Itron, Inc.

TEST REPORT FOR

Intelis Gas 250 Model: MTR-7200-002*

*(See Appendix A for Manufacturers Declaration)

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.247 (HYBRID 902-928MHz)

Report No.: 107749-2

Date of issue: March 30, 2023

Test Certificate #803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 41 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	8
15.247(a) Transmitter Characteristics	8
15.247(a)(1)(i) 20 dB Bandwidth	8
15.247(a)(1) Carrier Separation	11
15.247(b)(2) Output Power	13
15.247(d) RF Conducted Emissions	19
15.247(d) Radiated Emissions & Band Edge	22
15.247 (f) Hybrid Systems Power Spectral Density	34
Appendix A: Manufacturer Declaration	39
Supplemental Information	40
Measurement Uncertainty	40
Emissions Test Details	40

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Itron, Inc.Lisa Bevington2401 N. State StreetCKC Laboratories, Inc.

Waseca, MN 56093 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Dan Bomsta Project Number: 107749

Customer Reference Number: 271751

DATE OF EQUIPMENT RECEIPT: January 30, 2023
DATE(S) OF TESTING: January 30-31, 2023

February 1, 13-15 & 18, 2023

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve I Be

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 41 Report No.: 107749-2

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive SE, Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20
EMITest Immunity	5.03.19

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 41 Report No.: 107749-2

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (Hybrid 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	NA1
15.247(a)(1)(i)	Average Time of Occupancy	NA	NA1
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.247 (f)	Hybrid Systems Time of Occupancy	NA	NP
15.247 (f)	Hybrid Systems Power Spectral Density	NA	Pass
15.207	AC Conducted Emissions	NA	NA2

NA = Not Applicable

NA1 = This test is not applicable under Hybrid System requirements section 15.247 (f).

NA2 = Manufacturer declares EUT is battery powered.

NP = CKC Laboratories Inc. was not contracted to perform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions
None

Page 5 of 41 Report No.: 107749-2

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Under Test:

Device	Manufacturer	Model #	S/N
Intelis Gas 250	Itron, Inc.	MTR-7200-002	105334- Cond

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	HP	14-dq1033cl	5CD941CCWS
Laptop PSU	НР	TPN-CA14	WHGRE0AVKCR55T
Adapter Board	Itron, Inc.	NA	NA

Configuration 2

Equipment Under Test:

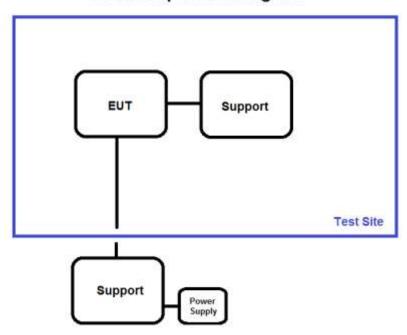
Device	Manufacturer	Model #	S/N
Intelis Gas 250	Itron, Inc.	MTR-7200-002	105334- Rad

Support Equipment:

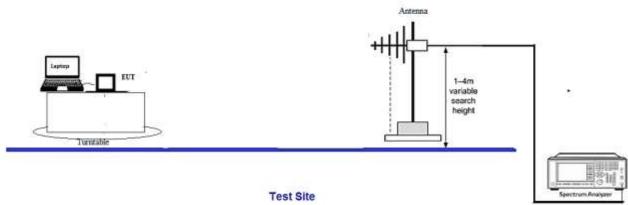
Device	Manufacturer	Model #	S/N
Laptop	НР	14-dq1033cl	5CD941CCWS
Laptop PSU	НР	TPN-CA14	WHGRE0AVKCR55T
Adapter Board	Itron, Inc.	NA	NA

General Product Information:

Stand-Alone Equipment
FHSS
902.4-927.6
64
GFSK 150kbps
Tested at 100%
1
Type F 3.9 dBi
NA
gral (External connector provided to facilitate testing)
Battery (6VDC)
CLI Tool V.8.02.0 CSL V.9.1.5.0
•


The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

Page 6 of 41 Report No.: 107749-2



Block Diagram of Test Setup(s)

