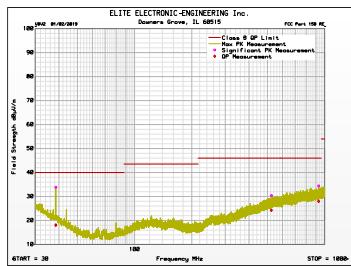
SW ID/Rev: VBV2 01/02/2019


Manufacturer : Chamberlain
 Model : B6753T
 Serial Number : Sample #1
 DUT Mode : Light on, Transmitters in standby
 Scan Type : Stepped Scan
 Test RBW : 120 kHz
 Prelim Dwell Time (s) : 0.0001
 Notes :
 Test Engineer : M. Longinotti
 Test Date : Mar 02, 2021 11:28:14 AM

Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBuV/m	QP Total dBuV/m	QP Limit dB μ V/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
35.700	6.6	-2.4	21.6	0.0	0.4	0.0	28.6	19.6	40.0	-20.4	V	120	270
38.520	13.4	-2.4	20.1	0.0	0.4	0.0	33.8	18.1	40.0	-21.9	H	200	270
39.900	13.1	-2.1	19.4	0.0	0.4	0.0	32.9	17.7	40.0	-22.3	V	200	270
54.840	16.8	0.9	13.4	0.0	0.4	0.0	30.5	14.7	40.0	-25.3	V	120	315
70.860	8.2	1.6	12.7	0.0	0.4	0.0	21.3	14.6	40.0	-25.4	V	120	180
79.980	8.3	4.1	13.3	0.0	0.4	0.0	21.9	17.8	40.0	-22.2	V	200	270
159.520	5.6	-0.2	17.2	0.0	0.6	0.0	23.5	17.6	43.5	-25.9	V	120	45
259.620	3.9	-2.1	18.8	0.0	0.8	0.0	23.4	17.4	46.0	-28.6	V	120	45
524.520	4.6	-1.5	24.6	0.0	1.1	0.0	30.4	24.3	46.0	-21.7	H	340	135
930.180	6.0	-0.4	26.9	0.0	1.5	0.0	34.4	28.0	46.0	-18.0	H	120	90

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019


Manufacturer : Chamberlain
Model : B6753T
Serial Number : Sample #1
DUT Mode : Light on, Transmitters in standby
Ant. Polarization(s) : Vertical
Scan Type : Stepped Scan
Test RBW : 120 kHz
Prelim Dwell Time (s) : 0.0001
Notes :
Test Engineer : M. Longinotti
Test Date : Mar 02, 2021 11:28:14 AM

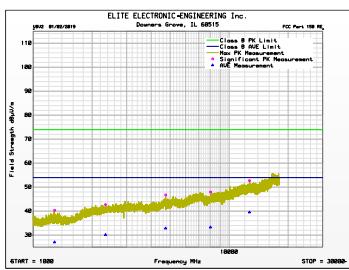
FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019

Manufacturer : Chamberlain
Model : B6753T
Serial Number : Sample #1
DUT Mode : Light on, Transmitters in standby
Ant. Polarization(s) : Horizontal
Scan Type : Stepped Scan
Test RBW : 120 kHz
Prelim Dwell Time (s) : 0.0001
Notes :
Test Engineer : M. Longinotti
Test Date : Mar 02, 2021 11:28:14 AM

FCC Part 15B Class B Radiated RF Emissions Test

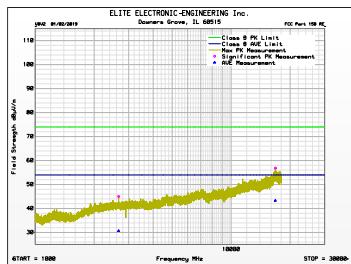
SW ID/Rev: VBV2 01/02/2019


Manufacturer : Chamberlain
 Model : B6753T
 Serial Number : Sample #1
 DUT Mode : Light on, Transmitters in standby
 Scan Type : Stepped Scan
 Test RBW : 1 MHz
 Prelim Dwell Time (s) : 0.0001
 Notes :
 Test Engineer : M. Longinotti
 Test Date : Mar 02, 2021 08:57:11 AM

Freq MHz	Peak Mtr Rdg dBuV	Average Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dB μ V/m	Peak Limit dB μ V/m	Peak Lim Mrg dB	Average Total dB μ V/m	Average Limit dB μ V/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
1286.000	51.3	38.0	29.1	-41.8	1.8	0.0	40.3	74.0	-33.6	27.1	54.0	-26.9	V	120	135
2339.000	49.3	36.7	31.9	-41.0	2.5	0.0	42.7	74.0	-31.2	30.1	54.0	-23.9	V	340	90
2665.500	51.0	36.7	32.6	-41.4	2.8	0.0	45.0	74.0	-29.0	30.7	54.0	-23.3	H	340	180
4744.500	49.2	35.3	34.5	-40.6	3.7	0.0	46.8	74.0	-27.2	32.8	54.0	-21.1	V	120	315
8033.000	48.2	33.5	35.6	-40.8	4.9	0.0	48.0	74.0	-26.0	33.3	54.0	-20.7	V	120	45
12696.500	47.8	34.6	39.0	-40.2	6.1	0.0	52.7	74.0	-21.3	39.5	54.0	-14.4	V	200	45
16809.500	47.4	33.8	42.0	-39.8	7.1	0.0	56.8	74.0	-17.1	43.3	54.0	-10.7	H	340	270

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019


Manufacturer : Chamberlain
Model : B6753T
Serial Number : Sample #1
DUT Mode : Light on, Transmitters in standby
Ant. Polarization(s) : Vertical
Scan Type : Stepped Scan
Test RBW : 1 MHz
Prelim Dwell Time (s) : 0.0001
Notes :
Test Engineer : M. Longinotti
Test Date : Mar 02, 2021 08:57:11 AM

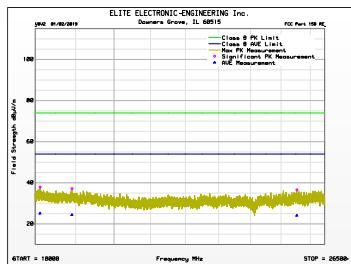
FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019

Manufacturer : Chamberlain
Model : B6753T
Serial Number : Sample #1
DUT Mode : Light on, Transmitters in standby
Ant. Polarization(s) : Horizontal
Scan Type : Stepped Scan
Test RBW : 1 MHz
Prelim Dwell Time (s) : 0.0001
Notes :
Test Engineer : M. Longinotti
Test Date : Mar 02, 2021 08:57:11 AM

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019


Manufacturer : Chamberlain
 Model : B6753T
 Serial Number : Sample #1
 DUT Mode : Light on, Transmitters in standby
 Ant. Polarization : Horizontal
 Scan Type : Stepped Scan
 Test RBW : 1 MHz
 Prelim Dwell Time (s) : 0.0001
 Notes :
 Test Engineer : M. Longinotti
 Test Date : Mar 02, 2021 10:04:58 AM

Freq MHz	Peak Mtr Rdg dBuV	Average Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dB μ V/m	Peak Limit dB μ V/m	Peak Lim Mrg dB	Average Total dB μ V/m	Average Limit dB μ V/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
18116.500	26.9	14.1	40.3	-30.3	0.9	0.0	37.9	74.0	-36.1	25.1	54.0	-28.9	H	100	0
18906.000	24.4	11.6	40.4	-28.5	0.9	0.0	37.2	74.0	-36.8	24.4	54.0	-29.6	H	100	0
25535.000	24.6	12.0	40.7	-29.7	1.1	0.0	36.6	74.0	-37.4	24.1	54.0	-29.9	H	100	0

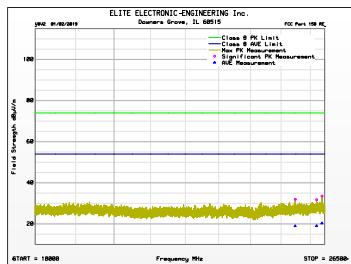
FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019

Manufacturer : Chamberlain
Model : B6753T
Serial Number : Sample #1
DUT Mode : Light on, Transmitters in standby
Ant. Polarization : Horizontal
Scan Type : Stepped Scan
Test RBW : 1 MHz
Prelim Dwell Time (s) : 0.0001
Notes :
Test Engineer : M. Longinotti
Test Date : Mar 02, 2021 10:04:58 AM

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019


Manufacturer : Chamberlain
 Model : B6753T
 Serial Number : Sample #1
 DUT Mode : Light on, Transmitters in standby
 Ant. Polarization : Vertical
 Scan Type : Stepped Scan
 Test RBW : 1 MHz
 Prelim Dwell Time (s) : 0.0001
 Notes :
 Test Engineer : M. Longinotti
 Test Date : Mar 02, 2021 10:09:13 AM

Freq MHz	Peak Mtr Rdg dBuV	Average Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dB μ V/m	Peak Limit dB μ V/m	Peak Lim Mrg dB	Average Total dB μ V/m	Average Limit dB μ V/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
25477.500	19.7	6.7	40.7	-29.4	1.1	0.0	32.0	74.0	-42.0	19.0	54.0	-35.0	V	100	0
26216.500	19.4	6.7	40.7	-29.4	1.1	0.0	31.8	74.0	-42.2	19.0	54.0	-34.9	V	100	0
26406.000	20.9	7.7	40.7	-29.1	1.1	0.0	33.6	74.0	-40.4	20.3	54.0	-33.6	V	100	0

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019

Manufacturer : Chamberlain
Model : B6753T
Serial Number : Sample #1
DUT Mode : Light on, Transmitters in standby
Ant. Polarization : Vertical
Scan Type : Stepped Scan
Test RBW : 1 MHz
Prelim Dwell Time (s) : 0.0001
Notes :
Test Engineer : M. Longinotti
Test Date : Mar 02, 2021 10:09:13 AM

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019

Manufacturer : Chamberlain
 Model : B6753T
 Serial Number : Sample #1
 DUT Mode : Light on, Transmitters in standby
 Ant. Polarization : Horizontal
 Scan Type : Stepped Scan
 Test RBW : 1 MHz
 Prelim Dwell Time (s) : 0.0001
 Notes :
 Test Engineer : M. Longinotti
 Test Date : Mar 02, 2021 10:20:16 AM

Freq MHz	Peak Mtr Rdg dBuV	Average Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dB μ V/m	Peak Limit dB μ V/m	Peak Lim Mrg dB	Average Total dB μ V/m	Average Limit dB μ V/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
27625.500	41.8	28.9	43.8	-34.6	2.0	0.0	52.8	74.0	-21.2	40.0	54.0	-14.0	H	100	0
28957.000	41.0	28.5	43.8	-34.5	2.0	0.0	52.3	74.0	-21.7	39.8	54.0	-14.2	H	100	0
29361.000	41.5	28.4	43.8	-35.9	2.0	0.0	51.5	74.0	-22.5	38.4	54.0	-15.6	H	100	0

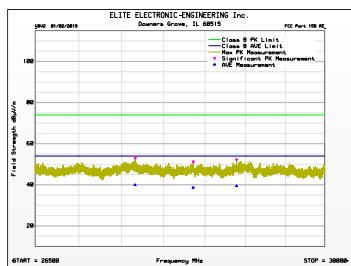
FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019

Manufacturer : Chamberlain
Model : B6753T
Serial Number : Sample #1
DUT Mode : Light on, Transmitters in standby
Ant. Polarization : Horizontal
Scan Type : Stepped Scan
Test RBW : 1 MHz
Prelim Dwell Time (s) : 0.0001
Notes :
Test Engineer : M. Longinotti
Test Date : Mar 02, 2021 10:20:16 AM

