

North 710, Yihua Building, Shennan Road, Futian District, Shenzhen, P. R. China

Telephone: +86-755-29451282,

Fax: +86-755-22639141

Report No.: FCC12-RTE082104

Page 1 of 39

FCC REPORT

Applicant: Seco Larm USA Inc

Address of Applicant: 16842 Millikan Avenue, Irvine, California, United States

Equipment Under Test (EUT)

Product Name: Wireless HDMI

Model No.: MVE-WH010Q/T

FCC ID: ERYMVE-WH010QT

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.407:2010

Date of sample receipt: June 28, 2012

Date of Test: July 3 ~ August 10, 2012

Date of report issue: August 21, 2012

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Kavin Yu Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the EBO product certification mark. The manufacturer should ensure that all product in sories production are in conformity with the product cample detailed in this report.

all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of EBO International Electrical Approvals or testing done by EBO International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by EBO International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC12-RTE082104 Page 2 of 39

2 Contents

			Page
1	CO	VER PAGE	1
2	CO	NTENTS	2
3	TES	ST SUMMARY	3
4	GEI	NERAL INFORMATION	4
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	CLIENT INFORMATION GENERAL DESCRIPTION OF E.U.T. TEST MODE TEST FACILITY TEST LOCATION. OTHER INFORMATION REQUESTED BY THE CUSTOMER TEST INSTRUMENTS LIST	
5	TES	ST RESULTS AND MEASUREMENT DATA	7
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	ANTENNA REQUIREMENT: CONDUCTED EMISSIONS PEAK TRANSMIT POWER POWER SPECTRAL DENSITY PEAK EXCURSION UNDESIRABLE EMISSION BAND EDGE RADIATED EMISSION FREQUENCY STABILITY	
6	TES	ST SETUP PHOTO	38
7	FII	I CONSTRUCTIONAL DETAILS	39

Report No.: FCC12-RTE082104

Page 3 of 39

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	PASS
AC Power Line Conducted Emission	15.207	PASS
Peak Transmit Power	15.407(a)(1)	PASS
Power Spectral Density	15.407(a)(1)	PASS
Peak Excursion	15.407(a)(6)	PASS
Undesirable Emission	15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.205	PASS
Frequency Stability	15.407(f)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Fail: The EUT does not comply with the essential requirements in the standard.

Report No.: FCC12-RTE082104

Page 4 of 39

4 General Information

4.1 Client Information

Applicant:	Seco Larm USA Inc
Address of Applicant:	16842 Millikan Avenue, Irvine, California, United States
Manufacturer/ Factory:	HANK Electronics Ltd.
Address of Manufacturer/ Factory:	2nd floor, Block B9 & 8th floor Block B20, Hengfeng Industrial City, Xixiang Town Baoan District, Shenzhen, China

4.2 General Description of E.U.T.

Product Name:	Wireless HDMI
Model No.:	MVE-WH010Q/T
Operation Frequency:	5190MHz, 5230MHz; 5755MHz, 5795MHz
Channel numbers:	4
Test Frequency:	5190MHz, 5230MHz
Modulation technology:	OFDM
Antenna Type:	PCB Antenna (Transmit antenna: 4pcs; receive antenna: 1pcs)
Antenna gain:	2dBi
Power supply:	Adapter Trade mark:GOSPELL
	Adapter Model:GP005U-050-200
	Adapter Input:100-240VAC, 50/60Hz, 0.5A
	Adapter Output:5VDC, 2.0A 10VA max

4.3 Test mode

Operation mode	Keep the EUT in transmitting MIMO mode with modulation.
Operation mode	EUT transmitting at 100 % duty cycle at its maximum power control level

Report No.: FCC12-RTE082104

Page 5 of 39

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, July 20, 2010.

Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

4.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

4.6 Other Information Requested by the Customer

None.

Report No.: FCC12-RTE082104

Page 6 of 39

4.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS201	Mar. 30 2011	Mar. 29 2013		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS202	N/A	N/A		
		Rohde & Schwarz	ESU26	GTS203	Jul. 03 2012	Jul. 02 2013		
4	Spectrum analyzer	Rohde & Schwarz	FSP40	GTS203	Sep. 8 2012	Sep. 7 2013		
5	8-WAY Power Divider	JFW	50PD-647	GTS203	Sep. 8 2012	Sep. 7 2013		
6	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS204	Feb. 25 2012	Feb. 24 2013		
7	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS205	June 29 2012	June 28 2013		
8	Horn Antenna	SCHWARZBECK MESS-ELEKTRONIK	9170	GTS205	Mar. 30 2011	Mar. 29 2013		
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
10	Coaxial Cable	GTS	N/A	GTS400	Mar. 31 2012	Mar. 30 2013		
11	Coaxial Cable	GTS	N/A	GTS401	Mar. 31 2012	Mar. 30 2013		
12	Coaxial cable	GTS	N/A	GTS402	Mar. 31 2012	Mar. 30 2013		
13	Coaxial Cable	GTS	N/A	GTS407	Mar. 31 2012	Mar. 30 2013		
14	Coaxial Cable	GTS	N/A	GTS408	Mar. 31 2012	Mar. 30 2013		
15	Amplifier	Sonnoma Instrument	305-1052	GTS210	Jul. 03 2012	Jul. 02 2013		
16	Amplifier	HP	8349B	GTS231	Jul. 03 2012	Jul. 02 2013		

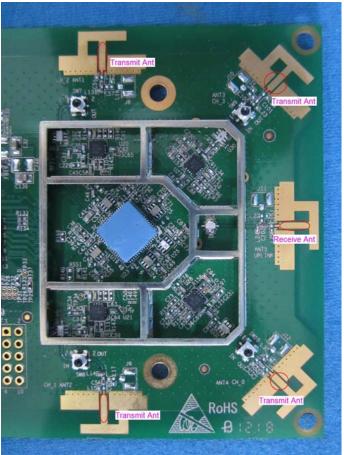
Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)				
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS206	Jul. 03 2012	Jul. 02 2013				
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS208	Jul. 03 2012	Jul. 02 2013				
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS209	Jul. 03 2012	Jul. 02 2013				
4	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS207	Jul. 03 2012	Jul. 02 2013				
5	Coaxial Cable	GTS	N/A	GTS406	Mar. 31 2012	Mar. 30 2013				
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