Test Setup Block Diagram

Radiated test setup

Page 7 of 41 Report No.: 107749-2

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

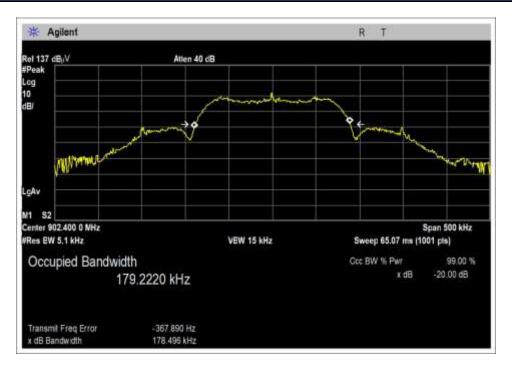
Test Setup/Conditions				
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	2/14/2023	
Configuration:	Configuration: 1			
Test Setup:	EUT is setup for conducted measurements. It is directly connected to the analyzer via cable and attenuator.			

Environmental Conditions				
Temperature (°C)	21	Relative Humidity (%):	38	

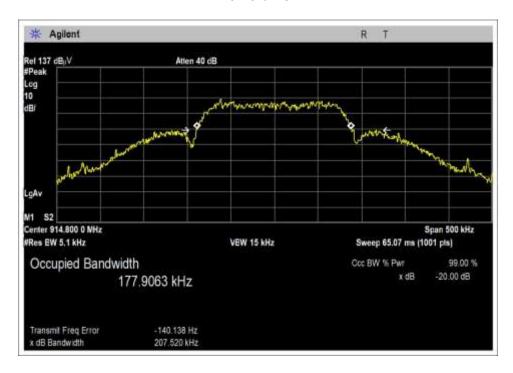
Test Equipment									
Asset# Description Manufacturer Model Cal Date Cal Due									
P05503	Attenuator	Narda	766-10	6/8/2021	6/8/2023				
P05353	Cable	Andrews	Heliax	2/23/2022	2/23/2024				
03807	Spectrum Analyzer	Agilent	E4440A	10/6/2022	10/6/2024				

15.247(a)(1)(i) 20 dB Bandwidth

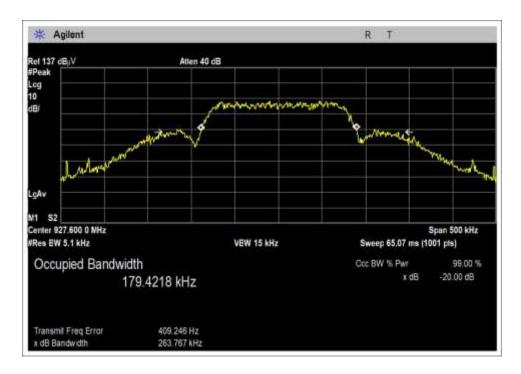
20dB Occupied Bandwidth


	Test Data Summary									
Frequency Antenna Modulation Measured Limit Results										
902.4	1	GFSK	178.5							
914.8	1	GFSK	207.5	*See Note	N/A					
927.6	1	GFSK	263.8							

^{*}For this Hybrid mode there is no requirement to meet the FHSS or DTS bandwidth limits. See Supplemental Section of data in 15.247 (f) Hybrid Systems.

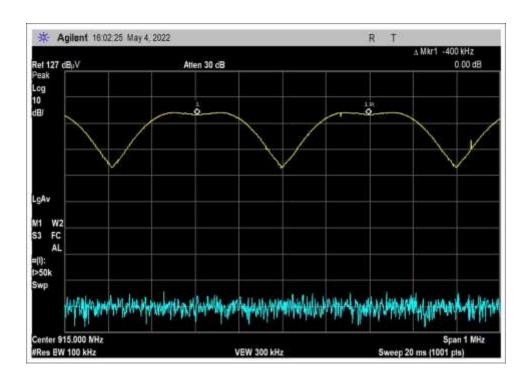

Page 8 of 41 Report No.: 107749-2

Plot(s)



Low Channel

Middle Channel


High Channel

15.247(a)(1) Carrier Separation

	Test Data Summary								
Limit applied: 2	Limit applied: 20dB bandwidth of the hopping channel.								
Antenna Port	Operational Mode Results								
1	Hopping	400	>263.8	Pass					

Plot(s)

Page 11 of 41 Report No.: 107749-2

Test Setup Photo(s)