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019


Manufacturer : Chamberlain
 Model : B6753T
 Serial Number : Sample #1
 DUT Mode : Light on, Transmitters in standby
 Ant. Polarization : Vertical
 Scan Type : Stepped Scan
 Test RBW : 1 MHz
 Prelim Dwell Time (s) : 0.0001
 Notes :
 Test Engineer : M. Longinotti
 Test Date : Mar 02, 2021 10:23:09 AM

Freq MHz	Peak Mtr Rdg dBuV	Average Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dB μ V/m	Peak Limit dB μ V/m	Peak Lim Mrg dB	Average Total dB μ V/m	Average Limit dB μ V/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
27659.500	42.1	28.9	43.8	-34.7	2.0	0.0	53.2	74.0	-20.8	39.9	54.0	-14.1	V	100	0
28356.500	40.7	28.0	43.8	-35.1	2.0	0.0	51.3	74.0	-22.7	38.6	54.0	-15.4	V	100	0
28888.500	41.6	28.7	43.8	-35.1	2.0	0.0	52.3	74.0	-21.7	39.4	54.0	-14.5	V	100	0

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019

Manufacturer : Chamberlain
Model : B6753T
Serial Number : Sample #1
DUT Mode : Light on, Transmitters in standby
Ant. Polarization : Vertical
Scan Type : Stepped Scan
Test RBW : 1 MHz
Prelim Dwell Time (s) : 0.0001
Notes :
Test Engineer : M. Longinotti
Test Date : Mar 02, 2021 10:23:09 AM

23. Transmitter RF Conducted Emissions Test (AC Mains)

Manufacturer	Chamberlain Group, Inc.
Product	Garage Door Opener
Model	B6753T
Serial No	Sample #2
Mode	900MHz transmitter on, light on, motor on

Information	
Setup Format	Tabletop
Height of Support	N/A
Type of Test Site	Semi-Anechoic Chamber
Note	None

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Conducted disturbance (mains port) (150 kHz – 30 MHz)	2.7

Requirements		
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.		
Frequency of Emission (MHz)		Conducted Limits (dB μ V)
Quasi-peak		Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5.0	56	46
5.0-30	60	50

*- Decreases with the logarithm of the frequency.

Procedures	
The interference on each power lead of the EUT was measured by connecting the measuring equipment to the appropriate meter terminal of the Line Impedance Stabilization Network (LISN). The meter terminal of the LISN not under test was terminated with 50 ohms.	
1)	The EUT was operated in the 900MHz transmitter on, light on, motor on mode.
2)	Measurements were first made on the 120V, 60Hz high line of the EUT.
3)	The frequency range from 150 kHz to 30 MHz was broken up into smaller frequency sub-bands.
4)	Conducted emissions measurements were taken on the first frequency sub-band using a peak detector.
5)	The data thus obtained was then searched by the computer for the highest levels. Any emissions levels that were within 5dB of the average limit were then measured again using both a quasi-peak detector and an average detector. (If no peak readings were within 5dB of the average limit, quasi-peak and average readings were taken on the highest emissions levels measured during the peak detector scan.)
6)	Steps (4) and (5) were repeated for the remainder of the frequency sub-bands until the entire frequency range from 150kHz to 30MHz was investigated. The peak trace was automatically plotted. The plot also shows quasi-peak and average readings that were taken on discrete frequencies. A table showing the quasi-peak and average readings was also generated. This tabular data compares the quasi-peak and average conducted emissions to the applicable conducted emissions limits.
7)	Steps (3) through (6) were repeated on the 120V, 60Hz return line of the EUT.

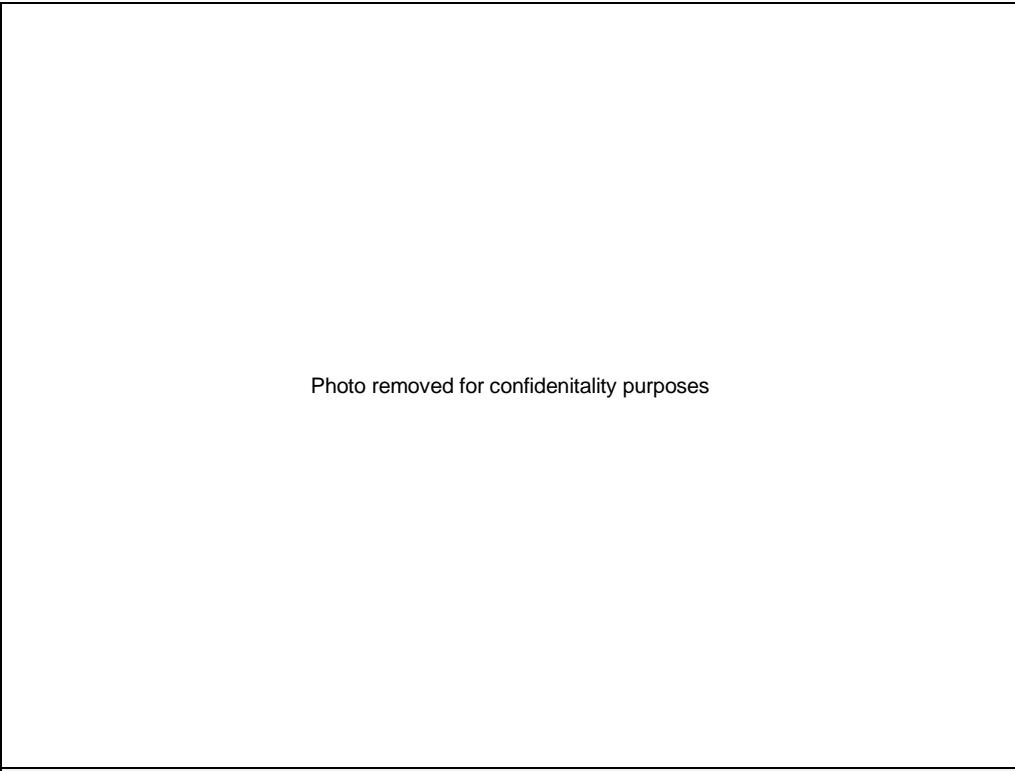
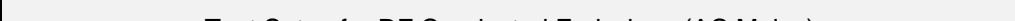



Photo removed for confidentiality purposes

Test Setup for RF Conducted Emissions (AC Mains)

Photo removed for confidentiality purposes

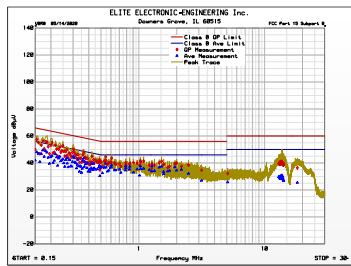
Test Setup for RF Conducted Emissions (AC Mains)

FCC Part 15 Subpart C Conducted Emissions Test

Significant Emissions Data

VBR8 05/14/2020

Manufacturer : Chamberlain
 Model : B6753T
 DUT Revision :
 Serial Number : Sample #2
 DUT Mode : Motor On, 900MHz transmitter on, Light On
 Line Tested : 120V, 60Hz High
 Scan Step Time [ms] : 30
 Meas. Threshold [dB] : -5
 Notes :
 Test Engineer : M. Longinotti
 Limit :
 Test Date : Mar 01, 2021 11:18:19 AM
 Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 5 dB margin below limit


Freq MHz	Quasi-peak Level dB μ V	Quasi-peak Limit dB μ V	Excessive Quasi-peak Emissions	Average Level dB μ V	Average Limit dB μ V	Excessive Average Emissions
0.204	55.3	63.4		45.4	53.4	
0.302	50.3	60.2		45.0	50.2	
0.545	44.7	56.0		39.6	46.0	
1.029	41.7	56.0		37.7	46.0	
1.516	41.3	56.0		37.4	46.0	
1.998	40.0	56.0		34.5	46.0	
3.154	34.7	56.0		27.0	46.0	
5.090	32.3	60.0		25.7	50.0	
13.635	41.1	60.0		30.6	50.0	
18.221	36.4	60.0		25.4	50.0	

FCC Part 15 Subpart C Conducted Emissions Test

Cumulative Data

VBR8 05/14/2020

Manufacturer : Chamberlain
Model : B6753T
DUT Revision :
Serial Number : Sample #2
DUT Mode : Motor On, 900MHz transmitter on, Light on
Line Tested : 120V, 60Hz High
Scan Step Time [ms] : 30
Meas. Threshold [dB] : -5
Notes :
Test Engineer : M. Longinotti
Limit : Class B
Test Date : Mar 01, 2021 11:18:19 AM

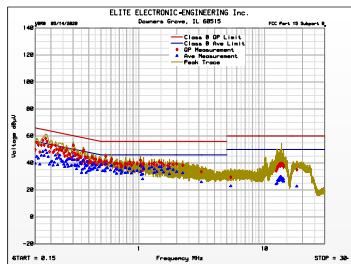
Emissions Meet QP Limit
Emissions Meet Ave Limit

FCC Part 15 Subpart C Conducted Emissions Test

Significant Emissions Data

VBR8 05/14/2020

Manufacturer : Chamberlain
 Model : B6753T
 DUT Revision :
 Serial Number : Sample #2
 DUT Mode : Motor On, 900MHz transmitter on, Light on
 Line Tested : 120V, 60Hz Return
 Scan Step Time [ms] : 30
 Meas. Threshold [dB] : -5
 Notes :
 Test Engineer : M. Longinotti
 Limit :
 Test Date : Mar 01, 2021 11:26:13 AM
 Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 5 dB margin below limit


Freq MHz	Quasi-peak Level dB μ V	Quasi-peak Limit dB μ V	Excessive Quasi-peak Emissions	Average Level dB μ V	Average Limit dB μ V	Excessive Average Emissions
0.182	58.2	64.4		49.5	54.4	
0.302	53.2	60.2		45.1	50.2	
0.545	45.0	56.0		39.4	46.0	
1.029	42.1	56.0		38.0	46.0	
1.453	40.8	56.0		37.1	46.0	
1.998	39.4	56.0		33.5	46.0	
3.140	33.6	56.0		25.9	46.0	
5.387	29.5	60.0		22.9	50.0	
13.577	39.6	60.0		29.4	50.0	
18.041	35.1	60.0		22.7	50.0	

FCC Part 15 Subpart C Conducted Emissions Test

Cumulative Data

VBR8 05/14/2020

Manufacturer : Chamberlain
Model : B6753T
DUT Revision :
Serial Number : Sample #2
DUT Mode : Motor On, 900MHz transmitter on, Light on
Line Tested : 120V, 60Hz Return
Scan Step Time [ms] : 30
Meas. Threshold [dB] : -5
Notes :
Test Engineer : M. Longinotti
Limit : Class B
Test Date : Mar 01, 2021 11:26:13 AM

Emissions Meet QP Limit
Emissions Meet Ave Limit

24. Transmitter Peak Effective Isotropic Radiated Power (EIRP)

Test Information	
Manufacturer	Chamberlain Group, Inc.
Product	Garage Door Opener
Model	B6753T
Serial No	Sample #1
Mode	See Below

Test Setup Details	
Setup Format	Tabletop
Height of Support	N/A
Measurement Method	Radiated
Type of Test Site	Semi-Anechoic Chamber
Type of Antennas Used	Below 1GHz: Bilog (or equivalent) Above 1GHz: Double-ridged waveguide (or equivalent) NA
Notes	None