Report No.: FCC12-RTE082104

Page 7 of 39

5 Test results and Measurement Data

5.1 Antenna requirement:


Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

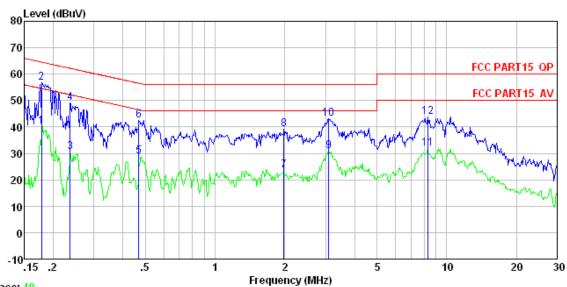
Report No.: FCC12-RTE082104

Page 8 of 39

5.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4: 2003					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz					
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46					
	5-30 60 50					
Test procedure	* Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line					
	impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.					
Test setup:	LISN 40cm		er — AC power			
Test Instruments:	Refer to section 4.7 for details					
Test mode:	Refer to section 4.3 for details					
Test results:	Pass	•				
Test results.	F 4 3 3					

Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: FCC12-RTE082104

Page 9 of 39

Line:

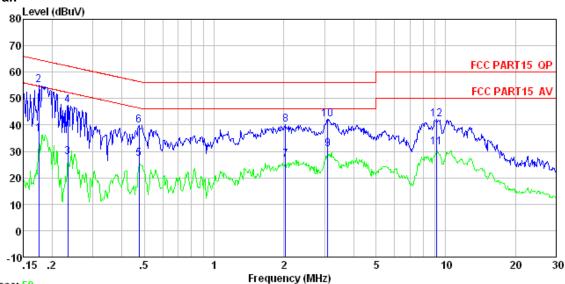
Trace: 48

Site : Shielded room

Condition : FCC PART15 QP LISN(2011) LINE

Job No. : 705RF
Test Mode : Operation
Test Engineer: HuXiaohe
Remark : Transmitter

	: Iran	ısmıtte:					
	Read	LISN	Cable		Limit	Over	
Freq	Level	Factor	Loss	Level	Line	Limit	Remark
\mathtt{MHz}	dBu∀	dΒ	dВ	dBu∀	dBu∀	dΒ	
		0.67	0.10	40.17	54.55	-14.38	Average
0.179	55.86	0.67	0.10	56.63	64.55	-7.92	QP
0.237	29.70	0.64	0.10	30.44	52.22	-21.78	Average
0.237	48.32	0.64	0.10	49.06	62.22	-13.16	QP
0.469	28.30	0.56	0.10	28.96	46.54	-17.58	Average
0.469	41.96	0.56	0.10	42.62	56.54	-13.92	QP
1.980	23.20	0.40	0.10	23.70	46.00	-22.30	Average
1.980	38.51	0.40	0.10	39.01	56.00	-16.99	QP
3.090	30.30	0.35	0.10	30.75	46.00	-15.25	Average
3.090	42.59	0.35	0.10	43.04	56.00	-12.96	QP
8.323	31.27	0.24	0.18	31.69	50.00	-18.31	Average
8.323	43.43	0.24	0.18	43.85	60.00	-16.15	QP
	MHz 0.179 0.179 0.237 0.237 0.469 0.469 1.980 1.980 3.090 3.090 8.323	Read Freq Level MHz dBuV 0.179 39.40 0.179 55.86 0.237 29.70 0.237 48.32 0.469 28.30 0.469 41.96 1.980 23.20 1.980 38.51 3.090 30.30 3.090 42.59 8.323 31.27	Read LISN Level Factor MHz dBuV dB 0.179 39.40 0.67 0.179 55.86 0.67 0.237 29.70 0.64 0.237 48.32 0.64 0.469 28.30 0.56 0.469 41.96 0.56 1.980 23.20 0.40 1.980 38.51 0.40 3.090 30.30 0.35 3.090 42.59 0.35 8.323 31.27 0.24	Freq Level Factor Loss MHz dBuV dB dB 0.179 39.40 0.67 0.10 0.179 55.86 0.67 0.10 0.237 29.70 0.64 0.10 0.237 48.32 0.64 0.10 0.469 28.30 0.56 0.10 0.469 41.96 0.56 0.10 1.980 23.20 0.40 0.10 1.980 38.51 0.40 0.10 3.090 30.30 0.35 0.10 3.090 42.59 0.35 0.10 8.323 31.27 0.24 0.18	Read LISN Cable Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.179 39.40 0.67 0.10 40.17 0.179 55.86 0.67 0.10 56.63 0.237 29.70 0.64 0.10 30.44 0.237 48.32 0.64 0.10 49.06 0.469 28.30 0.56 0.10 28.96 0.469 41.96 0.56 0.10 23.70 1.980 23.20 0.40 0.10 23.70 1.980 38.51 0.40 0.10 39.01 3.090 30.30 0.35 0.10 30.75 3.090 42.59 0.35 0.10 43.04 8.323 31.27 0.24 0.18 31.69	Read LISN Cable Level Factor Loss Level Limit Line MHz dBuV dB dB dBuV dBuV 0.179 39.40 0.67 0.10 40.17 54.55 0.179 55.86 0.67 0.10 56.63 64.55 0.237 29.70 0.64 0.10 30.44 52.22 0.237 48.32 0.64 0.10 49.06 62.22 0.469 28.30 0.56 0.10 28.96 46.54 0.469 41.96 0.56 0.10 42.62 56.54 1.980 23.20 0.40 0.10 23.70 46.00 3.090 30.30 0.35 0.10 30.75 46.00 3.090 42.59 0.35 0.10 43.04 56.00 8.323 31.27 0.24 0.18 31.69 50.00	Read LISN Cable Level Factor Loss Level Line Limit Over Line Limit MHz dBuV dB dB dBuV dBuV dB 0.179 39.40 0.67 0.10 40.17 54.55 -14.38 0.179 55.86 0.67 0.10 56.63 64.55 -7.92 0.237 29.70 0.64 0.10 30.44 52.22 -21.78 0.237 48.32 0.64 0.10 49.06 62.22 -13.16 0.469 28.30 0.56 0.10 28.96 46.54 -17.58 0.469 41.96 0.56 0.10 42.62 56.54 -13.92 1.980 23.20 0.40 0.10 23.70 46.00 -22.30 1.980 38.51 0.40 0.10 39.01 56.00 -15.25 3.090 42.59 0.35 0.10 30.75 46.00 -15.25 3.090 42.59 0.35 0.10 43.04 <


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC12-RTE082104

Page 10 of 39

Neutral:

Trace: 50

Site : Shielded room

Condition : FCC PART15 QP LISN(2011) NEUTRAL

Job No. : 705RF
Test Mode : Operation
Test Engineer: HuXiaohe
Remark : Transmitter