Page 12 of 41 Report No.: 107749-2

15.247(b)(2) Output Power

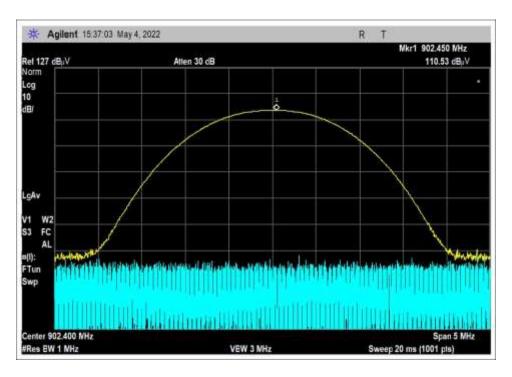
Test Setup/Conditions							
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison				
Test Method:	ANSI C63.10 (2013) Test Date(s): 2/14/2023						
Configuration:	1						
Test Setup:	EUT is setup for conducted measurements. It is directly connected to the analyzer via						
	cable and attenuator.						

Test Data Summary - Voltage Variations

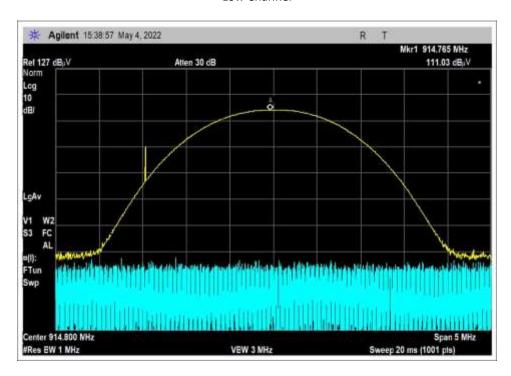
This equipment is battery powered. Power output tests were performed using a fresh battery.

Test Data Summary - RF Conducted Measurement Limit = 30dBm Conducted/36dBm EIRP									
Frequency (MHz)	· · · Modulation · · · Results								
902.4	GFSK	Type F / 3.9	13.8	≤30	Pass				
914.8	GFSK	Type F / 3.9	14.3	≤30	Pass				
927.6	GFSK	Type F / 3.9	14.8	≤30	Pass				

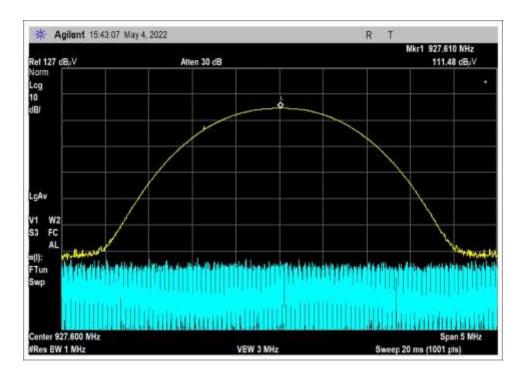
For this Hybrid Mode there is no minimum number of hopping channels required for the 1 Watt (30dBm) limit.


The limit is calculated according to a maximum of 1W (30 dBm) conducted power with a maximum of 6dBi gain antenna in accordance with 15.247(b)

Limit = 30 - Roundup(G - 6)


Page 13 of 41 Report No.: 107749-2

Plots



Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: **Itron, Inc.**

Specification: 15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

Work Order #: 107749 Date: 2/1/2023

Test Type: Conducted Emissions Time: 09:14:47

Tested By: Matt Harrison Sequence#: 6
Software: EMITest 5.03.20 6VDC

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Environmental Conditions: Temperature: 18.6°C Pressure: 100.9 kPa Humidity: 40%

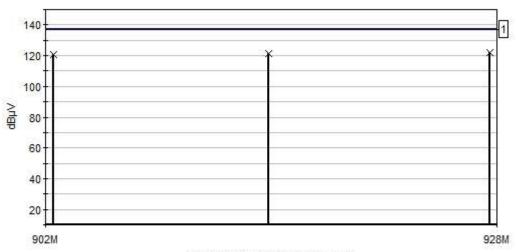
Frequency Range: Fundamental Frequency tested: 902.4, 914.8, 927.6 Firmware power setting: Level 2

EUT Firmware:

Protocol /MCS/Modulation: GFSK 150kbps

Test Method: ANSI C63.10: 2013

Test Mode: Transmitting


Test Setup: EUT is setup for conducted measurement. It is directly connected to the Analyzer via cable and attenuator

