

MEASUREMENT/TECHNICAL REPORT

APPLICANT: A-FOUR Tech CO., Ltd.

MODEL NO.: RFSOP-19; RP-1519; RP-19

FCC ID: H8GRSOP19

This report concerns (check one) : **Original Grant** **Class II Change**

Equipment type: RF Mouse

Deferred grant requested per 47CFR 0.457(d)(1)(ii)?

Yes No If yes, defer until: _____ (date)

We, the undersigned, agree to notify the Commission by (date) _____ / _____ / _____ of the intended date of announcement of the product so that the grant can be issued on that date.

Transiyion Rules Request per 15.37?

Yes No

If no, assumed Part 15, Subpart B for unintentional radiator the new 47 CFR (10-1-90 Edition) provision.

Report Prepared

by **Testing House :** Neutron Engineering Inc.

for **Company :**

Name A-FOUR Tech CO., Ltd.

Address : 6F., No. 108, Min-Chuan Rd., Hsin-Tien, Taipei, Taiwan, R.O.C.

Applicant Signature :

David King/ R&D Manager

CERTIFICATION

We hereby certify that:

The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (1992) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15, Subpart C.

Prepared by : Carol Chen

Carol Chen

Reviewed by : Andy Chiu

Andy Chiu

Approved by : George Yao

George Yao

Issued Date : Aug. 29, 2002

Report No. : NEI-FCCB-02177

Company Stamp :

NEUTRON ENGINEERING INC.

No. 132-1, Lane 329, Sec. 2, Palain Rd.,
Shijr Jen, Taipei, Taiwan
TEL : (02) 2646-5426 FAX : (02) 2646-6815

Table of Contents

1. General Information.....	
1-1 Product Description.....	4
1-2 Related Submittal(s)/Grant(s).....	4
1-3 Test Methodology.....	4
1-4 Test Facility.....	4
2. Product Labeling.....	
Figure 2-1 FCC ID Label.....	5
Figure 2-2 Location of Label on EUT.....	5
3. System Test Configuration.....	
3-1 EUT Configuration.....	6
3-2 EUT Exercise.....	6
3-3 Test Procedure.....	6
3-4 Limitation.....	7
3-5 Special Accessories.....	7
3-6 Equipment Modifications.....	7
3-7 Test Set-UP.....	8
3-8 Test Equipments.....	9
4. Block Diagram(s).....	10
5. Radiated Measurement Photos.....	
Figure 5-1 Radiated Emission	11
6. Radiated Emission Datas	
6-1 Reaiated Emission Data.....	12
6-2 Field Strength Calculation.....	14
7. Attachment	
Photos of Tested EUT.....	17
User Manual.....	18

1. GENERAL INFORMATION

1-1. Product Description

The A-FOUR Tech CO., Ltd. Model: RFSOP-19; RP-1519; RP-19 (referred to as the EUT in the report) is a RF mouse transmitter that uses FSK radio frequency technology to operate a special designed receiver which associated with an IBM compatible PC. Center frequency designed for EUT operation is 27.045 or 27.145MHz (selected by switch). It is considered as a low power Communication device transmitter.

1-2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: H8GRSOP19 filing to comply with Section 15.227 of the FCC Part 15, Subpart C Rules. The composite system(including receiver and transmitter) in compliance with Subpart B is authorized under a DoC procedure.

1-3. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (1992). Radiated testing was performed at an antenna to EUT distance 3 meters.

1-4. Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the address of No. 132-1, Lane 329, Sec. 2, Palain Road, Shijr Jen, Taipei, Taiwan, R.O.C. of NEUTRON ENGINEERING INC. This site has been fully described in report dated Jun. 4, 1999 Submitted to your office, and accepted in a letter dated Sep. 02, 1999 (Reg. No. 95335).

3. System Test Configuration

3-1. EUT Configuration

The EUT was placed on a turn table which is 0.8m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

3-2. EUT Exercise

The EUT (Transmitter) was operated continuously in its normal operating mode for the purpose of the measurements. and used the block new battery.

3-3. Test Procedure

3-3-1. Conducted Emissions

Conducted emissions from the EUT measured in the **frequency range between 0.45 MHz and 30MHz** were made with a **Spectrum Analyzer, HP Model 8568B**, using **CISPR Quasi-Peak detector mode** and appropriate broadband linearly polarized antenna.

3-3-2. Radiated Emissions

Radiated emissions from the EUT measured in the **frequency range between 25 MHz and 1000MHz** were made with a **Spectrum Analyzer, HP Model 8568B**, using **CISPR Quasi-Peak detector mode** and appropriate broadband linearly polarized antenna.