MHz dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB		Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2 0.175 54.30 0.67 0.10 55.07 64.72 -9.65 QP 3 0.234 27.20 0.64 0.10 27.94 52.30 -24.36 Average 4 0.234 46.58 0.64 0.10 47.32 62.30 -14.98 QP 5 0.474 26.60 0.56 0.10 27.26 46.45 -19.19 Average 6 0.474 39.17 0.56 0.10 39.83 56.45 -16.62 QP 7 2.033 26.40 0.40 0.10 26.90 46.00 -19.10 Average 8 2.033 39.73 0.40 0.10 40.23 56.00 -15.77 QP 9 3.090 30.36 0.35 0.10 30.81 46.00 -15.19 Average 10 3.090 41.85 0.35 0.10 42.30 56.00 -13.70 QP 11 9.156 31.00 0.23 0.19 31.42 50.00 -18.58 Average	-	MHz	dBu∇	dB	<u>d</u> B	dBu₹	dBu∜	<u>d</u> B	
	3 4 5 6 7 8 9 10	0.175 0.234 0.234 0.474 0.474 2.033 2.033 3.090 9.156	54.30 27.20 46.58 26.60 39.17 26.40 39.73 30.36 41.85 31.00	0.67 0.64 0.64 0.56 0.56 0.40 0.35 0.35	0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 19	55. 07 27. 94 47. 32 27. 26 39. 83 26. 90 40. 23 30. 81 42. 30 31. 42	64.72 52.30 62.30 46.45 56.45 46.00 56.00 56.00 50.00	-9.65 -24.36 -14.98 -19.19 -16.62 -19.10 -15.77 -15.19 -13.70 -18.58	QP Average QP Average QP Average QP Average QP Average QP Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

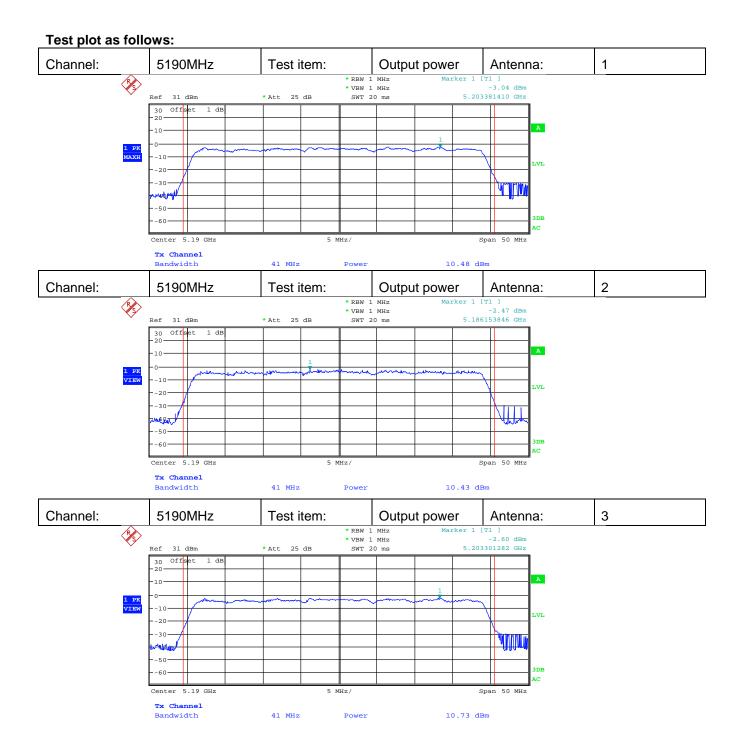
Report No.: FCC12-RTE082104

Page 11 of 39

5.3 Peak Transmit Power

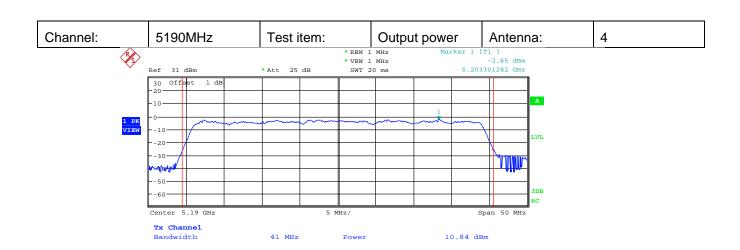
Test Requirement:	FCC Part15 E Section 15.407			
Test Method:	ANSI C63.4: 2003 and KDB 789033			
Limit:	For the band 5.15-5.25 GHz, the peak transmit power over the requency band of operation shall not exceed the lesser of 50 mW or dBm + 10log B, where B is the 26-dB emission bandwidth in MHz.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test procedure:	As an alternative to Publication: 662911 D01, the test method is "measure and sum", In the measure and sum approach, the conducted emission level (e.g., transmit power or power in specified bandwidth) is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units (e.g., mW—not dBm). The EUT peak power was measured with a peak power meter employing a video bandwidth greater than 6dB BW of the emission under test. Peak output power was read directly from the spectrum analyzer across all data rates, Special care was used to make sure that the EUT was transmitting in continuous mode.			
Test Instruments:	Refer to section 4.7 for details			
Test mode:	Refer to section 4.3 for details			
Test results:	Pass			