Modifications Added: None

Page 16 of 41 Report No.: 107749-2

Itron, Inc. WO#: 107749 Sequence#: 6 Date: 2/1/2023 15.247(b) Power Output (902-928 MHz FHSS >50 Channels) Test Lead: 6VDC RF Port

Frequency [k=kHz M=MHz G=GHz]

Readings

1 - 15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

Peak Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP05353	Cable	Heliax	2/23/2022	2/23/2024

Measu	rement Data:	Re	Reading listed by margin.					Test Lead	d: RF Port		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	927.610M	111.5	+10.1	+0.2			+0.0	121.8	137.0	-15.2	RF Po
2	914.765M	111.0	+10.1	+0.2			+0.0	121.3	137.0	-15.7	RF Po
3	902.450M	110.5	+10.1	+0.2			+0.0	120.8	137.0	-16.2	RF Po

Page 17 of 41 Report No.: 107749-2

Test Setup Photo(s)

Page 18 of 41 Report No.: 107749-2

15.247(d) RF Conducted Emissions

Test Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: **Itron, Inc.**

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 107749 Date: 2/1/2023
Test Type: Conducted Emissions Time: 09:59:29
Tested By: Matt Harrison Sequence#: 7

Software: EMITest 5.03.20 Sequence#. 6VDC

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Environmental Conditions: Temperature: 18.6°C Pressure: 100.9 kPa Humidity: 40%

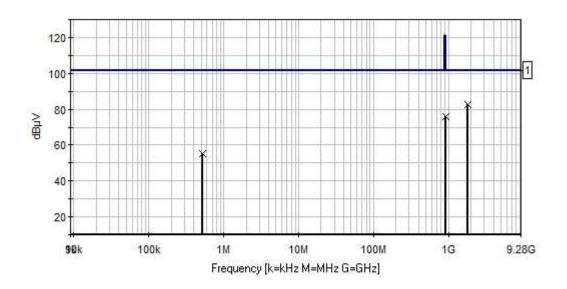
Frequency Range: 30M-10 GHz Frequency tested: 902.4, 914.8, 927.6 Firmware power setting: Level 2

EUT Firmware:

Protocol /MCS/Modulation: GFSK, 150kbps

Test Method: ANSI C63.10: 2013

Test Mode: Transmitting


Test Setup: EUT is setup for conducted measurement. It is directly connected to the Analyzer via cable and attenuator

Modifications Added: None

Page 19 of 41 Report No.: 107749-2

tron, Inc. WO#: 107749 Sequence#: 7 Date: 2/1/2023 15.247(d) Conducted Spurious Emissions Test Lead: 6VDC RF Port

Readings

1 - 15.247(d) Conducted Spurious Emissions

Peak Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP05353	Cable	Heliax	2/23/2022	2/23/2024

Measi	ırement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: RF Port		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1829.707M	71.8	+10.2	+0.3			+0.0	82.3	101.3	-19.0	RF Po
2	910.800M	65.8	+10.1	+0.2			+0.0	76.1	121.3	-45.2	RF Po
3	519.000k	45.1	+10.1	+0.0			+0.0	55.2	101.3	-46.1	RF Po

Page 20 of 41 Report No.: 107749-2

Test Setup Photo(s)

Page 21 of 41 Report No.: 107749-2

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 107749 Date: 2/18/2023
Test Type: Radiated Scan Time: 12:56:50
Tested By: Matt Harrison Sequence#: 9

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Environmental Conditions: Temperature: 18.6°C Pressure: 100.9 kPa Humidity: 40%

Frequency Range: 9k-10GHz

Frequency tested: 914.8 (Low, Middle, and High channels were investigated, and worst case is represented)

Firmware power setting: Level 2

EUT Firmware:

Protocol /MCS/Modulation: GFSK 150kbps

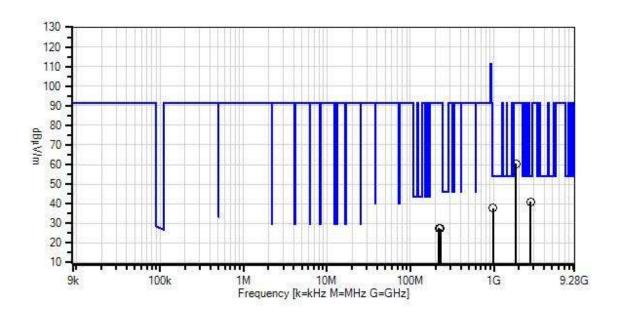
Test Method: ANSI C63.10: 2013

Test Mode: Transmitting

Test Setup: EUT is setup in a tabletop configuration. It is 80cm high for below 1GHz and 150cm above 1GHz, on a

Styrofoam table.