Radiated emissions measurement for **frequency above 1000MHz** were made with a **Test Receiver, R&S model ESMI**, plus a **Pre-amplifier R&S model ESMI-Z7**, and a **Horn Antenna, EMCO model 3115** to measure its **Peak Detector Mode** level and **Average Detector Mode** level.

3-4. Limitation**(1) Conducted Emission (Not applicable in this report)**

Frequency Range (MHz)	Quasi-Peak
0.45 - 30	48

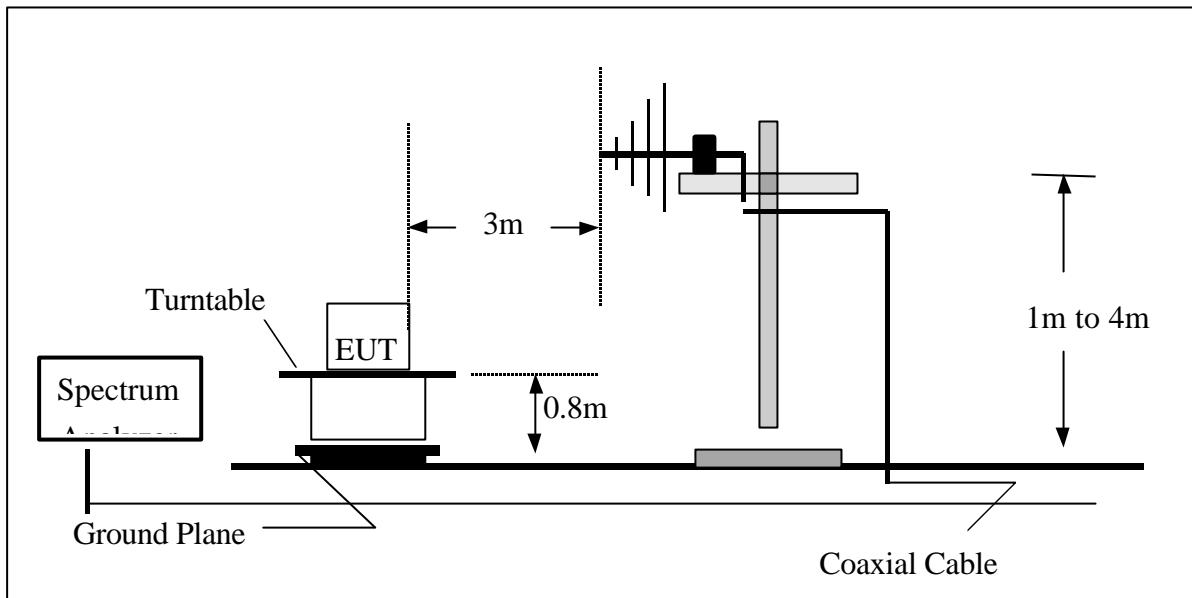
(2) Radiated Emission

- a. The field strength of any emission within this band (26.96-27.28MHz) shall not exceed 10000 micro volts/meter at 3 meters. (80dB μ V at 3m) The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in section 15.35 for limiting peak emissions apply.
- b. The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in section 15.209(unintentional Radiators general limit).as below.

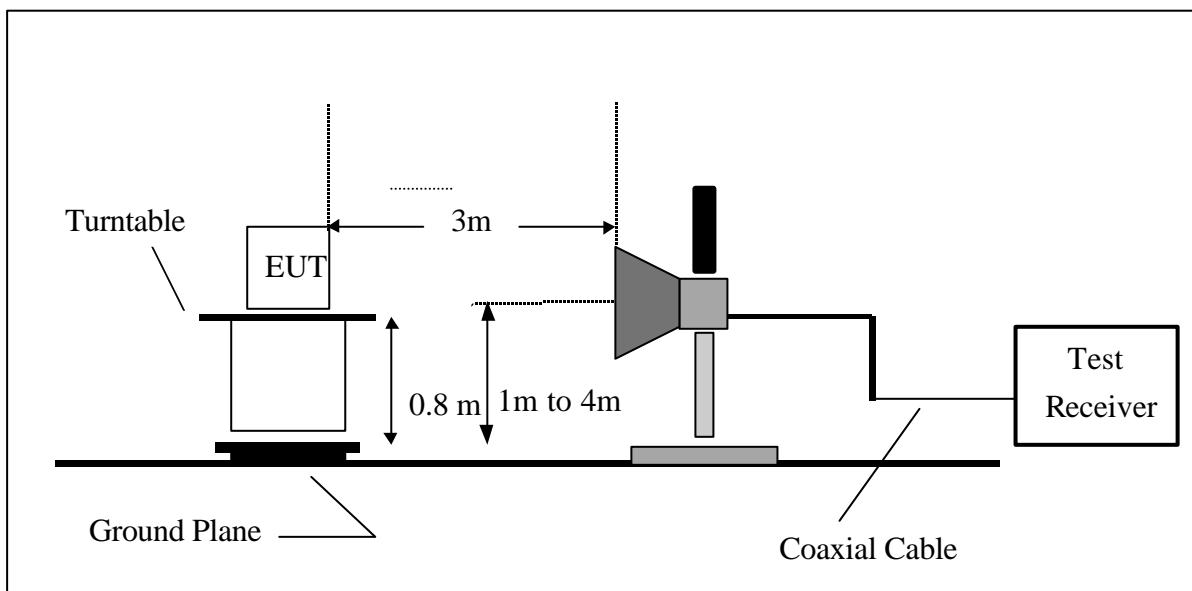
Frequency (MHz)	Field strength mV/m	Distance(m)	Field strength at 3m dBmV/m
1.705-30	30	30	69.54
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46