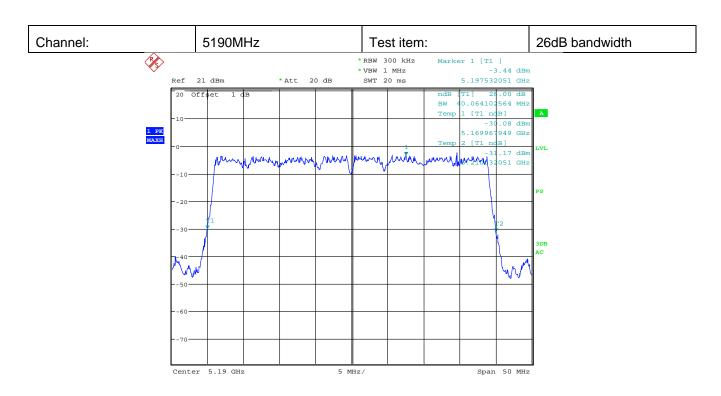
Report No.: FCC12-RTE082104


Page 12 of 39

Measurement Data

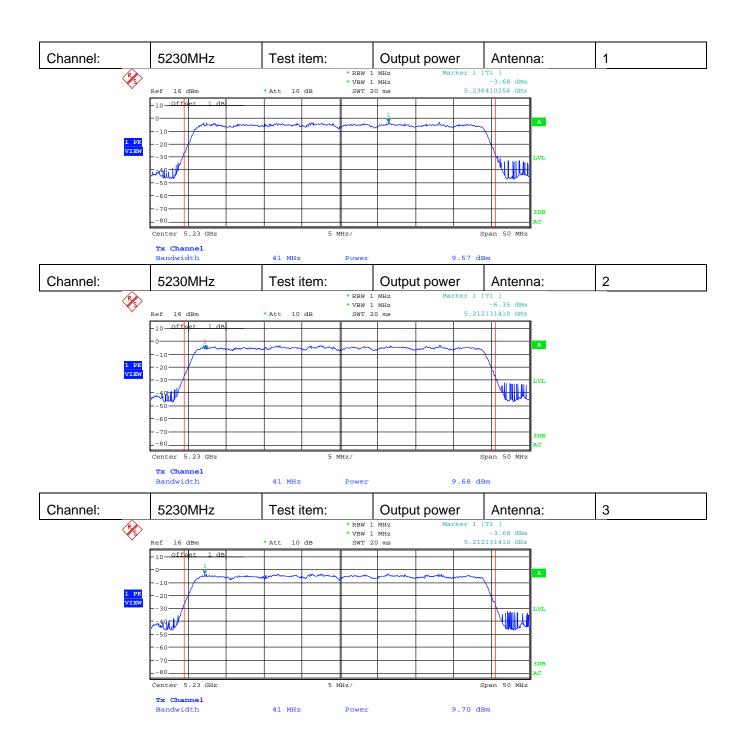
Channel	Antenna	Output power (dBm)	26dB Bandwidth (MHz)	Sum Output Power	dBm	Limit 4dBm+10log(BW)	Result
				(dBm)		3()	
	1	10.48					
5400141	2	10.43	40.00	40.04	47.00	22.22	
5190MHz	3	10.73	40.06	40.06 16.64	17.00	20.02	Pass
	4	10.84					
	1	9.57					
50001411	2	9.68	40.00	45.75	47.00	22.22	
5230MHz	3	9.70	40.06	15.75	17.00	20.02	Pass
	4	9.95					


Report No.: FCC12-RTE082104 Page 13 of 39

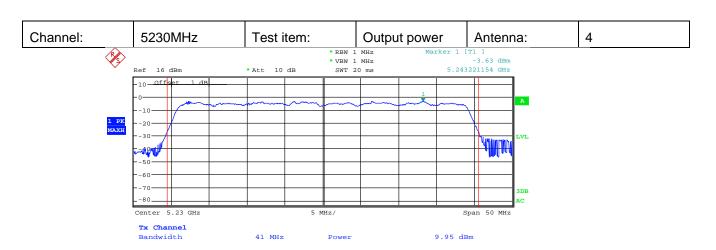


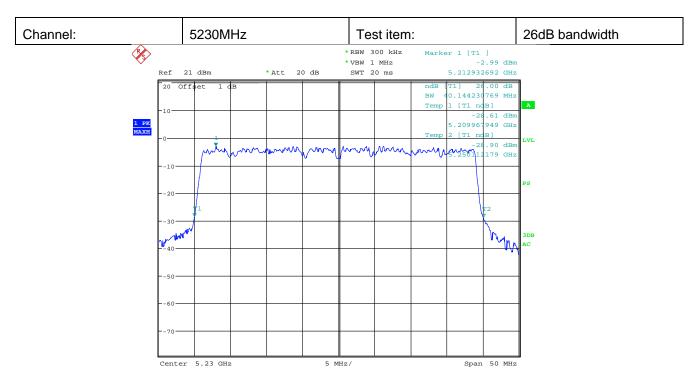
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC12-RTE082104 Page 14 of 39



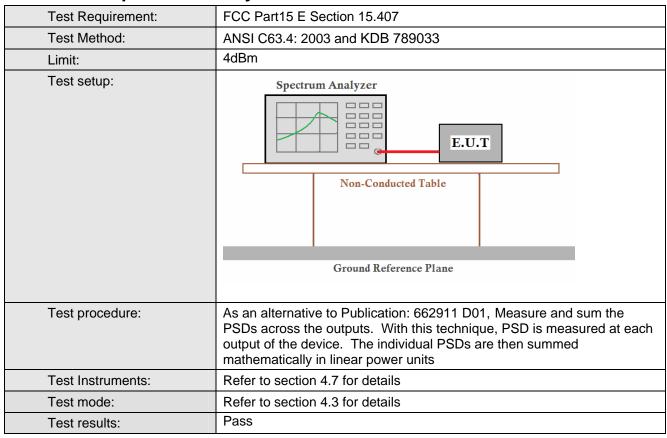
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: FCC12-RTE082104 Page 15 of 39



[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

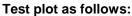
Report No.: FCC12-RTE082104 Page 16 of 39