Modifications Added: None


Notes:

No emissions found within 20dB of the limit below 30MHz.

Page 22 of 41 Report No.: 107749-2

Itron, Inc. WO#: 107749 Sequence#: 9 Date: 2/18/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
 QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

Peak Readings

 Average Readings Software Version: 5.03.20

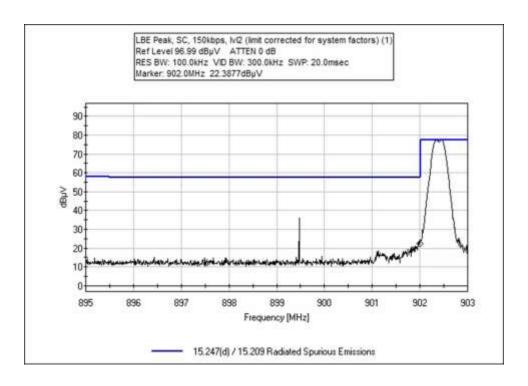
Test Equipment:

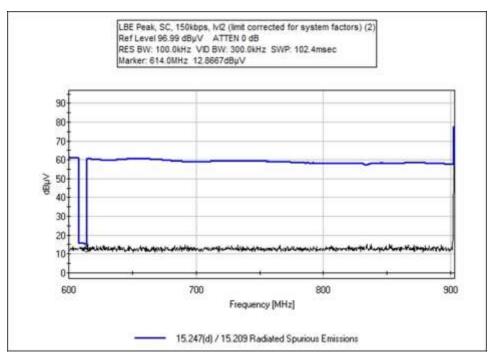
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T2	ANP05360	Cable	RG214	2/4/2022	2/4/2024
Т3	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T4	ANP05333	Cable	Heliax	3/14/2022	3/14/2024
T5	AN02307	Preamp	8447D	1/6/2022	1/6/2024
	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
T6	AN03540	Preamp	83017A	5/14/2021	5/14/2023
T7	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
T8	ANP07505	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
Т9	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023

Page 23 of 41 Report No.: 107749-2

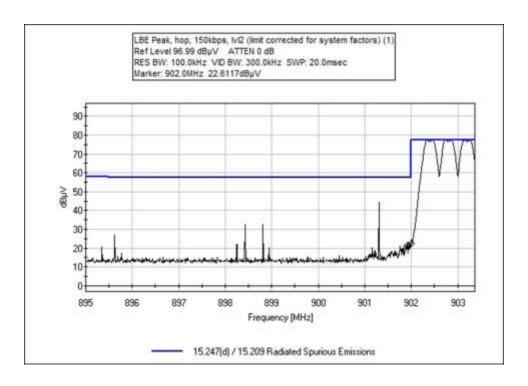
Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	ı	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	2745.690M	41.8	+0.0	+0.0	+0.5	+2.8	+0.0	41.1	54.0	-12.9	Horiz
			+0.0	-34.1	+29.3	+0.5					
			+0.3								
2	974.110M	30.2	+30.3	+2.5	+0.3	+1.6	+0.0	37.7	54.0	-16.3	Horiz
			-27.2	+0.0	+0.0	+0.0					
			+0.0								
3	1829.525M	64.0	+0.0	+0.0	+0.4	+2.3	+0.0	60.5	91.2	-30.7	Horiz
			+0.0	-34.7	+27.5	+0.4					
			+0.6								
4	218.670M	36.3	+16.5	+1.0	+0.1	+0.8	+0.0	27.5	91.2	-63.7	Horiz
			-27.2	+0.0	+0.0	+0.0					
			+0.0								
5	229.500M	35.4	+17.1	+1.0	+0.1	+0.8	+0.0	27.3	91.2	-63.9	Horiz
			-27.1	+0.0	+0.0	+0.0					
			+0.0								