Remark: 1. Emission level in dB μ V/m=20 log (uV/m)
 2. Measurement was performed at an antenna to the coldest point of EUT distance of 3 meters.
 4. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205
 5. Emission spurious frequency which appearing within the Restricted Bands specified in provision of ξ 15.205, then the general radiated emission limits in ξ 15.209 apply.

3-5. Special Accessories


Not available for this EUT intended for grant.

3-6. Equipment Modifications


Not available for this EUT intended for grant.

3-7. Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

3-8 Tested Equipments

Item	Instruments	Mfr/Brand	Model/Type No.	Serial No.	Calibrated Date	Next Cali. Date	Note
1	LISN	EMCO	3825/2	9605-2539	2002-05-20	2003-05-19	
2	LISN	Rolf Heine	NNB-2/16Z	98083	2001-10-20	2002-10-19	✓
3	LISN	Rolf Heine	NNB-2/16Z	98053	2001-11-22	2002-11-21	✓
4	Pulse Limiter	Electro-Metrics	EM-7600	112644	2001-12-10	2002-12-19	✓
5	50 Terminator	N/A	N/A	N/A	2002-05-10	2003-05-09	✓
6	Test Cable	N/A	C01	N/A	2001-12-08	2002-12-07	✓
7	Log-Bicon Antenna	MESS-ELEKTRONIK	VULB 9160	3058	2001-10-27	2002-10-26	✓
8	Log-Bicon Antenna	MESS-ELEKTRONIK	VULB 9160	3060	2001-10-20	2002-10-19	
9	Log-Bicon Antenna	MESS-ELEKTRONIK	VULB 9161	4022	2001-07-04	2002-07-03	
10	Test Cable	N/A	10M_OS01	N/A	2001-12-08	2002-12-07	✓
11	Test Cable	N/A	OS01-1/-2	N/A	2001-12-08	2002-12-07	✓
12	Test Cable	N/A	10M_OS02	N/A	2001-12-08	2002-12-07	
13	Test Cable	N/A	OS02-1/-2/-3	N/A	2001-12-08	2002-12-07	
14	RF Switch	Anritsu	MP59B	M65982	2001-12-10	2002-12-09	✓
15	Quasi-Peak Adapter	HP	85650A	2521A00844	2002-04-08	2002-10-07	
16	RF Pre-Selector	HP	85685A	2648A00417	2002-04-08	2002-10-07	
17	Spectrum Analyzer	HP	85680B	2634A03025	2002-04-08	2002-10-07	
18	Spectrum Monitor	HP	85662B	2648A13616	2002-04-08	2002-10-07	
19	Pre-Amplifier	Anritsu	MH648A	M09961	2001-12-10	2002-12-09	✓
20	Spectrum Analyzer	ADVAN TEST	R3261C	81720298	2002-08-16	2003-08-15	✓
21	Test Receiver	R&S	ESH3	860156/018	2001-10-23	2002-10-22	
22	Test Receiver	R&S	ESVP	860687/009	2001-10-23	2002-10-22	✓
23	Test Receiver	MEB	SMV41	130	2001-12-05	2002-12-04	✓
24	Test Receiver	PMM	PMM 9000	4310J01002	2001-12-31	2002-12-30	
25	Horn Antenna	EMCO	3115	9605-4803	2001-05-09	2002-05-08	
26	Test Receiver	R&S	ESMI	843977/005	2001-11-14	2002-11-05	
27	Pre-Amplifier	R&S	ESMI-Z7	1045.5020	2001-05-21	2002-05-20	
28	Absorbing Clamp	R&S	MDS-21	841077/011	2001-08-18	2002-08-17	
29	Voltage Probe	R&S	ESH2-Z3	841.800/023	2001-08-20	2002-08-19	
30	Signal Generator	HP	8648A	3426A01034	2000-02-10	2003-09-23	
31	Antenna Mast	Chance Most	CMTB-1.5	N/A	N/A	N/A	✓
32	Turn Table	Chance Most	CMTB-1.5	N/A	N/A	N/A	✓