Requirements
Per FCC 15.247, Section (b)(3) and ISED RSS-247, Section 5.4(d), for systems using frequency hopping spread spectrum in the 902MHz to 928MHz and incorporating at least 50 channels, the maximum peak conducted output power shall not exceed 1 watt.
Per FCC 15.247, Section (b)(4), and ISED RSS-247, Section 5.4(d), the conducted output power limit is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Procedures																
C63.10 Annex G and Section 11.9.1.1: The EUT was placed on an 80cm high non-conductive stand and set to transmit. A bilog antenna was placed at a test distance of 3 meters from the EUT.																
a) The following settings were employed on the EMI Test Receiver: <table> <tbody> <tr> <td>1) Center Frequency</td> <td>= Transmit frequency of EUT</td> </tr> <tr> <td>2) Span</td> <td>$\geq 3 \times RBW$</td> </tr> <tr> <td>3) RBW</td> <td>$\geq 20\text{dB Bandwidth}$</td> </tr> <tr> <td>4) VBW</td> <td>$\geq 3 \times RBW$</td> </tr> <tr> <td>5) Number of points in sweep</td> <td>$\geq (2 \times \text{span} / RBW)$</td> </tr> <tr> <td>6) Sweep time</td> <td>= Auto</td> </tr> <tr> <td>7) Detector</td> <td>= Peak</td> </tr> <tr> <td>8) Trace</td> <td>= Max hold</td> </tr> </tbody> </table> b) Allow trace to stabilize c) Use peak marker function to determine the peak amplitude level.	1) Center Frequency	= Transmit frequency of EUT	2) Span	$\geq 3 \times RBW$	3) RBW	$\geq 20\text{dB Bandwidth}$	4) VBW	$\geq 3 \times RBW$	5) Number of points in sweep	$\geq (2 \times \text{span} / RBW)$	6) Sweep time	= Auto	7) Detector	= Peak	8) Trace	= Max hold
1) Center Frequency	= Transmit frequency of EUT															
2) Span	$\geq 3 \times RBW$															
3) RBW	$\geq 20\text{dB Bandwidth}$															
4) VBW	$\geq 3 \times RBW$															
5) Number of points in sweep	$\geq (2 \times \text{span} / RBW)$															
6) Sweep time	= Auto															
7) Detector	= Peak															
8) Trace	= Max hold															

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, a dipole was then set in place of the EUT and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was then corrected to compensate for cable loss (and antenna gain for all measurements above 1GHz), as required. The peak power output was calculated for low, middle, and high hopping frequencies.

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4

Test Details	
Manufacturer	Chamberlain Group, Inc.
Model	B6753T
S/N	Sample #1
Mode	Transmit at 902.25MHz
Parameters	EIRP = 46.8mW (16.7dBm)
Notes	None

Freq. (MHz)	Ant Pol	Wide BW Meter Reading (dBuV)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
902.25	H	83.9	14.3	2.2	2.0	14.4	36.0	-21.6
902.25	V	85.0	16.6	2.2	2.0	16.7	36.0	-19.3

Peak EIRP (dBm) = Matched Sig. Gen. Reading (dBm) + Equivalent Antenna Gain(dB) – Cable Loss (dB)

Test Details	
Manufacturer	Chamberlain Group, Inc.
Model	B6753T
S/N	Sample #1
Mode	Transmit at 914.75MHz
Parameters	EIRP = 24mW (13.8dBm)
Notes	None

Freq. (MHz)	Ant Pol	Wide BW Meter Reading (dBuV)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
914.75	H	83.8	13.7	2.2	2.1	13.8	30.0	-16.2
914.75	V	82.1	13.3	2.2	2.1	13.4	30.0	-16.6

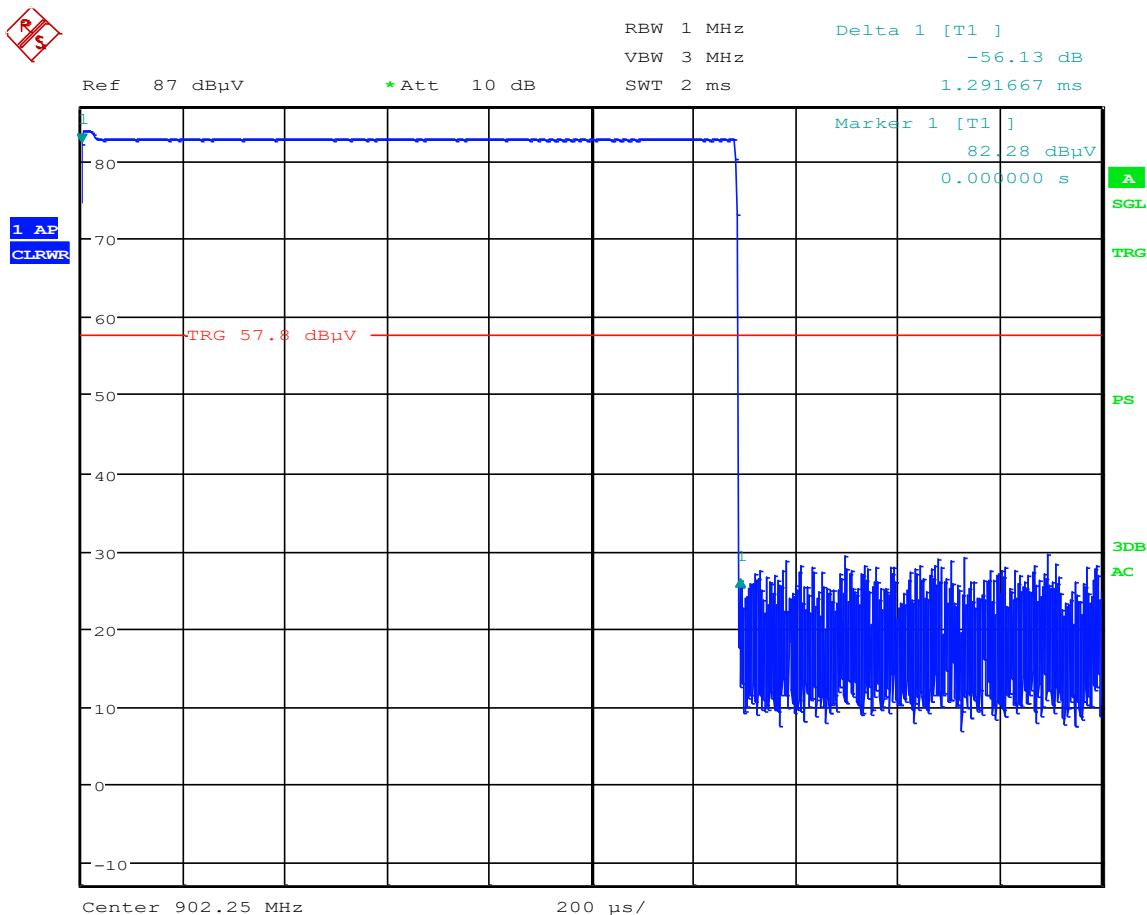
Peak EIRP (dBm) = Matched Sig. Gen. Reading (dBm) + Equivalent Antenna Gain(dB) – Cable Loss (dB)

Test Details	
Manufacturer	Chamberlain Group, Inc.
Model	B6753T
S/N	Sample #1
Mode	Transmit at 926.75MHz
Parameters	EIRP = 37.2mW (15.7dBm)
Notes	None

Freq. (MHz)	Ant Pol	Wide BW Meter Reading (dBuV)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
926.75	H	85.1	15.6	2.2	2.1	15.7	30.0	-14.3
926.75	V	82.3	13.4	2.2	2.1	13.5	30.0	-16.5

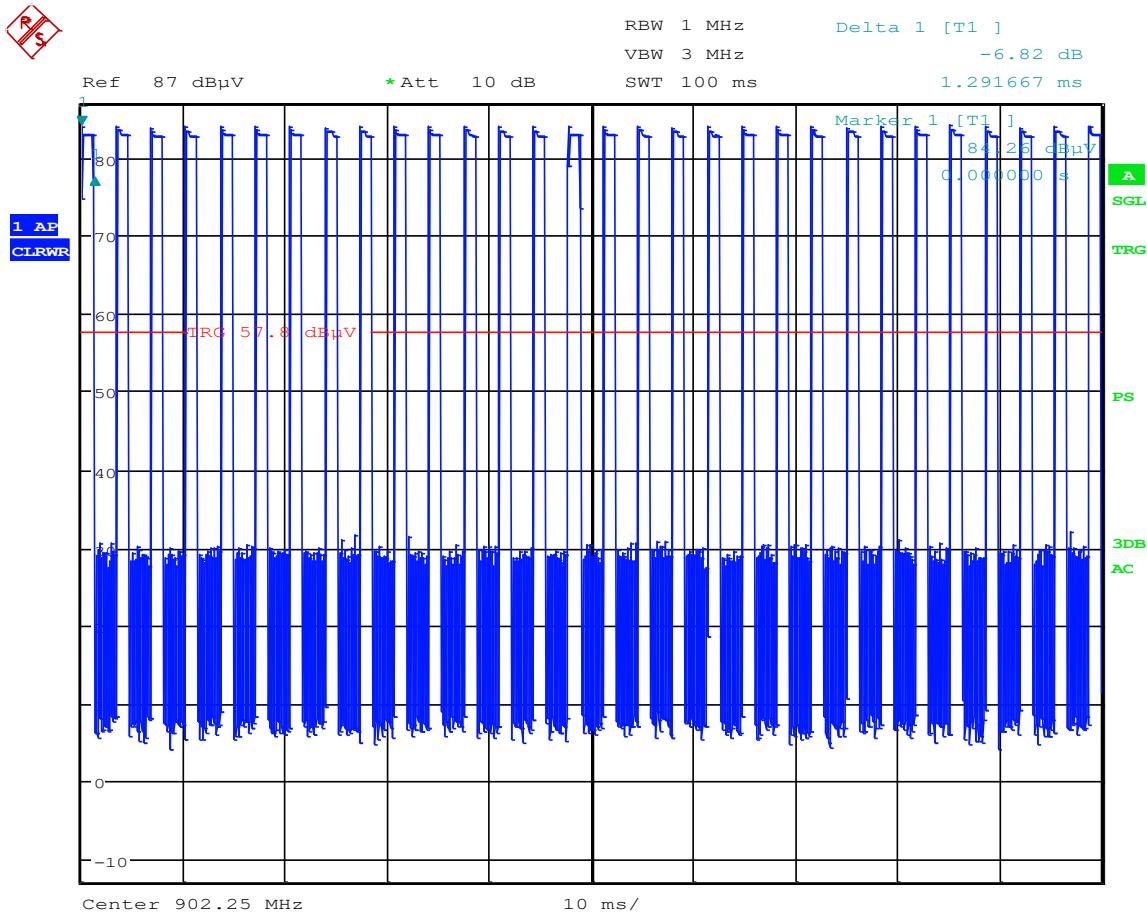
Peak EIRP (dBm) = Matched Sig. Gen. Reading (dBm) + Equivalent Antenna Gain(dB) – Cable Loss (dB)

25. Transmitter Duty Cycle Factor Measurements


Test Information	
Manufacturer	Chamberlain Group, Inc.
Product	Garage Door Opener
Model	B6753T
Serial No	Sample #1
Mode	See Below

Test Setup Details	
Setup Format	Tabletop
Height of Support	N/A
Measurement Method	Radiated
Type of Test Site	Semi-Anechoic Chamber
Notes	None