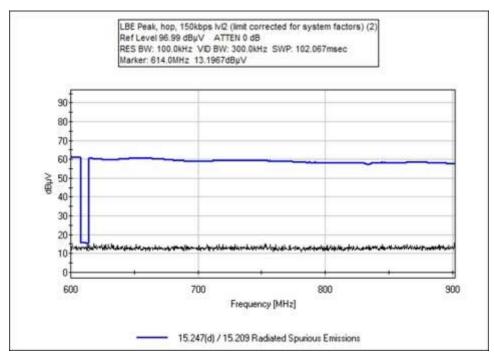
Page 24 of 41 Report No.: 107749-2

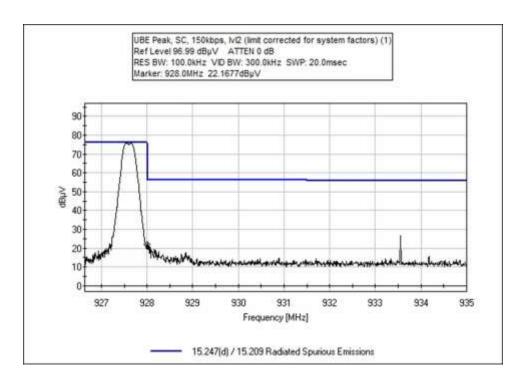

Band Edge

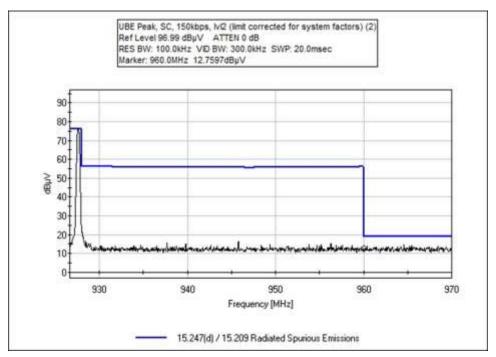

	Band Edge Summary								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614			40.0	<46	Pass				
902	CEC.	Type F	56.1	<91.2	Pass				
928	GFSK		57.1	<91.2	Pass				
960			47.8	<54	Pass				
614			40.0	<46	Pass				
902	GFSK	Туро Г	56.3	<91.2	Pass				
928		Type F	55.2	<91.2	Pass				
960			47.4	<54	Pass				

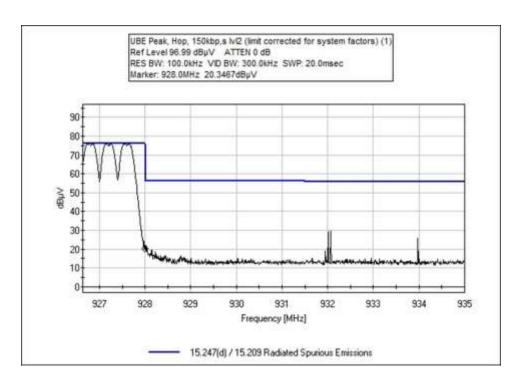
Page 25 of 41 Report No.: 107749-2

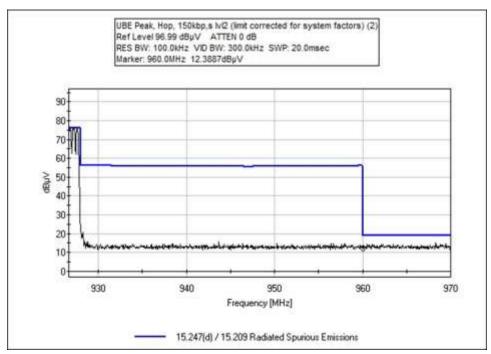



Band Edge Plots









Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 107749 Date: 1/31/2023
Test Type: Radiated Scan Time: 12:39:58
Tested By: Matt Harrison Sequence#: 3

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Environmental Conditions: Temperature: 18.6°C Pressure: 100.9 kPa Humidity: 40%

Frequency Range: 600-970MHz Frequency tested: 902.4, 927.6 Firmware power setting: Level 2

EUT Firmware:

Protocol /MCS/Modulation: GFSK 150kbps

Test Method: ANSI C63.10: 2013 Test Mode: Transmitting

Test Setup: EUT is setup in a tabletop configuration. It is 80cm high on a Styrofoam table.