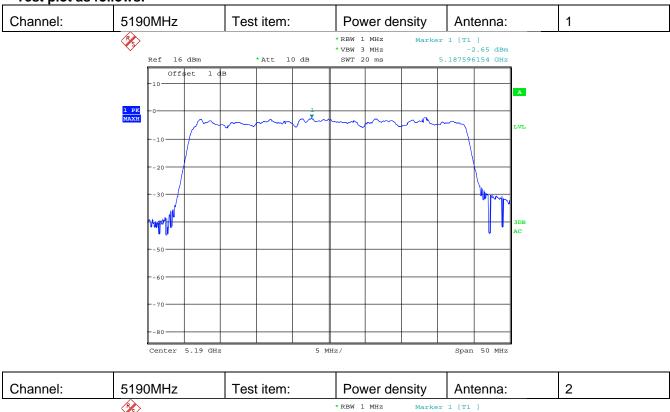

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC12-RTE082104

Page 17 of 39

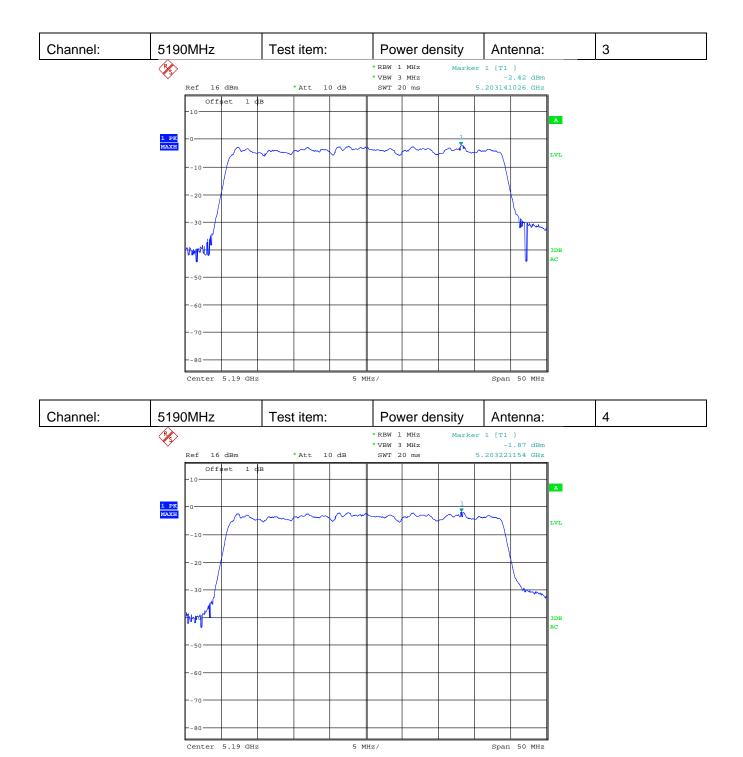
5.4 Power Spectral Density


Measurement Data


Channel	Antenna	Power density (dBm/MHz)	Sum Power density (dBm/MHz)	Limit (dBm/MHz)	Result
	1	-2.65			
	2	-2.75			
Low	3	-2.42	3.61	4.00	Pass
	4	-1.87			
	1	-2.84			
	2	-2.03			_
High	3	-1.98	3.90	4.00	Pass
	4	-1.71			

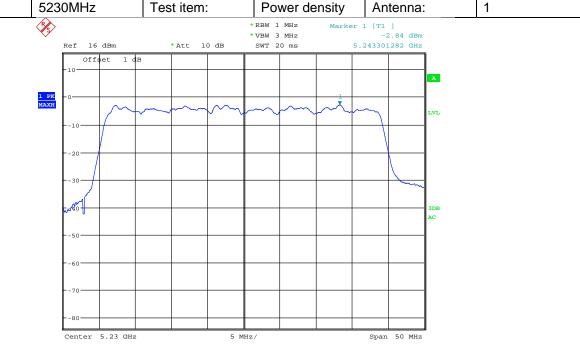
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

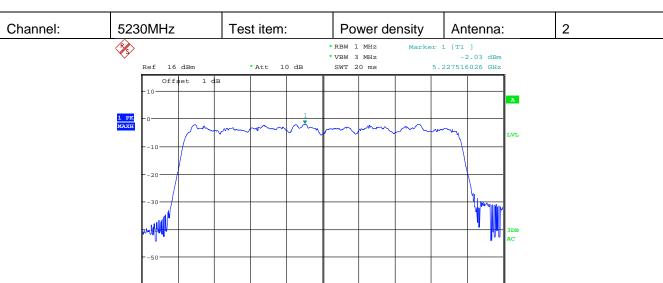
Report No.: FCC12-RTE082104 Page 18 of 39



[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC12-RTE082104 Page 19 of 39


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

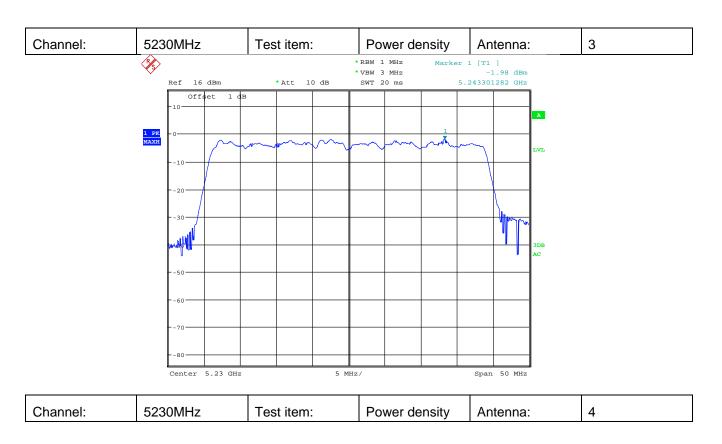


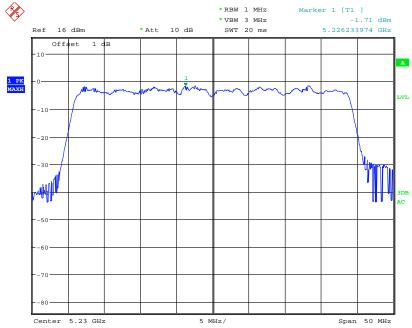
Channel:

Shenzhen EBO Technology Co., Ltd.

Report No.: FCC12-RTE082104 Page 20 of 39

5 MHz/


Span 50 MHz


Center 5.23 GHz

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC12-RTE082104 Page 21 of 39

Report No.: FCC12-RTE082104

Page 22 of 39

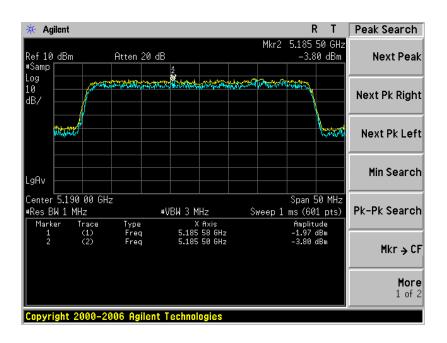
5.5 Peak Excursion

Test Requirement:	FCC Part15 E Section 15.407						
Test Method:	ANSI C63.4: 2003 and KDB 789033						
Limit:	The ratio of the peak excursion of the modulation envelope (measured suing a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test procedure:	The EUT was setup to ANSI C63.4, 2003; tested to KDB 789033 for compliance to FCC 47CFR Subpart E requirements.						
Test Instruments:	Refer to section 4.7 for details						
Test mode:	4 antenna ports were tested, and the worst case is antenna port 4, so the data shows that port's only.						
Test results:	Pass						

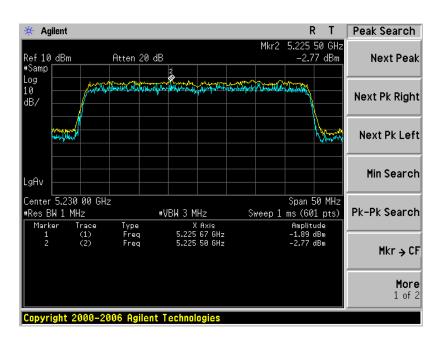
Measurement Data

		•	
Channel	Measurement Level (dB)	Limit (dBm)	Result
5190 MHz	1.83	13.00	Pass
5230 MHz	0.88	13.00	Pass

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



Report No.: FCC12-RTE082104


Page 23 of 39

Test plot as follows:

5190MHz:

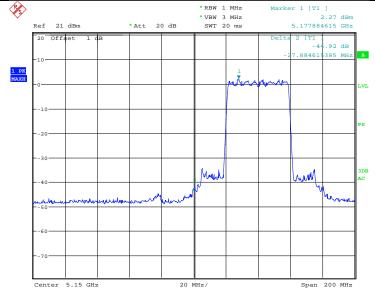
5230MHz:

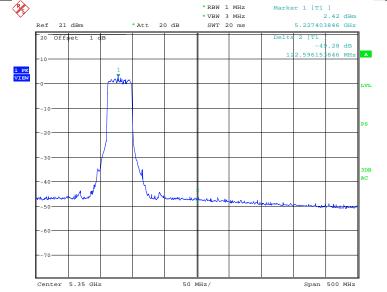
Report No.: FCC12-RTE082104

Page 24 of 39

5.6 Undesirable Emission

Test Requirement:	FCC Part15 E Section 15.407						
Test Method:	ANSI C63.4: 2003						
Limit:	The 20 dB bandwidth of the emission, not exceed in operation frequency range.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test procedure:	The EUT was setup according to ANSI C63.4, 2003 and tested according to FCC KDB 789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.						
	The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level.						
	This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.						
Test Instruments:	Refer to section 4.7 for details						
Test mode:	4 antenna ports were tested, and the worst case is antenna port 4, so the data shows that port's only.						
Test results:	Pass						

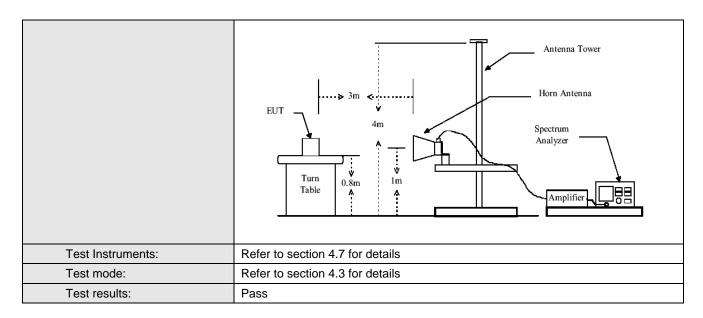

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: FCC12-RTE082104

Page 25 of 39

Operation channel	Reference Frequency (MHz)	Measurement level (dB)	Limit (dB)	Result
5190MHz	5150	-27.88	-20	Pass

Operation channel	Reference Frequency (MHz)	Measurement level (dB)	Limit (dB)	Result
5230MHz	5350	-49.28	-20	Pass


Report No.: FCC12-RTE082104 Page 26 of 39

5.7 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 5.205									
Test Method:	ANSI C63.4: 2003									
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver setup:	Frequency 30MHz-1GHz Above 1GHz	Detector Quasi-peak Peak AV	RBW 100KHz 1MHz 1MHz	VBW 300KHz 3MHz 10Hz	Remark Quasi-peak Value Peak Value Average Value					
Limit:	Frequency Limit (dBuV/m @3m) Rer 30MHz-88MHz 40.0 Quasi-pe 88MHz-216MHz 43.5 Quasi-pe 216MHz-960MHz 46.0 Quasi-pe 960MHz-1GHz 54.0 Quasi-pe Above 1GHz 54.0 Average									
Test Procedure:	ground at a 3 degrees to do degrees to do b. The EUT was which was m d. The antenna to determine vertical polar e. For each sus then the anterotable table reading. f. The test-rece Bandwidth w g. If the emissic specified, the would be reptone to degrees to determine vertical polar e. For each sus then the anterotable table reading. f. The test-rece Bandwidth w g. If the emissic specified, the would be reptone to degree to	B meter semi-and etermine the posts set to operate was set to operate was set 3 meters as ounted on the to height is varied the maximum variations of the arrepected emission was turned from eliver system was the Maximum Holon level of the EU en testing could be orted. Otherwise	echoic camber ition of the high with MIMO money from the ip of a variable from one metalue of the field tenna are set, the EUT was no heights from 0 degrees to set to Peak Eld Mode. JT in peak money the emission of the emission e using peak,	The table was radiation of the service of the servi	receiving antenna, nna tower. ters above the ground oth horizontal and					
Test setup:	Above 1GHz									

Report No.: FCC12-RTE082104 Page 27 of 39

Test channel	:	5190MHz		Rema	ark:	Peak	(
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5100	41.70	32.54	5.26	30.75	48.75	74.00	-25.25	Vertical
5150	43.15	32.58	5.28	30.82	50.19	74.00	-23.81	Vertical
5250	37.57	32.86	5.31	31.05	44.69	74.00	-29.31	Vertical
5350	36.81	32.91	5.32	31.12	43.92	74.00	-30.08	Vertical
5100	44.35	32.54	5.26	30.75	51.40	74.00	-22.60	Horizontal
5150	46.33	32.58	5.28	30.82	53.37	74.00	-20.63	Horizontal
5250	41.29	32.86	5.31	31.05	48.41	74.00	-25.59	Horizontal
5350	41.12	32.91	5.32	31.12	48.23	74.00	-25.77	Horizontal

Test channel	:	5190MHz		Remark: Ave			Aver	age		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
5100	30.19	32.54	5.26	30	.75	37.24	54.	00	-16.76	Vertical
5150	33.23	32.58	5.28	30).82	40.27	54.	00	-13.73	Vertical
5250	28.25	32.86	5.31	31	.05	35.37	54.	00	-18.63	Vertical
5350	26.38	32.91	5.32	31	.12	33.49	54.	00	-20.51	Vertical
5100	32.84	32.54	5.26	30).75	39.89	54.	00	-14.11	Horizontal
5150	36.41	32.58	5.28	30).82	43.45	54.	00	-10.55	Horizontal
5250	31.97	32.86	5.31	31	.05	39.09	54.	00	-14.91	Horizontal
5350	30.69	32.91	5.32	31	.12	37.80	54.	00	-16.20	Horizontal

Report No.: FCC12-RTE082104

Page 28 of 39

Test channel	•	5230MHz			Remark:			Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor IB)	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
5100	39.27	32.54	5.26	30	.75	46.32	74.0	00	-27.68	Vertical
5150	40.72	32.58	5.28	30	.82	47.76	74.	00	-26.24	Vertical
5250	50.61	32.86	5.31	31	.05	57.73	74.	00	-16.27	Vertical
5350	41.05	32.91	5.32	31	.12	48.16	74.	00	-25.84	Vertical
5100	40.76	32.54	5.26	30	.75	47.81	74.	00	-26.19	Horizontal
5150	42.38	32.58	5.28	30	.82	49.42	74.	00	-24.58	Horizontal
5250	52.45	32.86	5.31	31	.05	59.57	74.	00	-14.43	Horizontal
5350	43.12	32.91	5.32	31	.12	50.23	74.	00	-23.77	Horizontal