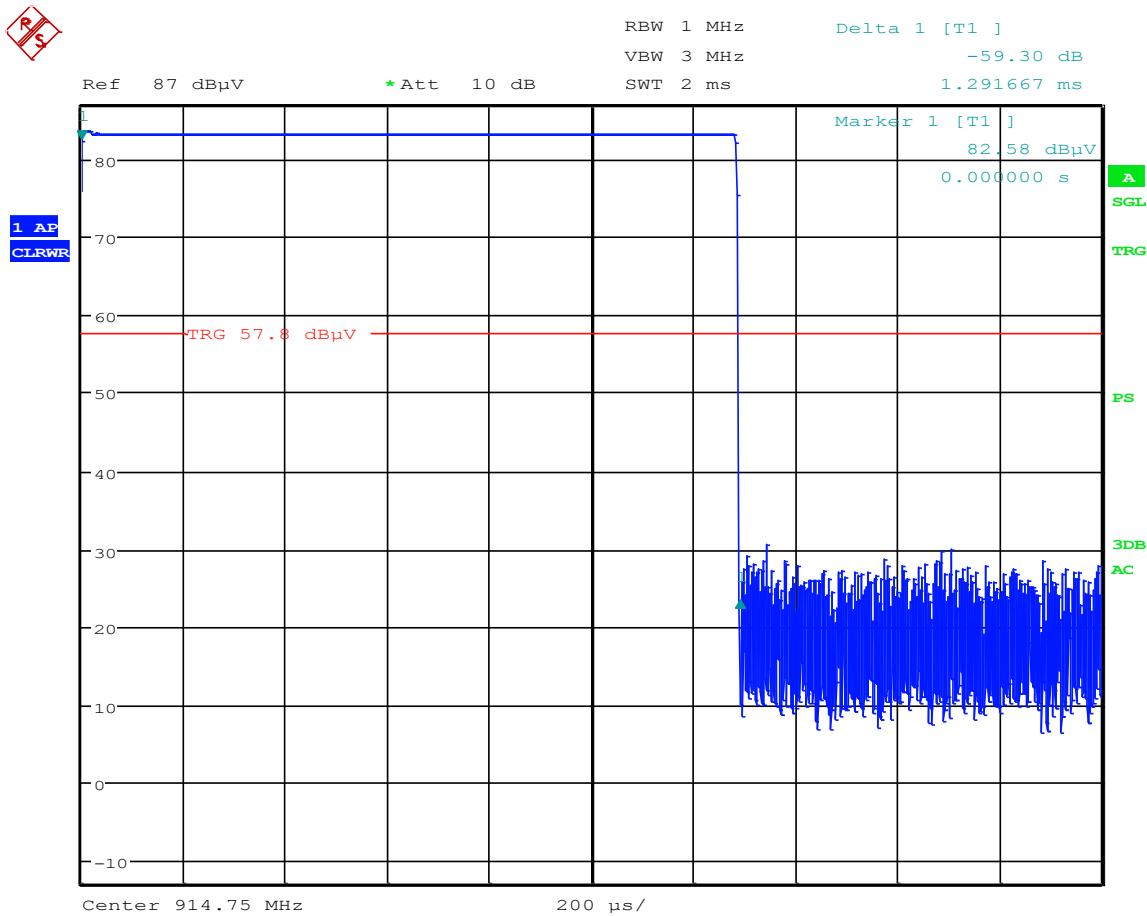
Procedures	
<p>The duty cycle factor is used to convert peak detected readings to average readings when pulsed modulation is employed. This factor is computed from the time domain trace of the pulse modulation signal.</p> <p>With the transmitter set up to transmit for maximum pulse density, the time domain trace is displayed on the spectrum analyzer. This trace is obtained by tuning the center frequency of the spectrum analyzer to the transmitter frequency of the EUT and then setting the frequency span to 0 Hz with a sweep rate of 200usec/div. The amplitude settings are adjusted so that the on/off transitions clear the 4th division from the bottom of the display. If the word period is less than 100msec, the display is set to show at least one word. The on-time and off-time are then measured. The on-time is total time signal level exceeds the 4th division. Off-time is time under for the word period. The duty cycle is then computed as the (On-time/ word period) where the word period = (On-time + Off-time).</p>	


Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4

Test Details	
Manufacturer	Chamberlain Group, Inc.
Model	B6753T
S/N	Sample #1
Mode	Transmit at 902.25MHz
Parameters	On time = 1.29msec
Notes	None

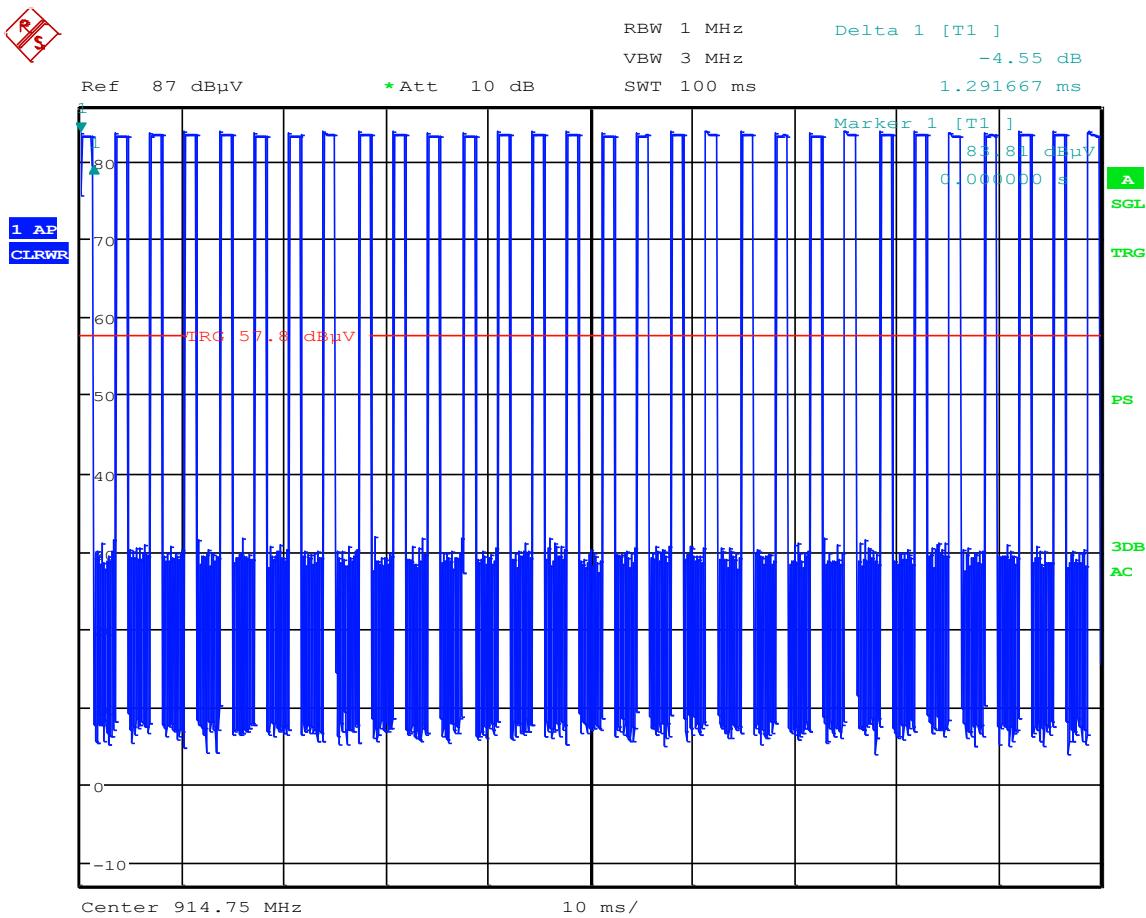
Date: 2.MAR.2021 14:00:45

Test Details	
Manufacturer	Chamberlain Group, Inc.
Model	B6753T
S/N	Sample #1
Mode	Transmit at 902.25MHz
Parameters	On time in 100msec = 30 pulses x 1.29msec/pulse = 38.7msec
Notes	None



Date: 2.MAR.2021 14:03:17

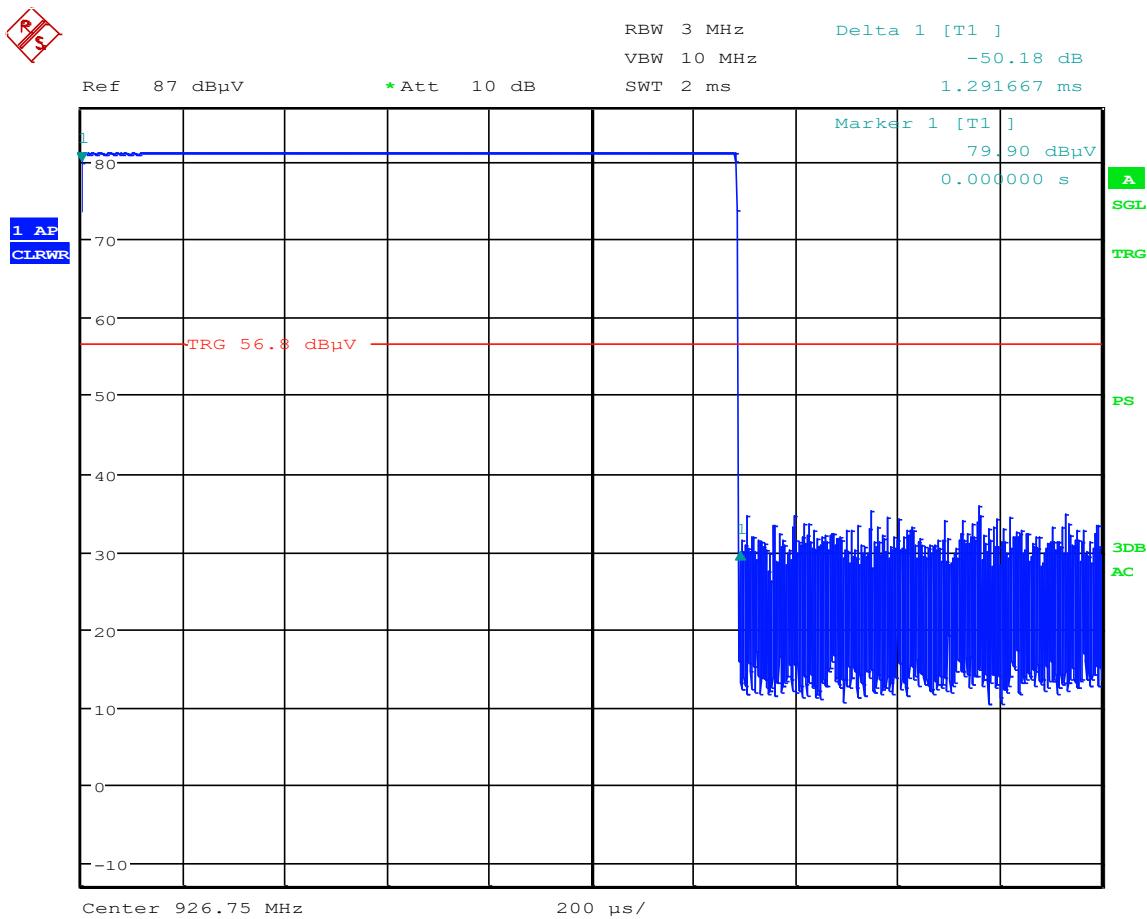
Duty Cycle = D = ((Total On-time in 100msec)/(100msec)) = 38.7msec/100msec = 0.387


Duty Cycle Correction Factor = $20 \log (1/D) = 20 \log(1/0.387) = 8.3\text{dB}$

Test Details	
Manufacturer	Chamberlain Group, Inc.
Model	B6753T
S/N	Sample #1
Mode	Transmit at 914.75MHz
Parameters	On time = 1.29msec
Notes	None