Modifications Added: None

Page 30 of 41 Report No.: 107749-2

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T2	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T3	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T4	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T5	ANP05333	Cable	Heliax	3/14/2022	3/14/2024
	AN02307	Preamp	8447D	1/6/2022	1/6/2024

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	}	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBµV/m	dB	Ant
1	614.000M	9.3	+27.2	+1.9	+0.3	+0.0	+0.0	40.0	46.0	-6.0	Horiz
	QP		+1.3						hop		
2	614.000M	9.3	+27.2	+1.9	+0.3	+0.0	+0.0	40.0	46.0	-6.0	Horiz
	QP		+1.3						SC		
^	614.000M	13.2	+27.2	+1.9	+0.3	+0.0	+0.0	43.9	46.0	-2.1	Horiz
			+1.3						hop		
^	614.000M	12.9	+27.2	+1.9	+0.3	+0.0	+0.0	43.6	46.0	-2.4	Horiz
			+1.3						SC		
5	960.000M	12.8	+30.7	+2.4	+0.3	+0.0	+0.0	47.8	54.0	-6.2	Horiz
			+1.6						SC		
6	960.000M	12.4	+30.7	+2.4	+0.3	+0.0	+0.0	47.4	54.0	-6.6	Horiz
			+1.6						Нор		
7	928.000M	22.2	+30.6	+2.4	+0.3	+0.0	+0.0	57.1	91.2	-34.1	Horiz
			+1.6						SC		
8	902.000M	22.6	+29.6	+2.3	+0.3	+0.0	+0.0	56.3	91.2	-34.9	Horiz
			+1.5						hop		
9	902.000M	22.4	+29.6	+2.3	+0.3	+0.0	+0.0	56.1	91.2	-35.1	Horiz
			+1.5						SC		
10	928.000M	20.3	+30.6	+2.4	+0.3	+0.0	+0.0	55.2	91.2	-36.0	Horiz
			+1.6						Нор		

Page 31 of 41 Report No.: 107749-2

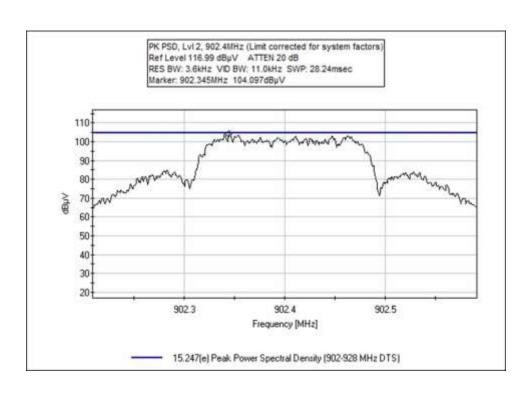
Test Setup Photo(s)

Below 1GHz

Page 32 of 41 Report No.: 107749-2

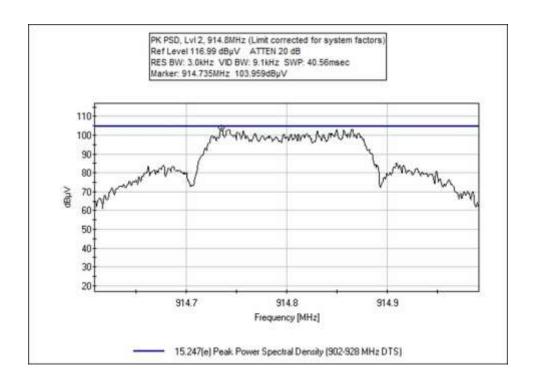
Above 1GHz, View #1

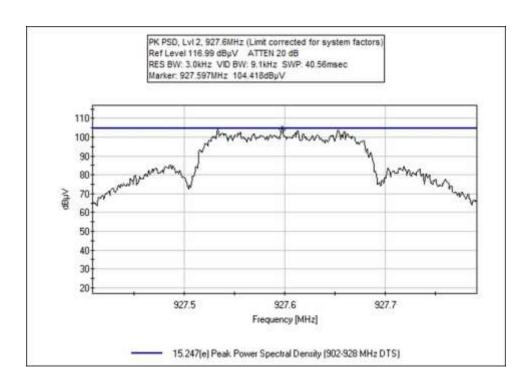
Above 1GHz, View #2


15.247 (f) Hybrid Systems Power Spectral Density

15.247 (f) Power Spectral Density

Power Spectral Density


Test Data Summary - RF Conducted Measurement							
Measurement M	1ethod: PKPSD						
Frequency (MHz)	Modulation	Measured (dBm/3kHz)	Limit (dBm/3kHz)	Results			
902.4	GFSK	7.5	≤8	Pass			
914.8	GFSK	7.5	≤8	Pass			
927.6	GFSK	7.9	≤8	Pass			