Test channel	•	5230MHz			Remark:			Aver	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor dB)	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization	
5100	30.76	32.54	5.26	30	.75	37.81	54.	00	-16.19	Vertical	
5150	31.17	32.58	5.28	30	.82	38.21	54.	00	-15.79	Vertical	
5250	39.02	32.86	5.31	31	.05	46.14	54.	00	-7.86	Vertical	
5350	34.18	32.91	5.32	31	.12	41.29	54.	00	-12.71	Vertical	
5100	32.25	32.54	5.26	30).75	39.30	54.	00	-14.70	Horizontal	
5150	32.83	32.58	5.28	30	.82	39.87	54.	00	-14.13	Horizontal	
5250	40.86	32.86	5.31	31	.05	47.98	54.	00	-6.02	Horizontal	
5350	36.25	32.91	5.32	31	.12	43.36	54.	00	-10.64	Horizontal	

According to FCC Part 15.407 (b)(1) for transmitters operating in the 5.15–5.25 GHz band: all emissions out-side of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz.

According to KDB 789033 D01 G(2), the field strength @3m is converted to EIRP as below:

EIRP[dBm] = E[dBuV/m] - 95.2

The calculated result is below:

The ballated recal				
Test channel:	5190MHz	Remark:	Peak	Test channel:
Frequency (MHz)	Field Strength (dBuV/m)	EIRP (dBm)	Limit (dBm/MHz)	polarization
5150	50.19	-45.01	-27	Vertical
5150	53.37	-41.83	-27	Horizontal
Test channel:	5230MHz	Remark:	Peak	
5350	48.16	-47.04	-27	Vertical
5350	50.23	-44.97	-27	Horizontal

^{*} E is the field strength in dBuV/m.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

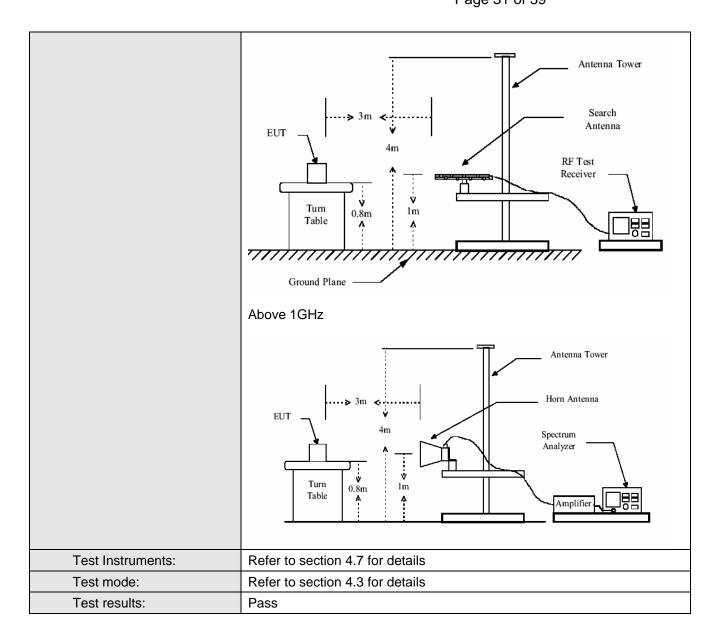
Report No.: FCC12-RTE082104

Page 29 of 39

5.8 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4: 20	03					
Test Frequency Range:	30MHz to 40GH	łz					
Test site:	Measurement D	istance: 3m (Se	emi-Anecho	ic Chambe	r)		
Receiver setup:							
	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
Limit:	I		1: :(/15.)//	/ @a \	Б .		
	Freque	•	Limit (dBuV/		Remark		
	30MHz-8		40.0		Quasi-peak Value		
	88MHz-21		43.5 46.0		Quasi-peak Value Quasi-peak Value		
	216MHz-9 960MHz-		54.0		Quasi-peak Value		
	3001011 12-	TOTIZ	J-1.0	,	Quasi-peak value		
	Freque	ncv	Limit (dBm	n/MHz)	Remark		
	Above 1		-27.0		Peak Value		
Test Procedure:	the ground rotated 360 radiation. 2. The EUT vantenna, wantenna to 4. The antenion the ground Both horizor make the rotate and to the great to 5. For each so case and to meters and degrees to 6. The test-results of the limit spondid not have	of the EUT. Ist procedure as Itest procedure: as placed on the at a 3 meter set of degrees to deter was set to operate was set 3 meters which was mount wer. It to determine the ontal and vertical measurement. It is pected emiss when the antenna of the rotable table of find the maxim exerciver system was andwidth with I sion level of the precified, then tes whe EUT would be one 10dB margin si-peak or avera	te top of a romi-anechoicermine the late with MIM is away from ted on the ted from one maximum all polarization, the EU is a was tuned late was tuned was set to Pie Maximum Heut in peasing could be reported. Would be re	otating table c camber. To position of the interferop of a variation of the authors of the autho	e 0.8 meters above The table was the highest rence-receiving table-height our meters above the field strength, that then a are set to rence to 4 degrees to 360 Function and as 10dB lower than and the peak the emissions that		

Report No.: FCC12-RTE082104 Page 30 of 39


2>. Above 1GHz test procedure: 1. On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to normal use as declared by the provider. 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. 6. Remove the transmitter and replace it with a substitution antenna 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)where: Pg is the generator output power into the substitution antenna. Test setup:

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Below 1GHz

Report No.: FCC12-RTE082104 Page 31 of 39

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: FCC12-RTE082104

Page 32 of 39

Measurement Record:

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio n
47.659	52.74	16.50	0.75	31.98	38.01	40.00	-1.99	Vertical
50.232	52.15	16.35	0.77	31.96	37.31	40.00	-2.69	Vertical
135.032	60.24	11.72	1.47	31.92	41.51	43.50	-1.99	Vertical
195.137	51.65	13.57	1.81	32.13	34.90	43.50	-8.60	Vertical
810.265	44.26	23.15	4.49	31.30	40.60	46.00	-5.40	Vertical
945.440	43.70	23.92	5.03	31.21	41.44	46.00	-4.56	Vertical
47.49	52.87	16.52	0.74	31.98	38.15	40.00	-1.85	Horizontal
50.59	51.25	16.32	0.78	31.96	36.39	40.00	-3.61	Horizontal
189.07	50.14	13.52	1.78	32.11	33.33	43.50	-10.17	Horizontal
270.38	50.07	15.42	2.22	32.17	35.54	46.00	-10.46	Horizontal
406.09	51.63	17.22	2.88	31.87	39.86	46.00	-6.14	Horizontal
675.21	45.27	21.46	4.00	31.16	39.57	46.00	-6.43	Horizontal