Remark :

(1) ✓ indicates the instrument used in Test Report.
 (2) N/A denotes No Model No. / Serial No. and No Calibration specified.

4. Block Diagram(s)

Figure 4.1 Block diagram of system, Page 10.A

6. Radiated Emission Data

6.1. The following data lists the significant emission frequencies, measured emission levels, correction factor (including cable loss antenna factor, and if any needed, the duty cycle correction factor), the corrected field strength, as well as the limitation.

Judgement : Passed by -11.78 dB at 54.119 MHz Ant.Pol: Ver.
 Operation frequency 27.045MHz Mode: CH1

Freq. (MHz)	Ant.Pol. H/V	DetectorMode (PK/AV)	Reading (dBuV)	Ant./CL/ Amp. CF(dB)	Actual FS (dBuV/m)	Limit3m (dBuV/m)	Safe Margin (dB)	Note
27.040	V	Peak	70.80	-28.51	42.29	80.00	-37.71	F
26.960	V	Peak	63.90	-28.51	35.39	69.50	-34.11	E
27.280	V	Peak	44.00	-28.51	15.49	69.50	-54.01	E
54.119	V	Peak	41.27	-13.05	28.22	40.00	-11.78	H
81.114	V	Peak	36.90	-15.96	20.94	40.00	-19.06	H
108.187	V	Peak	31.10	-13.61	17.49	40.00	-22.51	H
135.204	V	Peak	35.67	-10.73	24.94	43.50	-18.56	H
189.258	V	Peak	28.90	-12.57	16.33	43.50	-27.17	H
27.040	H	Peak	71.20	-28.51	42.69	80.00	-37.31	F
26.960	H	Peak	64.50	-28.51	35.99	69.50	-33.51	E
27.280	H	Peak	44.40	-28.51	15.89	69.50	-53.61	E
54.111	H	Peak	32.32	-13.05	19.27	40.00	-20.73	H
81.130	H	Peak	42.10	-15.96	26.14	40.00	-13.86	H
135.240	H	Peak	31.00	-10.71	20.29	40.00	-19.71	H
162.300	H	Peak	28.10	-10.13	17.97	43.50	-25.53	H
189.340	H	Peak	28.57	-12.59	15.98	43.50	-27.52	H

Remark :

- (1) Measuring frequencies from 25 MHz to the 1GHz.
- (2) Radiated emissions measured in frequency range from 25MHz to 1000MHz were made with an instrument using Peak detector mode.
- (3) Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- (4) "F" denotes fundamental frequency; " H" denotes spurious frequency. "E" denotes band edge frequency.
- (5) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.109 apply.
- (6) Datas of measurement within this frequency range shown “-“ in the table above menas the reading of emissions are attenuated more than 20Db below the permissible limits or the field strength is too small to be measured.
- (7) The IF bandwidth of SPA between 25MHz to 30MHz was 10KHz; 30MHz to 1GHz was 100KHz.

Review:

Andy Liu

Test Engr.:

Teff

Test Date :

Aug. 26, 2002

6. Radiated Emission Data

6.1 The following data lists the significant emission frequencies, measured emission levels, correction factor (including cable loss antenna factor, and if any needed, the duty cycle correction factor), the corrected field strength, as well as the limitation.