Plot Data

Page 34 of 41 Report No.: 107749-2

Test Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: **Itron, Inc.**

Specification: 15.247(e) Peak Power Spectral Density (902-928 MHz DTS)

Work Order #: 107749 Date: 2/27/2023
Test Type: Conducted Emissions Time: 13:19:36
Tested By: Matt Harrison Sequence#: 6

Software: EMITest 5.03.20 6VDC

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Environmental Conditions: Temperature: 18.6°C Pressure: 100.9 kPa Humidity: 40%

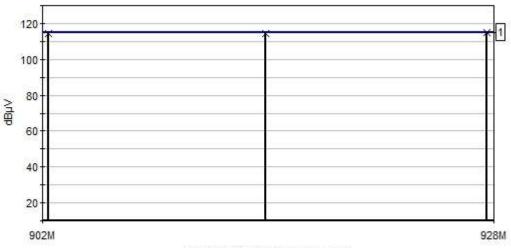
Frequency Range: Fundamental Frequency tested: 902.4, 914.8, 927.6 Firmware power setting: Level 2

EUT Firmware:

Protocol /MCS/Modulation: GFSK 150kbps

Test Method: ANSI C63.10: 2013

Test Mode: Transmitting


Test Setup: EUT is setup for conducted measurement. It is directly connected to the Analyzer via cable and attenuator

Modifications Added: None

Page 36 of 41 Report No.: 107749-2

ttron, Inc. WO#: 107749 Sequence#: 6 Date: 2/27/2023 15.247(e) Peak Power Spectral Density (902-928 MHz DTS) Test Lead: 6VDC RF Port

Frequency [k=kHz M=MHz G=GHz]

Readings

1 - 15.247(e) Peak Power Spectral Density (902-928 MHz DTS)

Peak Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06007	Cable	Heliax	3/14/2022	3/14/2024
	AN03807	Spectrum Analyzer	E4440A	12/14/2022	12/14/2024

Measu	rement Data:	Reading listed by margin.				Test Lead: RF Port					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	927.597M	104.4	+10.1	+0.4			+0.0	114.9	115.0	-0.1	RF Po
2	914.735M	104.0	+10.1	+0.4			+0.0	114.5	115.0	-0.5	RF Po
3	902.345M	104.1	+10.1	+0.3			+0.0	114.5	115.0	-0.5	RF Po

Page 37 of 41 Report No.: 107749-2

Test Setup Photo(s)

Page 38 of 41 Report No.: 107749-2

Appendix A: Manufacturer Declaration

The following model have been tested by CKC Laboratories:

Device: Intelis Gas 250 Model: MTR-7200-002

The Intelis Gas 250, Model: MTR-7200-002 are representative of worst-case testing of the following models per the manufacturer:

The manufacturer declares that the following additional models are identical electrically or any differences between them do not affect their EMC characteristics, and therefore meets the level of testing equivalent to the tested model.

Equivalent Models:

Equivalent Models.		
Device	Manufacturer	Model #
Intelis Gas 250	Itron, Inc.	MTR-7200-003
Intelis Gas 250	Itron, Inc.	MTR-7200-004
Intelis Gas 250	Itron, Inc.	MTR-7200-005
Intelis Gas 250	Itron, Inc.	MTR-7200-006
Intelis Gas 250	Itron, Inc.	MTR-7200-007
Intelis Gas 250	Itron, Inc.	MTR-7200-102
Intelis Gas 250	Itron, Inc.	MTR-7200-103
Intelis Gas 250	Itron, Inc.	MTR-7200-104
Intelis Gas 250	Itron, Inc.	MTR-7200-105
Intelis Gas 250	Itron, Inc.	MTR-7200-106
Intelis Gas 250	Itron, Inc.	MTR-7200-107

Page 39 of 41 Report No.: 107749-2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS							
	Meter reading (dBμV)							
+	Antenna Factor	(dB/m)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBμV/m)						

Page 40 of 41 Report No.: 107749-2

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 41 of 41 Report No.: 107749-2