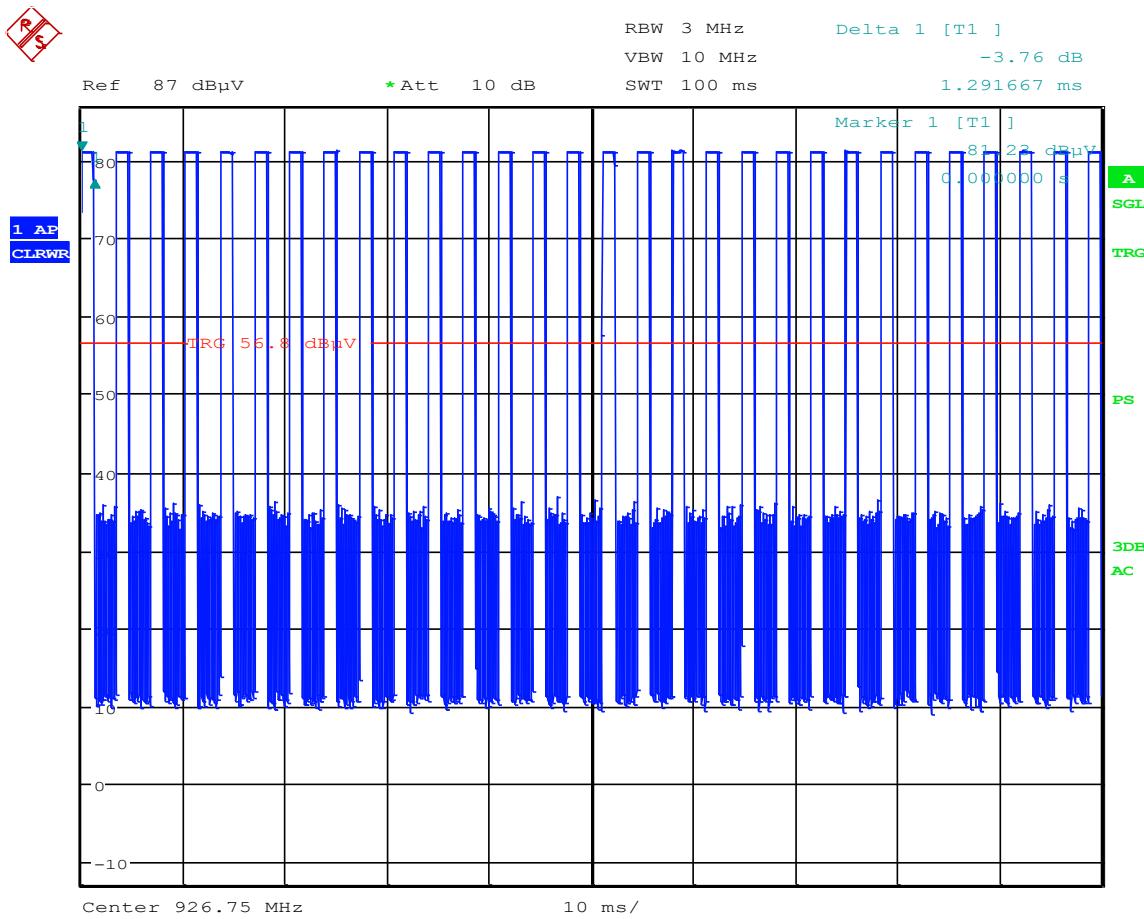
Date: 2.MAR.2021 14:14:39

Test Details	
Manufacturer	Chamberlain Group, Inc.
Model	B6753T
S/N	Sample #1
Mode	Transmit at 902.25MHz
Parameters	On time in 100msec = 30 pulses x 1.29msec/pulse = 38.7msec
Notes	None



Date: 2.MAR.2021 14:15:09

Duty Cycle = D = ((Total On-time in 100msec)/(100msec)) = 38.7msec/100msec = 0.387


Duty Cycle Correction Factor = $20 \log (1/D) = 20 \log(1/0.387) = 8.3\text{dB}$

Test Details	
Manufacturer	Chamberlain Group, Inc.
Model	B6753T
S/N	Sample #1
Mode	Transmit at 926.75MHz
Parameters	On time = 1.29msec
Notes	None

Date: 2.MAR.2021 14:38:00

Test Details	
Manufacturer	Chamberlain Group, Inc.
Model	B6753T
S/N	Sample #1
Mode	Transmit at 926.75MHz
Parameters	On time in 100msec = 30 pulses x 1.29msec/pulse = 38.7msec
Notes	None

Date: 2.MAR.2021 14:38:42

Duty Cycle = D = ((Total On-time in 100msec)/(100msec)) = 38.7msec/100msec = 0.387

Duty Cycle Correction Factor = $20 \log (1/D) = 20 \log(1/0.387) = 8.3\text{dB}$

26. Transmitter Case Spurious Radiated Emissions

Test Information	
Manufacturer	Chamberlain Group, Inc.
Product	Garage Door Opener
Model	B6753T
Serial No	Sample #1
Mode	See Below

Test Setup Details	
Setup Format	Tabletop
Height of Support	N/A
Measurement Method	Radiated
Type of Test Site	Semi-Anechoic Chamber
Type of Antennas Used	Below 1GHz: Bilog (or equivalent) Above 1GHz: Double-ridged waveguide (or equivalent) NA
Notes	The cables were manually maximized during the preliminary emissions sweeps. The cable arrangement which resulted in the worst-case emissions was utilized.

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4

Procedures
Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.
Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3 meter distance from the EUT. The frequency range from 1GHz to 10GHz was investigated using a peak detector function.
The final emission tests were then manually performed over the frequency range of 1GHz to 10GHz.
<p>1) For all harmonics not in the restricted bands, the following procedure was used:</p> <p>a) The field strength of the fundamental was measured using a bilog antenna. The bilog antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on an 80cm high, non-conductive</p>

stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.

- b) The field strengths of all of the harmonics not in the restricted bands were then measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a 1.5m high, non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - d) All harmonics not in the restricted bands must be at least 20 dB below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required.
- 2) For all emissions in the restricted bands, the following procedure was used:
- a) The field strengths of all emissions below 1 GHz were measured using a bi-log antenna. The bi-log antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on an 80cm high, non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all emissions above 1 GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a 1.5m high, non-conductive stand. A peak detector with a resolution bandwidth of 1 MHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst case emission levels were measured, the following steps were taken when taking all measurements:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - d) For all radiated emissions measurements below 1 GHz, if the peak reading is below the limits listed in 15.209(a), no further measurements are required. If however, the peak readings exceed the limits listed in 15.209(a), then the emissions are remeasured using a quasi-peak detector.
 - e) For all radiated emissions measurements above 1 GHz, the peak readings must comply with the 15.35(b) limits. 15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1 GHz must be no greater than 20 dB above the limits specified in 15.209(a).
 - f) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector. An average reading was taken. If the duty cycle of the transmitter is less than 98%, the duty cycle correction factor is added to the average reading.

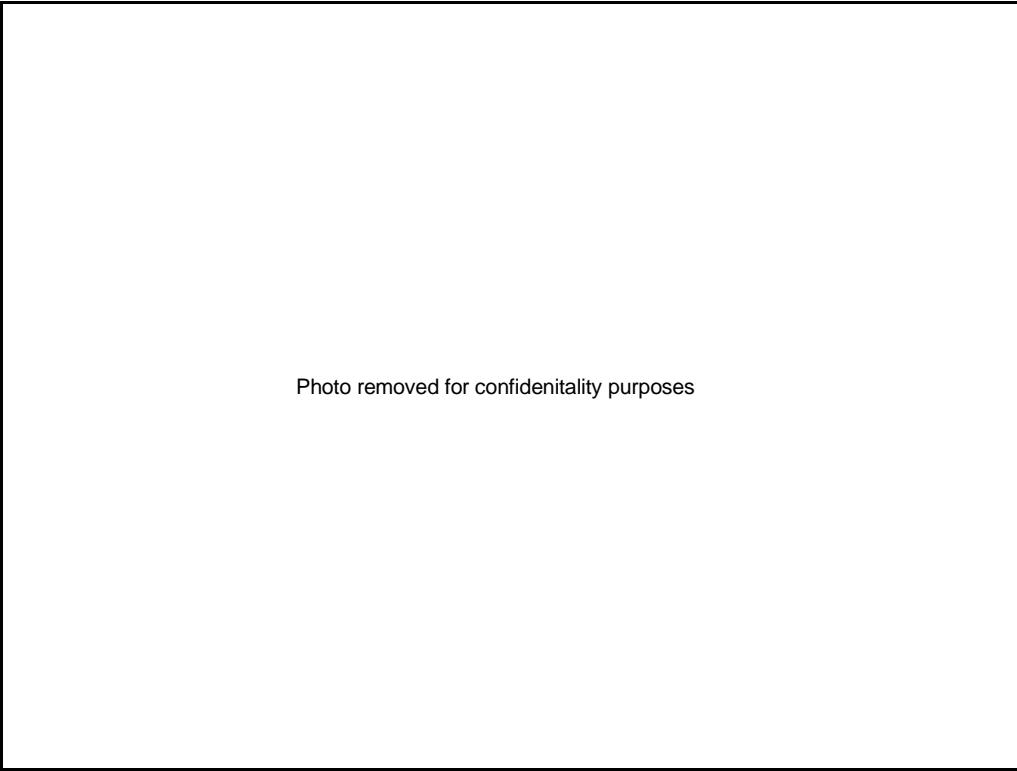


Photo removed for confidentiality purposes

Test Setup for Spurious Radiated Emissions, 30MHz to 1GHz – Antenna
Polarization Horizontal

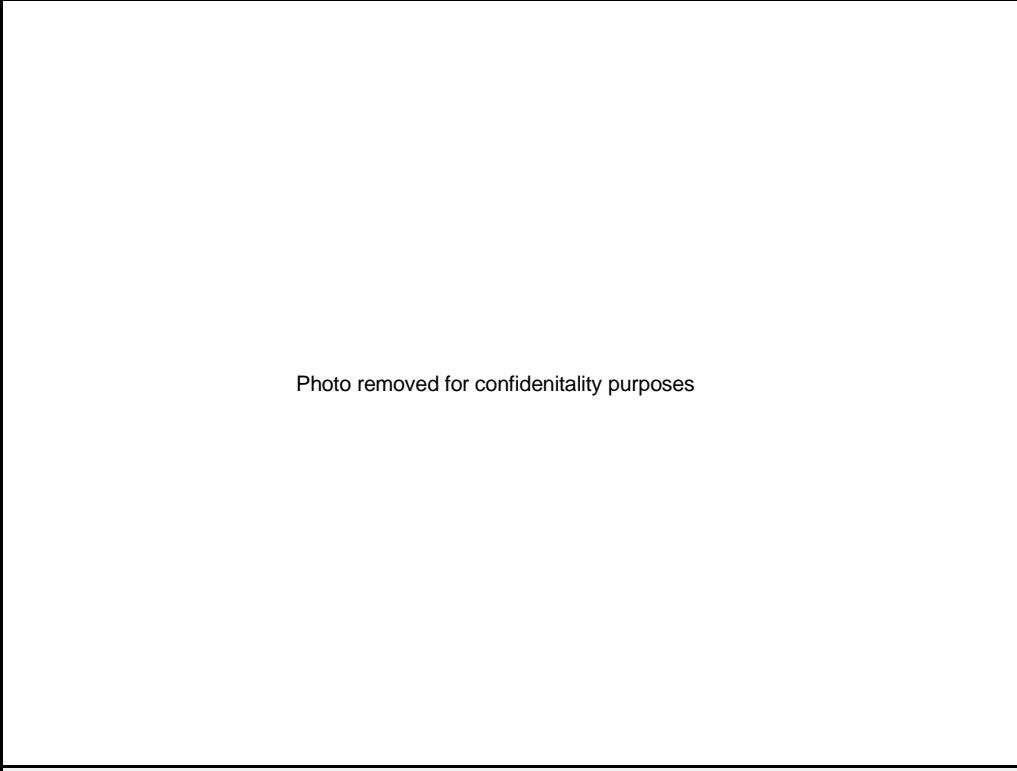


Photo removed for confidentiality purposes

Test Setup for Spurious Radiated Emissions, 30MHz to 1GHz – Antenna
Polarization Vertical

