

## Appendix C. Maximum Permissible Exposure

## 1. Maximum Permissible Exposure

### 1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

#### (A) Limits for Occupational / Controlled Exposure

| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (H) (A/m) | Power Density (S) (mW/ cm <sup>2</sup> ) | Averaging Time  E  <sup>2</sup> ,  H  <sup>2</sup> or S (minutes) |
|-----------------------|-----------------------------------|-----------------------------------|------------------------------------------|-------------------------------------------------------------------|
| 0.3-3.0               | 614                               | 1.63                              | (100)*                                   | 6                                                                 |
| 3.0-30                | 1842 / f                          | 4.89 / f                          | (900 / f)*                               | 6                                                                 |
| 30-300                | 61.4                              | 0.163                             | 1.0                                      | 6                                                                 |
| 300-1500              |                                   |                                   | F/300                                    | 6                                                                 |
| 1500-100,000          |                                   |                                   | 5                                        | 6                                                                 |

#### (B) Limits for General Population / Uncontrolled Exposure

| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (H) (A/m) | Power Density (S) (mW/ cm <sup>2</sup> ) | Averaging Time  E  <sup>2</sup> ,  H  <sup>2</sup> or S (minutes) |
|-----------------------|-----------------------------------|-----------------------------------|------------------------------------------|-------------------------------------------------------------------|
| 0.3-1.34              | 614                               | 1.63                              | (100)*                                   | 30                                                                |
| 1.34-30               | 824/f                             | 2.19/f                            | (180/f)*                                 | 30                                                                |
| 30-300                | 27.5                              | 0.073                             | 0.2                                      | 30                                                                |
| 300-1500              |                                   |                                   | F/1500                                   | 30                                                                |
| 1500-100,000          |                                   |                                   | 1.0                                      | 30                                                                |

Note: f = frequency in MHz ; \*Plane-wave equivalent power density

### 1.2. MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 \times P \times G}}{d}$$

$$\text{Power Density: } Pd \text{ (W/m}^2\text{)} = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

### 1.3. Calculated Result and Limit

**Exposure Environment: General Population / Uncontrolled Exposure**

**For 5GHz UNII Band:**

**Antenna Type : Dipole Antenna**

**Conducted Power for IEEE 802.11ac (VHT20): 28.36 dBm**

| Distance (m) | Antenna Gain (dBi) | Antenna Gain (numeric) | The maximum combined Average Output Power |          | Power Density (S) (mW/cm²) | Limit of Power Density (S) (mW/cm²) | Test Result |
|--------------|--------------------|------------------------|-------------------------------------------|----------|----------------------------|-------------------------------------|-------------|
|              |                    |                        | (dBm)                                     | (mW)     |                            |                                     |             |
| 0.2          | 3.00               | 1.9953                 | 28.3553                                   | 684.7511 | 0.271946                   | 1                                   | Complies    |

**For 5GHz ISM Band:**

**Antenna Type : Dipole Antenna**

**Conducted Power for IEEE 802.11ac (VHT40): 29.35 dBm**

| Distance (m) | Directional Gain (dBi) | Antenna Gain (numeric) | The maximum combined Average Output Power |          | Power Density (S) (mW/cm²) | Limit of Power Density (S) (mW/cm²) | Test Result |
|--------------|------------------------|------------------------|-------------------------------------------|----------|----------------------------|-------------------------------------|-------------|
|              |                        |                        | (dBm)                                     | (mW)     |                            |                                     |             |
| 0.2          | 7.77                   | 5.9858                 | 27.0327                                   | 504.9771 | 0.601649                   | 1                                   | Complies    |

**Note:**  $DirectionalGain = 10 \cdot \log \left[ \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.77 \text{dBi}$

**For 2.4GHz Band:**

**Antenna Type Dipole Antenna**

**Conducted Power for IEEE 802.11b: 29.44 dBm**

| Distance (m) | Antenna Gain (dBi) | Antenna Gain (numeric) | The maximum combined Average Output Power |          | Power Density (S) (mW/cm²) | Limit of Power Density (S) (mW/cm²) | Test Result |
|--------------|--------------------|------------------------|-------------------------------------------|----------|----------------------------|-------------------------------------|-------------|
|              |                    |                        | (dBm)                                     | (mW)     |                            |                                     |             |
| 0.2          | 2.00               | 1.5849                 | 29.4353                                   | 878.0643 | 0.276998                   | 1                                   | Complies    |

#### Conclusion:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

$$CPD1 / LPD1 + CPD2 / LPD2 + \dots \text{etc.} < 1$$

**CPD = Calculation power density**

**LPD = Limit of power density**

Therefore, the worst-case situation is  $0.276998 / 1 + 0.601649 / 1 = 0.878647$ , which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.