Judgement : Passed by -16.98 dB at 54.276 MHz Ant. Pol.: Ver.
 Operation frequency 27.145 MHz Mode: CH2

Freq. (MHz)	Ant.Pol. H/V	DetectorMode (PK/AV)	Reading (dBuV)	Ant./CL/ Amp. CF(dB)	Actual FS (dBuV/m)	Limit3m (dBuV/m)	Safe Margin (dB)	Note
27.140	V	Peak	72.20	-28.51	43.69	80.00	-36.31	F
26.960	V	Peak	51.70	-28.51	23.19	69.50	-46.31	E
27.280	V	Peak	59.20	-28.51	30.69	69.50	-38.81	E
54.276	V	Peak	36.07	-13.05	23.02	40.00	-16.98	H
108.589	V	Peak	30.90	-13.57	17.33	40.00	-22.67	H
135.716	V	Peak	31.15	-10.68	20.47	43.50	-23.03	H
162.856	V	Peak	30.37	-10.18	20.19	43.50	-23.31	H
189.989	V	Peak	33.50	-12.63	20.87	43.50	-22.63	H
27.140	H	Peak	71.20	-28.51	42.69	80.00	-37.31	F
26.960	H	Peak	51.10	-28.51	22.59	69.50	-46.91	E
27.280	H	Peak	59.20	-28.51	30.69	69.50	-38.81	E
54.284	H	Peak	32.15	-13.05	19.10	40.00	-20.90	H
81.409	H	Peak	33.35	-15.93	17.42	40.00	-22.58	H
135.722	H	Peak	29.52	-10.68	18.84	43.50	-24.66	H
162.870	H	Peak	26.57	-10.18	16.39	43.50	-27.11	H
190.012	H	Peak	28.20	-12.63	15.57	46.00	-30.43	H

Remark :

- (1) Measuring frequencies from 25 MHz to the 1GHz.
- (2) Radiated emissions measured in frequency range from 25MHz to 1000MHz were made with an instrument using Peak detector mode.
- (3) Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- (4) "F" denotes fundamental frequency; " H" denotes spurious frequency. "E" denotes band edge frequency.
- (5) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.109 apply.
- (6) Datas of measurement within this frequency range shown “-“ in the table above means the reading of emissions are attenuated more than 20Db below the permissible limits or the field strength is too small to be measured.
- (7) The IF bandwidth of SPA between 25MHz to 30MHz was 10KHz; 30MHz to 1GHz was 100KHz.

Review:

Andy Chiu

Test Engr.:

Jeff

Test Date :

Aug.. 26, 2002

6-2. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\mathbf{FS = RA + AF + CL - AG}$$

Where **FS** = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor (1)

CL = Cable Attenuation Factor (1)

AG = Amplifier Gain (1) (2)

Remark :

- (1) The Correction Factor = AF + CF - AG, as shown in the data tables' Correction Factor column.
- (2) AG is not available for Neutron's Open Site Facility

Example of Calculation:

Assume a Receiver Reading of 23.7 dBuV is obtained with an Antenna Factor of 7.2 dB and a Cable Factor of 1.1 dBuV. Then:

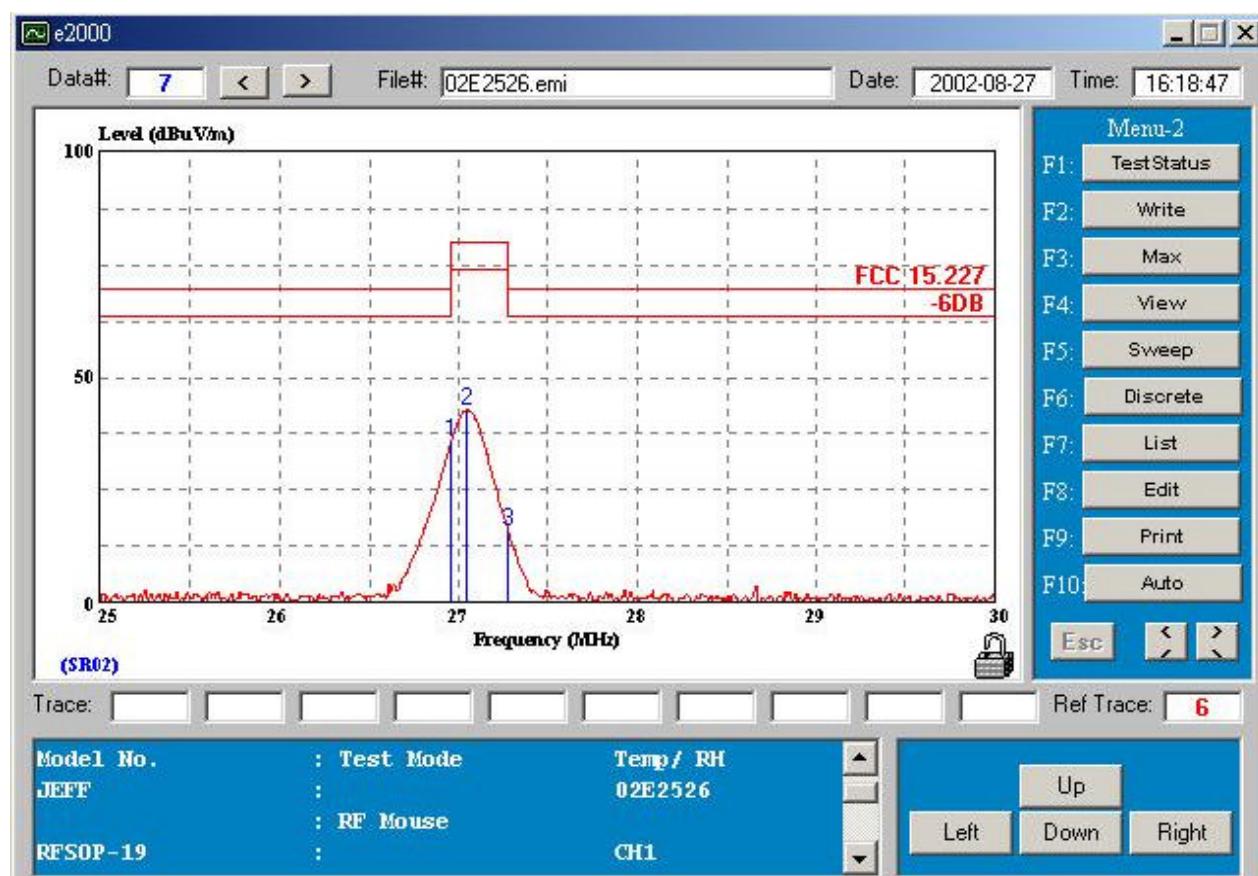
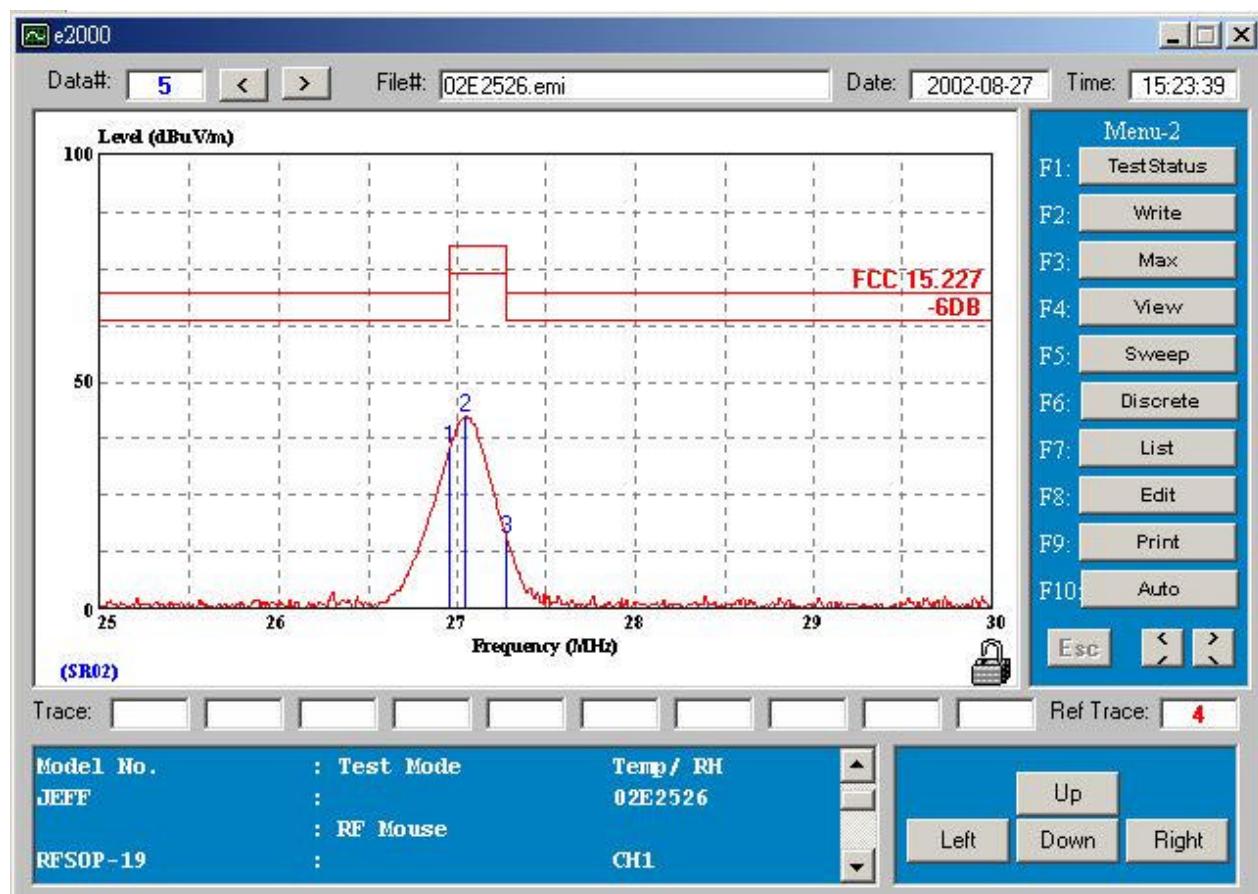
1. The Correction Factor will be calculated by