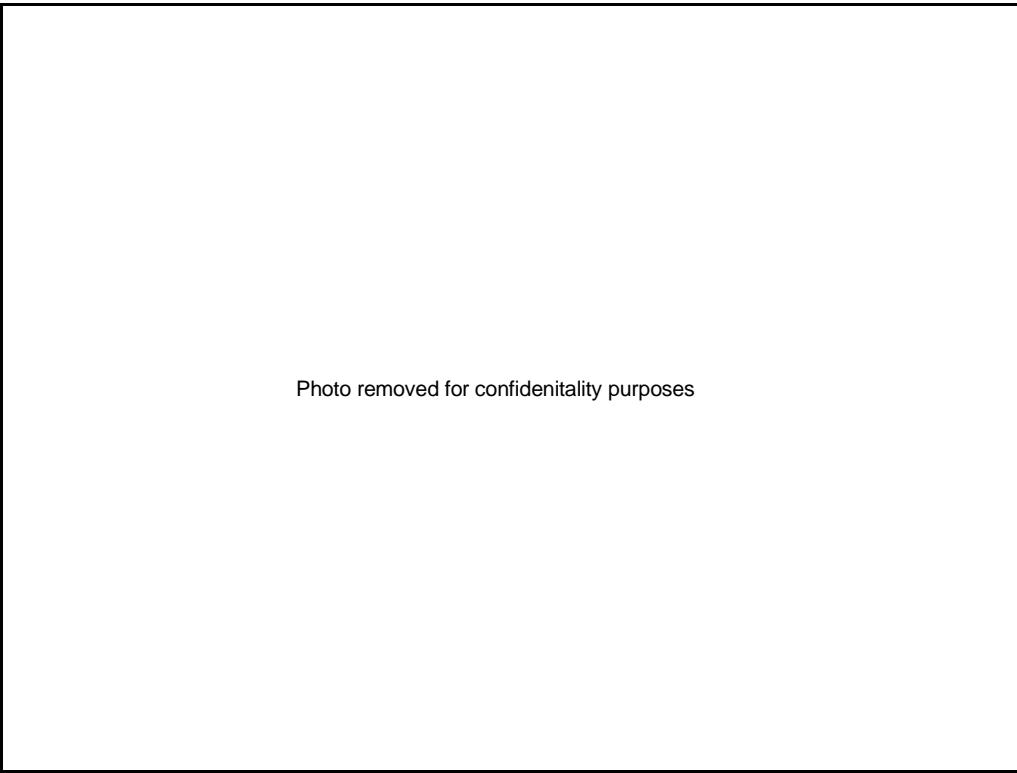
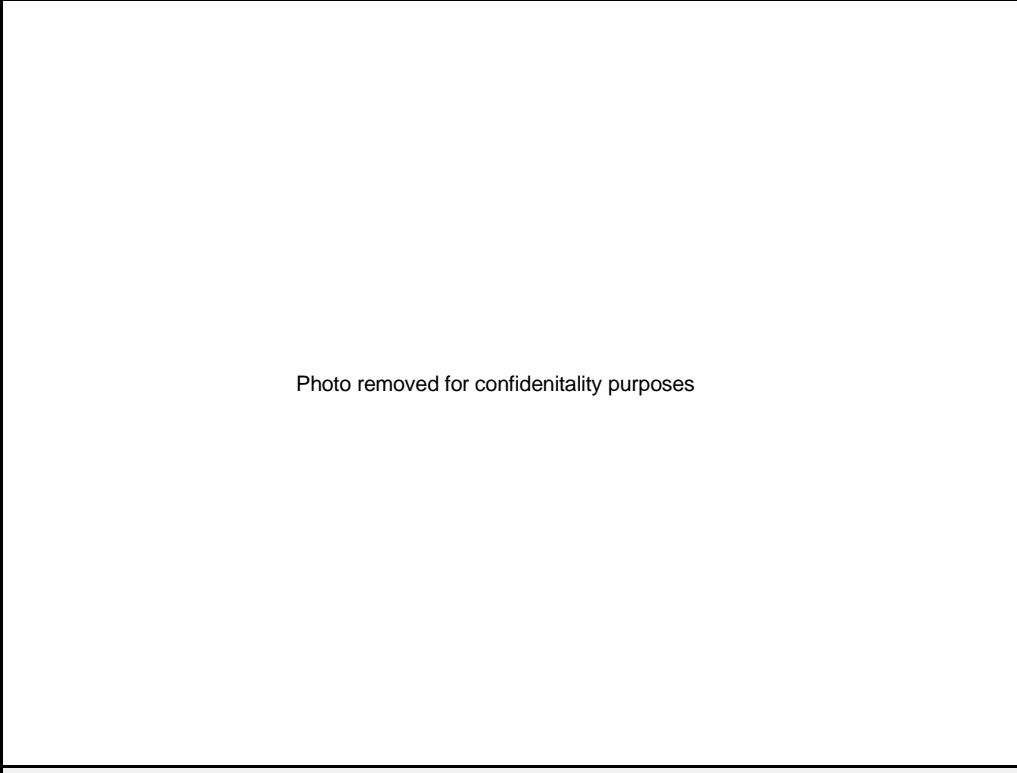
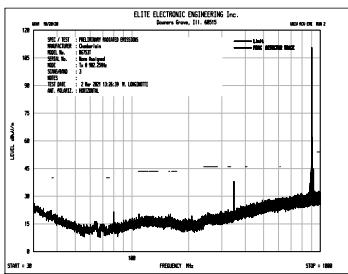
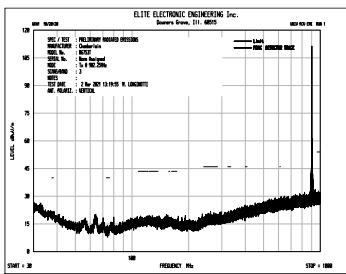
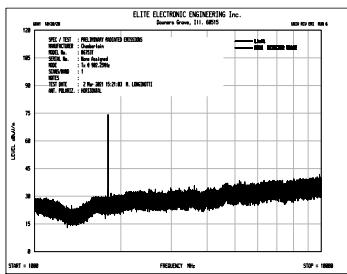
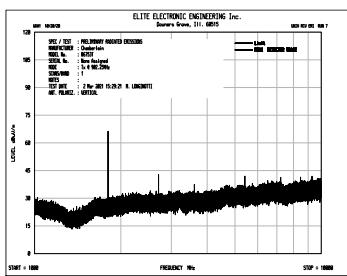

A large, empty rectangular box with a black border, occupying the top half of the page content area.

Photo removed for confidentiality purposes

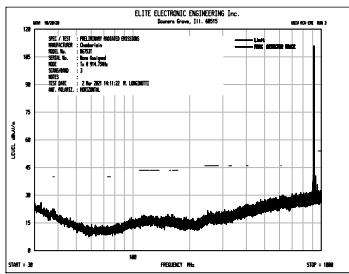
Test Setup for Spurious Radiated Emissions, 1GHz to 10GHz – Antenna
Polarization Horizontal

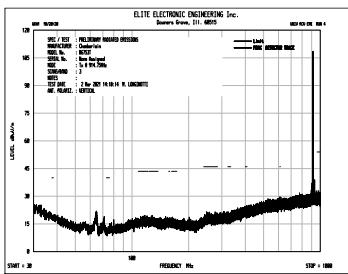




A large, empty rectangular box with a black border, occupying the middle section of the page content area.

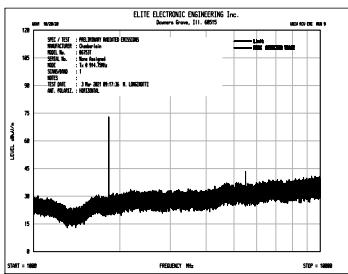

Photo removed for confidentiality purposes

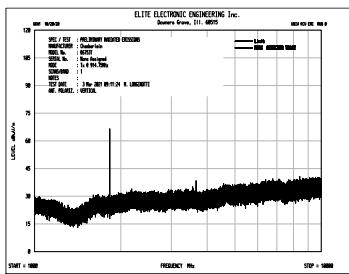
Test Setup for Spurious Radiated Emissions, 1GHz to 10GHz – Antenna
Polarization Vertical

Test Details										
Manufacturer	Chamberlain Group, Inc.									
Model	B6753T									
S/N	Sample #1									
Mode	Transmit at 902.25MHz									
Parameters	Peak Measurements in the Restricted Bands									
Notes	None									


Frequency (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dB μ V/m at 3m	Peak Total μ V/m at 3 m	Peak Limit μ V/m at 3 m	Margin (dB)
2706.75	H	58.6		2.8	32.6	-40.4	53.5	475.8	5000.0	-20.4
2706.75	V	57.9		2.8	32.6	-40.4	52.8	439.0	5000.0	-21.1
3609.00	H	56.5		3.2	33.2	-40.3	52.6	428.7	5000.0	-21.3
3609.00	V	55.5		3.2	33.2	-40.3	51.6	382.0	5000.0	-22.3
4511.25	H	50.9		3.6	34.2	-40.1	48.6	267.7	5000.0	-25.4
4511.25	V	49.8		3.6	34.2	-40.1	47.5	235.9	5000.0	-26.5
5413.50	H	58.2		3.9	35.0	-40.2	56.9	696.2	5000.0	-17.1
5413.50	V	56.7		3.9	35.0	-40.2	55.4	585.8	5000.0	-18.6
8120.25	H	49.2	Ambient	4.9	35.8	-40.0	50.0	314.9	5000.0	-24.0
8120.25	V	50.4		4.9	35.8	-40.0	51.2	361.6	5000.0	-22.8
9022.50	H	52.0		4.9	36.3	-39.7	53.5	473.1	5000.0	-20.5
9022.50	V	50.0	Ambient	4.9	36.3	-39.7	51.5	375.8	5000.0	-22.5

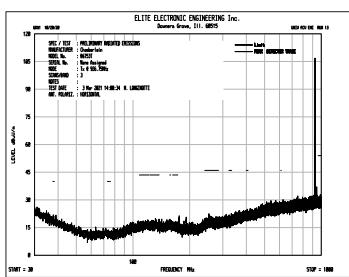

Test Details											
Manufacturer	Chamberlain Group, Inc.										
Model	B6753T										
S/N	Sample #1										
Mode	Transmit at 902.25MHz										
Parameters	Average Measurements in the Restricted Bands										
Notes	None										

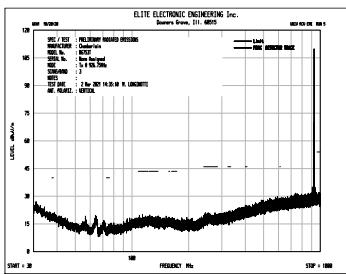

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBuV/m at 3m	Average Total uV/m at 3 m	Average Limit uV/m at 3 m	Margin (dB)
2706.75	H	46.80		2.8	32.6	-40.4	8.3	50.0	316.2	500.0	-4.0
2706.75	V	46.8		2.8	32.6	-40.4	8.3	50.0	316.2	500.0	-4.0
3609.00	H	45.9		3.2	33.2	-40.3	8.3	50.3	327.0	500.0	-3.7
3609.00	V	47.3		3.2	33.2	-40.3	8.3	51.7	384.2	500.0	-2.3
4511.25	H	37.3		3.6	34.2	-40.1	8.3	43.2	144.6	500.0	-10.8
4511.25	V	36.7		3.6	34.2	-40.1	8.3	42.6	134.9	500.0	-11.4
5413.50	H	47.0		3.9	35.0	-40.2	8.3	53.9	495.7	500.0	-0.1
5413.50	V	44.4		3.9	35.0	-40.2	8.3	51.3	367.5	500.0	-2.7
8120.25	H	36.2	Ambient	4.9	35.8	-40.0	8.3	45.2	182.3	500.0	-8.8
8120.25	V	37.2	Ambient	4.9	35.8	-40.0	8.3	46.2	204.5	500.0	-7.8
9022.50	H	37.6	Ambient	4.9	36.3	-39.7	8.3	47.3	233.0	500.0	-6.6
9022.50	V	36.6	Ambient	4.9	36.3	-39.7	8.3	46.3	207.7	500.0	-7.6

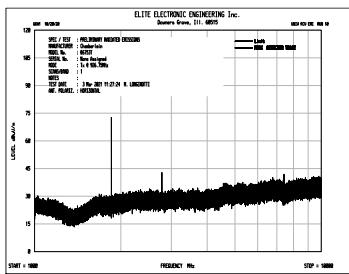

Test Details										
Manufacturer	Chamberlain Group, Inc.									
Model	B6753T									
S/N	Sample #1									
Mode	Transmit at 902.25MHz									
Parameters	Peak Measurements not in the Restricted Bands									
Notes	None									

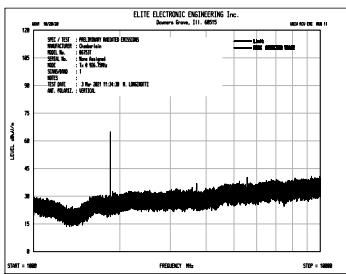
Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBuV/m at 3m	Peak Total uV/m at 3 m	Peak Limit uV/m at 3 m	Margin (dB)
902.25	H	83.7		1.5	26.5	0.0	111.7	385550.3		
902.25	V	84.2		1.5	26.5	0.0	112.2	408395.5		
1804.50	H	85.9		2.2	30.9	-40.9	78.2	8084.9	40839.6	-14.1
1804.50	V	79.2		2.2	30.9	-40.9	71.5	3738.3	40839.6	-20.8
6315.75	H	46.4		4.3	35.5	-40.2	46.0	199.7	40839.6	-46.2
6315.75	V	48.1		4.3	35.5	-40.2	47.7	242.8	40839.6	-44.5
7218.00	H	47.0		4.6	35.7	-40.1	47.3	230.6	40839.6	-45.0
7218.00	V	46.8		4.6	35.7	-40.1	47.1	225.3	40839.6	-45.2

Test Details										
Manufacturer	Chamberlain Group, Inc.									
Model	B6753T									
S/N	Sample #1									
Mode	Transmit at 914.75MHz									
Parameters	Peak Measurements in the Restricted Bands									
Notes	None									


Frequency (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dB μ V/m at 3m	Peak Total μ V/m at 3 m	Peak Limit μ V/m at 3 m	Margin (dB)
2744.25	H	57.6		2.8	32.6	-40.4	52.6	427.3	5000.0	-21.4
2744.25	V	58.4		2.8	32.6	-40.4	53.4	468.5	5000.0	-20.6
3659.00	H	54.3		3.3	33.2	-40.3	50.5	334.5	5000.0	-23.5
3659.00	V	54.9		3.3	33.2	-40.3	51.1	358.4	5000.0	-22.9
4573.75	H	51.3	Ambient	3.6	34.3	-40.1	49.1	284.8	5000.0	-24.9
4573.75	V	50.9	Ambient	3.6	34.3	-40.1	48.7	272.0	5000.0	-25.3
7318.00	H	50.8	Ambient	4.7	35.7	-40.1	51.1	359.8	5000.0	-22.9
7318.00	V	54.7		4.7	35.7	-40.1	55.0	563.7	5000.0	-19.0
8232.75	H	49.7	Ambient	4.9	35.9	-39.9	50.6	338.1	5000.0	-23.4
8232.75	V	50.5	Ambient	4.9	35.9	-39.9	51.4	370.7	5000.0	-22.6
9147.50	H	52.1		5.0	36.3	-39.7	53.7	485.2	5000.0	-20.3
9147.50	V	53.5		5.0	36.3	-39.7	55.1	570.1	5000.0	-18.9


Test Details											
Manufacturer	Chamberlain Group, Inc.										
Model	B6753T										
S/N	Sample #1										
Mode	Transmit at 914.75MHz										
Parameters	Average Measurements in the Restricted Bands										
Notes	None										


Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBuV/m at 3m	Average Total uV/m at 3 m	Average Limit uV/m at 3 m	Margin (dB)
2744.25	H	45.70		2.8	32.6	-40.4	8.3	49.0	280.7	500.0	-5.0
2744.25	V	46.3		2.8	32.6	-40.4	8.3	49.6	300.8	500.0	-4.4
3659.00	H	42.0		3.3	33.2	-40.3	8.3	46.4	209.8	500.0	-7.5
3659.00	V	42.1		3.3	33.2	-40.3	8.3	46.5	212.3	500.0	-7.4
4573.75	H	37.2	Ambient	3.6	34.3	-40.1	8.3	43.2	145.2	500.0	-10.7
4573.75	V	38.0	Ambient	3.6	34.3	-40.1	8.3	44.0	159.3	500.0	-9.9
7318.00	H	37.6	Ambient	4.7	35.7	-40.1	8.3	46.2	203.5	500.0	-7.8
7318.00	V	42.5		4.7	35.7	-40.1	8.3	51.1	357.7	500.0	-2.9
8232.75	H	36.8	Ambient	4.9	35.9	-39.9	8.3	45.9	198.0	500.0	-8.0
8232.75	V	36.8	Ambient	4.9	35.9	-39.9	8.3	45.9	198.0	500.0	-8.0
9147.50	H	38.5		5.0	36.3	-39.7	8.3	48.4	262.1	500.0	-5.6
9147.50	V	40.8		5.0	36.3	-39.7	8.3	50.7	341.6	500.0	-3.3


Test Details										
Manufacturer	Chamberlain Group, Inc.									
Model	B6753T									
S/N	Sample #1									
Mode	Transmit at 914.75MHz									
Parameters	Peak Measurements not in the Restricted Bands									
Notes	None									

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBuV/m at 3m	Peak Total uV/m at 3 m	Peak Limit uV/m at 3 m	Margin (dB)
914.75	H	83.8		1.6	26.4	0.0	111.7	386037.2		
914.75	V	81.4		1.6	26.4	0.0	109.3	292839.2		
1829.50	H	82.6		2.2	30.9	-40.8	74.9	5579.8	38603.7	-16.8
1829.50	V	77.4		2.2	30.9	-40.8	69.7	3066.3	38603.7	-22.0
5488.50	H	58.9		3.9	35.0	-40.2	57.6	757.9	38603.7	-34.1
5488.50	V	54.0		3.9	35.0	-40.2	52.7	431.1	38603.7	-39.0
6403.25	H	47.1		4.3	35.5	-40.1	46.8	218.9	38603.7	-44.9
6403.25	V	44.6		4.3	35.5	-40.1	44.3	164.1	38603.7	-47.4

Test Details										
Manufacturer	Chamberlain Group, Inc.									
Model	B6753T									
S/N	Sample #1									
Mode	Transmit at 926.75MHz									
Parameters	Peak Measurements in the Restricted Bands									
Notes	None									

Frequency (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dB μ V/m at 3m	Peak Total μ V/m at 3 m	Peak Limit μ V/m at 3 m	Margin (dB)
2780.25	H	61.6		2.8	32.5	-40.4	56.6	674.5	5000.0	-17.4
2780.25	V	59.3		2.8	32.5	-40.4	54.3	517.6	5000.0	-19.7
3707.00	H	53.5		3.3	33.2	-40.2	49.7	307.0	5000.0	-24.2
3707.00	V	54.4		3.3	33.2	-40.2	50.6	340.6	5000.0	-23.3
4633.75	H	51.6	Ambient	3.6	34.5	-40.2	49.5	300.0	5000.0	-24.4
4633.75	V	53.2		3.6	34.5	-40.2	51.1	360.6	5000.0	-22.8
7414.00	H	55.6		4.7	35.6	-40.0	55.9	625.3	5000.0	-18.1
7414.00	V	53.8		4.7	35.6	-40.0	54.1	508.3	5000.0	-19.9
8340.75	H	50.4	Ambient	4.9	35.9	-39.9	51.3	369.3	5000.0	-22.6
8340.75	V	49.7	Ambient	4.9	35.9	-39.9	50.6	340.7	5000.0	-23.3

Test Details											
Manufacturer	Chamberlain Group, Inc.										
Model	B6753T										
S/N	Sample #1										
Mode	Transmit at 926.75MHz										
Parameters	Average Measurements in the Restricted Bands										
Notes	None										

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBuV/m at 3m	Average Total uV/m at 3 m	Average Limit uV/m at 3 m	Margin (dB)
2780.25	H	50.50		2.8	32.5	-40.4	8.3	53.7	485.9	500.0	-0.2
2780.25	V	49.3		2.8	32.5	-40.4	8.3	52.5	423.2	500.0	-1.4
3707.00	H	41.2		3.3	33.2	-40.2	8.3	45.7	192.6	500.0	-8.3
3707.00	V	42.2		3.3	33.2	-40.2	8.3	46.7	216.1	500.0	-7.3
4633.75	H	38.8		3.6	34.5	-40.2	8.3	45.0	177.6	500.0	-9.0
4633.75	V	40.4		3.6	34.5	-40.2	8.3	46.6	213.6	500.0	-7.4
7414.00	H	44.4		4.7	35.6	-40.0	8.3	53.0	445.2	500.0	-1.0
7414.00	V	41.1		4.7	35.6	-40.0	8.3	49.7	304.5	500.0	-4.3
8340.75	H	36.6	Ambient	4.9	35.9	-39.9	8.3	45.8	194.9	500.0	-8.2
8340.75	V	36.9	Ambient	4.9	35.9	-39.9	8.3	46.1	201.8	500.0	-7.9
2780.25	H	50.50		2.8	32.5	-40.4	8.3	53.7	485.9	500.0	-0.2
2780.25	V	49.3		2.8	32.5	-40.4	8.3	52.5	423.2	500.0	-1.4

Test Details										
Manufacturer	Chamberlain Group, Inc.									
Model	B6753T									
S/N	Sample #1									
Mode	Transmit at 926.75MHz									
Parameters	Peak Measurements not in the Restricted Bands									
Notes	None									

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBuV/m at 3m	Peak Total uV/m at 3 m	Peak Limit uV/m at 3 m	Margin (dB)
926.75	H	84.9		1.6	26.8	0.0	113.2	458755.5		
926.75	V	82.0		1.6	26.8	0.0	110.3	328534.7		
1853.50	H	80.3		2.3	31.0	-40.8	72.7	4337.6	45875.5	-20.5
1853.50	V	73.6		2.3	31.0	-40.8	66.0	2005.6	45875.5	-27.2
5560.50	H	59.4		4.0	35.0	-40.2	58.1	802.8	45875.5	-35.1
5560.50	V	55.2		4.0	35.0	-40.2	53.9	495.0	45875.5	-39.3
6487.25	H	44.2		4.3	35.6	-40.1	44.0	158.1	45875.5	-49.3
6487.25	V	44.5		4.3	35.6	-40.1	44.3	163.7	45875.5	-49.0
9267.50	H	45.5		5.0	36.3	-39.7	47.2	229.4	45875.5	-46.0
9267.50	V	44.9		5.0	36.3	-39.7	46.6	214.1	45875.5	-46.6

27. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC.
1516 Centre Circle
Downers Grove, IL 60515
Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168
Email: rbugielski@elitetest.com
Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112
Email: cfanning@elitetest.com
Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163
Email: blugo@elitetest.com
Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123
Email: reking@elitetest.com
Website: www.elitetest.com