$$\mathbf{Correction\ Factor = AF + CF - AG = 7.2 + 1.1 - 0 = 8.3\ (dB)}$$

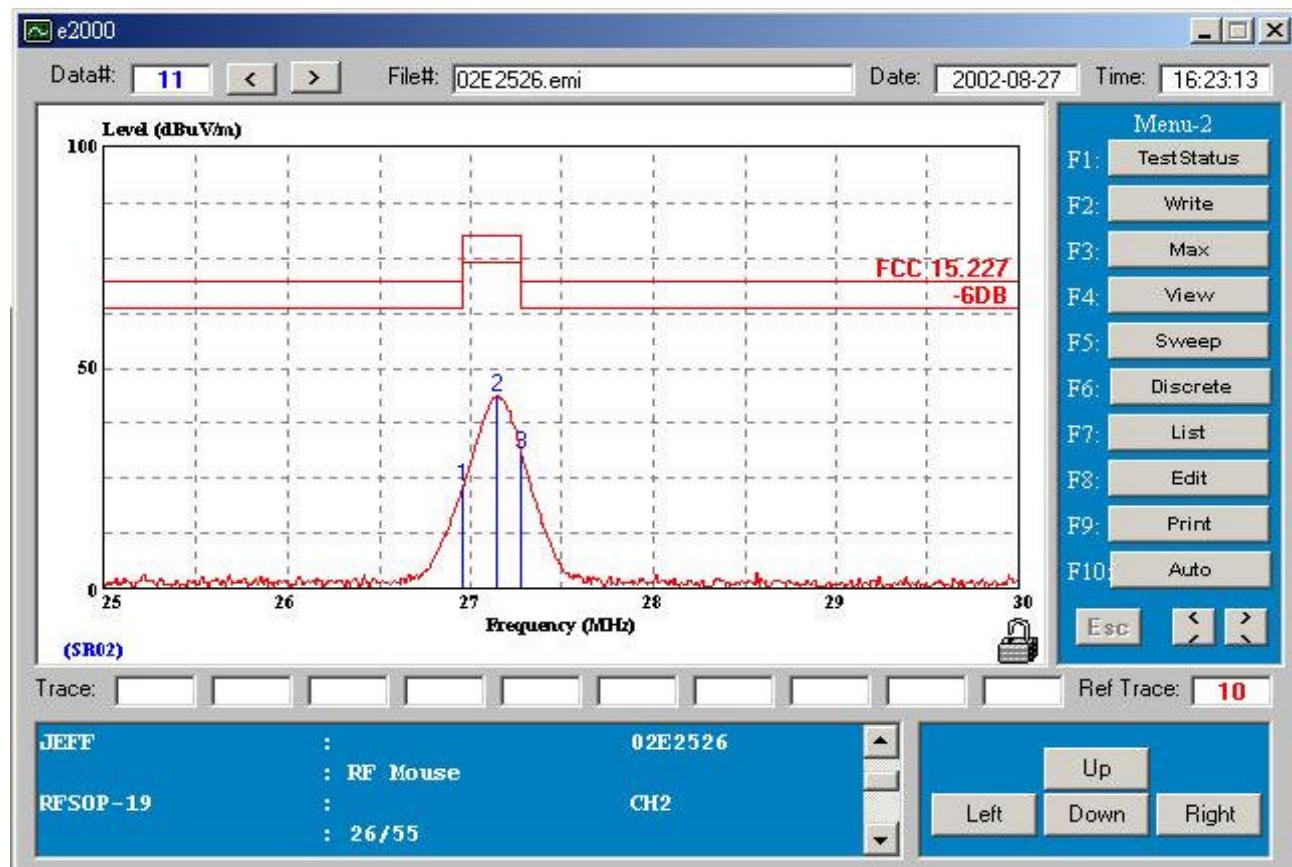
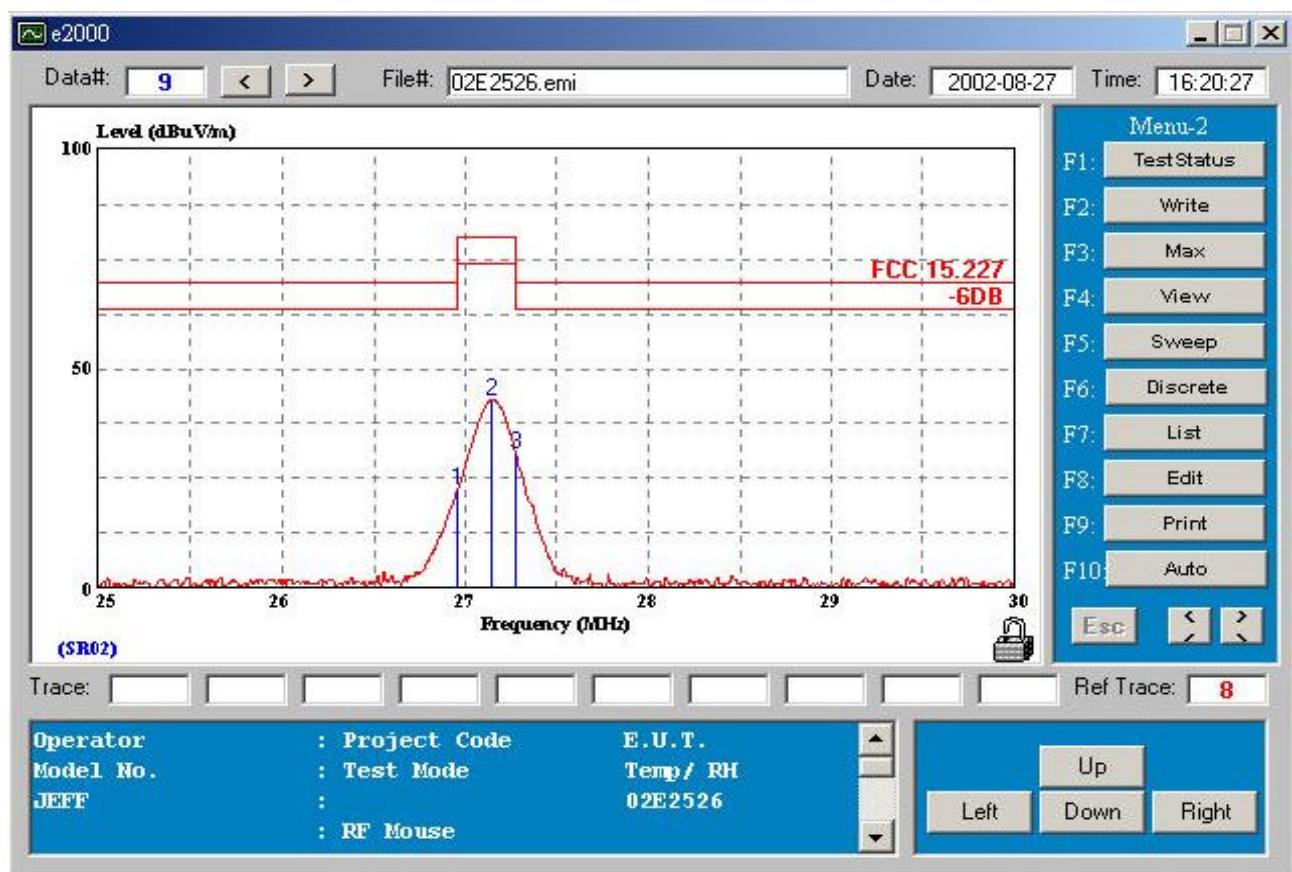
as shown in the data tables' Correction Factor column.

2. The Field Strength will be calculated by

$$\mathbf{FS = RA + Correction\ Factor = 23.7 + 8.3 = 32\ (dBuV/m).}$$



FS is the value shown in the data tables' Corrected Reading column and RA is the value shown in

the data tables' Receiver Reading column. The 32 dBuV/m value was mathematically converted



to its corresponding level in uV/m as:

$$\mathbf{Log^{-1}\{(32.0dBuV/m)/20\} = 39.8\ (uV/m)}$$

6.3 Bandwidth requirement Mode : Operation frequency: 27.045 MHz

6.3 Bandwidth requirement Mode : Operation frequency: 27.145 MHz

Attachment

Photos of Tested EUT

- 1. Photo # 1. Front View / Rear View**

- 2. Photo # 2-5 Unit partially Disassembled**

Attachment

User's Manual