ELECTRICAL

Valid to: June 30, 2021

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following automotive electromagnetic compatibility and other electrical tests:

Test Technology:**Test Method(s)¹:*****Transient Immunity***

ISO 7637-2 (including emissions); ISO 7637-3;
ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;
CS-11979, Section 6.4; CS.00054, Section 5.9;
EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);
GMW 3097, Section 3.5;
SAE J1113-11; SAE J1113-12;
ECE Regulation 10.06 Annex 10

Electrostatic Discharge (ESD)

ISO 10605 (2001, 2008);
CS-11979 Section 7.0; CS.00054, Section 5.10;
EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13;
GMW 3097 Section 3.6

Conducted Emissions

CISPR 25 (2002, 2008), Sections 6.2 and 6.3;
CISPR 25 (2016), Sections 6.3 and 6.4;
CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2;
GMW 3097, Section 3.3.2;
EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)

(A2LA Cert. No. 1786.01) Revised 12/02/2020

Page 1 of 8

<u>Test Technology:</u>	<u>Test Method(s)¹:</u>
Radiated Emissions Anechoic	CISPR 25 (2002, 2008), Section 6.4; CISPR 25 (2016), Section 6.5; CS-11979, Section 5.3; CS.00054, Section 5.6.3; GMW 3097, Section 3.3.1; EMC-CS-2009.1 (RE 310); FMC1278 (RE310); ECE Regulation 10.06 Annex 7 (Broadband) ECE Regulation 10.06 Annex 8 (Narrowband)
Vehicle Radiated Emissions	CISPR 12; ICES-002; ECE Regulation 10.06 Annex 5
Bulk Current Injection (BCI)	ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1; GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112); ECE Regulation 10.06 Annex 9
Bulk Current Injections (BCI) (Closed Loop Method)	ISO 11452-4; SAE J1113-4
Radiated Immunity Anechoic (Including Radar Pulse)	ISO 11452-2; ISO 11452-5; CS-11979, Section 6.2; CS.00054, Section 5.8.2; GMW 3097, Section 3.4.2; EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21; ECE Regulation 10.06 Annex 9
Radiated Immunity Magnetic Field	ISO 11452-8
Radiated Immunity Reverb	ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3; EMC-CS-2009.1 (RI114); FMC1278 (RI114); ISO 11452-11
Radiated Immunity (Portable Transmitters)	ISO 11452-9; EMC-CS-2009.1 (RI115); FMC1278 (RI115)
Vehicle Radiated Immunity (ALSE)	ISO 11451-2; ECE Regulation 10.06 Annex 6
Electrical Loads	ISO 16750-2, Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.11, and 4.12
Dielectric Withstand Voltage	MIL-STD-202, Method 301; EIA-364-20D
Insulation Resistance	MIL-STD-202, Method 302; SAE/USCAR-2, Revision 6, Section 5.5.1; EIA-364-21D
Contact Resistance	MIL-STD-202, Method 307; SAE/USCAR-2, Revision 6, Section 5.3.1; EIA-364-23C; USCAR21-3 Section 4.5.3

Test Technology:

DC Resistance

Test Method(s):

MIL-STD-202, Method 303

Contact Chatter

MIL-STD-202, Method 310;
SAE/USCAR-2, Revision 6, Section 5.1.9

Voltage Drop

SAE/USCAR-2, Revision 6, Section 5.3.2;
USCAR21-3 Section 4.5.6

Emissions

Radiated and Conducted
(3m Semi-anechoic chamber,
up to 40 GHz)

47 CFR, FCC Part 15 B (using ANSI C63.4:2014);
47 CFR, FCC Part 18 (using FCC MP-5:1986);
ICES-001; ICES-003; ICES-005;
IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004);
IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010);
KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008);
CISPR 11; EN 55011; KN 11; CNS 13803 (1997, 2003);
CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; KN 14-1;
IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000);
EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006);
IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004);
AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz);
CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz);
CISPR 32; EN 55032; KN 32; ECE Regulation 10.06 Annex 14

Current Harmonics

IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2;
ECE Regulation 10.06 Annex 11

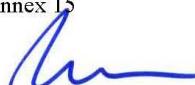
Flicker and Fluctuations

IEC 61000-3-3; EN 61000-3-3; KN 61000-3-3;
ECE Regulation 10.06 Annex 12

Immunity

Electrostatic Discharge

IEC 61000-4-2, Ed. 1.2 (2001);
IEC 61000-4-2 (1995) + A1(1998) + A2(2000);
EN 61000-4-2 (1995); EN 61000-4-2 (2009-05);
KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2;
IEEE C37.90.3 2001


Radiated Immunity

IEC 61000-4-3 (1995) + A1(1998) + A2(2000);
IEC 61000-4-3, Ed. 3.0 (2006-02);
IEC 61000-4-3, Ed. 3.2 (2010);
KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3;
IEEE C37.90.2 2004

Electrical Fast Transient/Burst

IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011);
IEC 61000-4-4 (1995) + A1(2000) + A2(2001);
KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008);
IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4;
ECE Regulation 10.06 Annex 15

(A2LA Cert. No. 1786.01) Revised 12/02/2020

Page 3 of 8

Test Technology:
Immunity (cont'd)

Surge

Test Method(s)¹:

IEC 61000-4-5 (1995) + A1(2000);
 IEC 61000-4-5, Ed 1.1 (2005-11);
 EN 61000-4-5 (1995) + A1(2001);
 KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
 IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5;
 IEEE C37.90.1 2012; IEEE STD C62.41.2 2002;
 ECE Regulation 10.06 Annex 16

Conducted Immunity

IEC 61000-4-6 (1996) + A1(2000);
 IEC 61000-4-6, Ed 2.0 (2006-05);
 IEC 61000-4-6 Ed. 3.0 (2008);
 KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
 EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6;
 KN 61000-4-6

 Power Frequency Magnetic Field
 Immunity

IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009);
 EN 61000-4-8 (1994) + A1(2000);
 KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
 IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8

 Voltage Dips, Short Interrupts, and Line
 Voltage Variations

IEC 61000-4-11, Ed. 2 (2004-03);
 KN 61000-4-11 (2008-5);
 RRL Notice No. 2008-4 (May 20, 2008);
 IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11

Ring Wave

IEC 61000-4-12, Ed. 2 (2006-09);
 EN 61000-4-12:2006;
 IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12;
 IEEE STD C62.41.2 2002

 Generic and Product Specific EMC
 Standards

IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1;
 IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2;
 IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3;
 IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4;
 EN 50130-4; EN 61326-1;
 IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2;
 IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24;
 IEC 60601-1-2; JIS T0601-1-2

TxRx EMC Requirements

EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17;
 EN 301 489-19

European Radio Test Standards

ETSI EN 300 086-1; ETSI EN 300 086-2;
 ETSI EN 300 113-1; ETSI EN 300 113-2;
 ETSI EN 300 220-1; ETSI EN 300 220-2;
 ETSI EN 300 330-1; ETSI EN 300 330-2;
 ETSI EN 300 440-1; ETSI EN 300 440-2;
 ETSI EN 300 422-1; ETSI EN 300 422-2;

Test Technology:

***European Radio Test Standards
(cont'd)***

Test Method(s)¹:

ETSI EN 300 328; ETSI EN 301 893;
ETSI EN 301 511; ETSI EN 301 908-1;
ETSI EN 908-2; ETSI EN 908-13;
ETSI EN 303 413; ETSI EN 302 502

Canadian Radio Tests

RSS-102 (RF Exposure Evaluation only); RSS-111; RSS-112;
RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130;
RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137;
RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181;
RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196;
RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215;
RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243;
RSS-244; RSS-247; RSS-251; RSS-252; RSS-287;
RSS-288; RSS-310; RSS-GEN

Mexico Radio Tests

IFT-008-2015; NOM-208-SCFI-2016

Japan Radio Tests

Radio Law No. 131, Ordinance of MPT No. 37, 1981,
MIC Notification No. 88:2004, Table No. 22-11;
ARIB STD-T66, Regulation 18

Taiwan Radio Tests

LP-0002

Australia/New Zealand Radio Tests

AS/NZS 4268; Radiocommunications (Short Range Devices)
Standard (2014)

Hong Kong Radio Tests

HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7;
HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057;
HKCA 1073

Korean Radio Test Standards

KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17;
KN 301 489-52

***Unlicensed Radio Frequency Devices
(3 Meter Semi-Anechoic Room)***

47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H
(using ANSI C63.10:2013, ANSI C63.17:2013 and
FCC KDB 905462 D02 (v02))

Licensed Radio Service Equipment

47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87,
90, 95, 96, 97, 101;
ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015;

OTA (Over the Air) Performance

GSM, GPRS, EGPRS
UMTS (W-CDMA)
LTE including CAT M1
A-GPS for UMTS/GSM
LTS A-GPS, A-GLONASS,
SIB8/SIB16
Large Device/Laptop/Tablet Testing
Integrated Device Testing
WiFi 802.11 a/b/g/n/a

CTIA Test Plan for Wireless Device Over-the-Air Performance
(Method for Measurement for Radiated Power and Receiver
Performance) V3.8.2;
CTIA Test Plan for RF Performance Evaluation of WiFi Mobile
Converged Devices V2.1.0

Test Technology: Test Method(s)¹:

Electrical Measurements and Simulation

AC Voltage / Current

(1mV to 5kV) 60 Hz
 (0.1V to 250V) up to 500 MHz
 (1µA to 150A) 60 Hz

FAA AC 150/5345-10H

FAA AC 150/5345-43J

FAA AC 150/5345-44K

FAA AC 150/5345-46E

DC Voltage / Current

(1mV to 15kV) / (1µA to 10A)

FAA AC 150/5345-47C

FAA EB 67D

Power Factor / Efficiency / Crest Factor

(Power to 30kW)

Resistance

(1mΩ to 4000MΩ)

Surge

(Up to 10 kV / 5 kA) (Combination Wave and Ring Wave)

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹ When the date, revision or edition of a test method standard is not identified on the scope of accreditation, the laboratory is expected to be using the current version within one year of the date of publication, per part C., Section 1 of A2LA R101 - *General Requirements - Accreditation of ISO-IEC 17025 Laboratories*.

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u>		
Part 15B	ANSI C63.4:2014	40000
<u>Industrial, Scientific, and Medical Equipment</u>		
Part 18	FCC MP-5 (February 1986)	40000
<u>Intentional Radiators</u>		
Part 15C	ANSI C63.10:2013	40000
<u>Unlicensed Personal Communication Systems Devices</u>		
Part 15D	ANSI C63.17:2013	40000

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>U-NII without DFS Intentional Radiators</u> Part 15E	ANSI C63.10:2013	40000
<u>U-NII with DFS Intentional Radiators</u> Part 15E	FCC KDB 905462 D02 (v02)	40000
<u>UWB Intentional Radiators</u> Part 15F	ANSI C63.10:2013	40000
<u>BPL Intentional Radiators</u> Part 15G	ANSI C63.10:2013	40000
<u>White Space Device Intentional Radiators</u> Part 15H	ANSI C63.10:2013	40000
<u>Commercial Mobile Services (FCC Licensed Radio Service Equipment)</u> Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>General Mobile Radio Services (FCC Licensed Radio Service Equipment)</u> Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Citizens Broadband Radio Services (FCC Licensed Radio Service Equipment)</u> Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Maritime and Aviation Radio Services</u> Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
<u>Microwave and Millimeter Bands Radio Services</u> Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Broadcast Radio Services</u> Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
-------------------------	-------------	-------------------------

Signal Boosters

Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000
--	------------------	-------

²Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (<https://apps.fcc.gov/oetcf/eas/>) for a listing of FCC approved laboratories.

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 8th day of August 2019.

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 1786.01
Valid to June 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.