Report No.: FCC12-RTE082104

Page 33 of 39

Above 1GHz

Test channel:		5190MHz		Remark:		Peak	
Frequency (MHz)	Read Level (dBm)	Factor (dB)	Lev	/el (dBm)	Limit Line (dBm/MHz)	Over Limit (dB)	polarization
10380	-76.06	30.24		-45.82	-27.00	-18.82	Vertical
15570	-73.09	34.58		-38.51	-27.00	-11.51	Vertical
20760	*	*		*	-27.00	*	Vertical
25950	*	*		*	-27.00	*	Vertical
31140	*	*		*	-27.00	*	Vertical
36330	*	*		*	-27.00	*	Vertical
10380	-73.38	30.24		-43.14	-27.00	-16.14	Horizontal
15570	-74.44	34.58		-39.86	-27.00	-12.86	Horizontal
20760	*	*		*	-27.00	*	Horizontal
25950	*	*		*	-27.00	*	Horizontal
31140	*	*		*	-27.00	*	Horizontal
36330	*	*		*	-27.00	*	Horizontal

Test channel:		5230MHz	Remark	:	Peak		
Frequency (MHz)	Read Level (dBm)	Factor (dB)	Level (dBm)	Limit Line (dBm/MHz)	Over Limit (dB)	polarization	
10460	-74.04	30.58	-43.46	-27.00	-16.46	Vertical	
15690	-74.62	34.86	-39.76	-27.00	-12.76	Vertical	
20920	*	*	*	-27.00	*	Vertical	
26150	*	*	*	-27.00	*	Vertical	
31380	*	*	*	-27.00	*	Vertical	
36610	*	*	*	-27.00	*	Vertical	
10460	-72.74	30.58	-42.16	-27.00	-15.16	Horizontal	
15690	-75.72	34.86	-40.86	-27.00	-13.86	Horizontal	
20920	*	*	*	-27.00	*	Horizontal	
26150	*	*	*	-27.00	*	Horizontal	
31380	*	*	*	-27.00	*	Horizontal	
36610	*	*	*	-27.00	*	Horizontal	

Remark

- 1. " * ", means this data is the too weak instrument of signal is unable to test.
- 2. Level = Reading Level + Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: FCC12-RTE082104

Page 34 of 39

Emissions fall into restricted band

Detector		Peak					
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)		Level BuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
15570	29.14	34.58	(3.72	74.00	-10.28	Vertical
15570	31.19	34.58	(65.77	74.00	-8.23	Horizontal
15690	27.05	34.86	(51.91	74.00	-12.09	Vertical
15690	30.45	34.86	(55.31	74.00	-8.69	Horizontal
Detector		Average					
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)		Level BuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
15570	13.85	34.58	4	48.43	54.00	-5.57	Vertical
15570	15.87	34.58	!	50.45	54.00	-3.55	Horizontal
15690	12.57	34.86	4	17.43	54.00	-6.57	Vertical
15690	14.70	34.86	4	19.56	54.00	-4.44	Horizontal

Report No.: FCC12-RTE082104

Page 35 of 39

5.9 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407							
Test Method:	ANSI C63.4: 2003							
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified							
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to KDB 789033 for compliance to FCC 47CFR Subpart E requirements.							
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector							
Test Instruments:	Refer to section 4.7 for details							
Test mode:	Refer to section 4.3 for details							
Test results:	Pass							

Report No.: FCC12-RTE082104 Page 36 of 39

Measurement data:

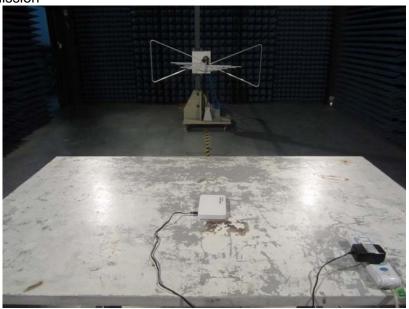
IVICAS	Measurement data.											
	Frequency stability versus Temp.											
	Operating Frequency: 5190MHz											
Temp.	Power	0 minute		2 mir	nute	5 mir	nute	10 minute				
(℃)	supply	Measured	Frequency	Measured	Frequency	Measured	Frequency	Measured	Frequency			
	(Vac)	Frequency	drift (MHz)									
		(MHz)	,	(MHz)		(MHz)	,	(MHz)				
55	120	5190.0033	0.0033	5190.0030	0.0030	5190.0027	0.0027	5190.0023	0.0023			
50	120	5190.0030	0.0030	5190.0030	0.0030	5190.0026	0.0026	5190.0021	0.0021			
40	120	5190.0030	0.0030	5190.0028	0.0028	5190.0023	0.0023	5190.0020	0.0020			
30	120	5190.0025	0.0025	5190.0026	0.0026	5190.0019	0.0019	5190.0018	0.0018			
20	120	5190.0026	0.0026	5190.0027	0.0027	5190.0020	0.0020	5190.0020	0.0020			
10	120	5190.0022	0.0022	5190.0023	0.0023	5190.0018	0.0018	5190.0017	0.0017			
0	120	5190.0021	0.0021	5190.0020	0.0020	5190.0015	0.0015	5190.0015	0.0015			
-10	120	5190.0021	0.0021	5190.0020	0.0020	5190.0014	0.0013	5190.0015	0.0015			
-20	120	5190.0021	0.0021	5190.0016	0.0020	5190.0009	0.0009	5190.0012	0.0013			

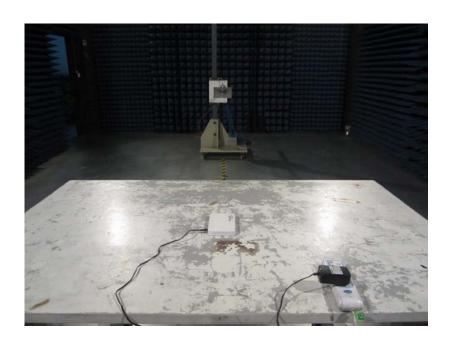
	Frequency stability versus voltage											
	Operating Frequency: 5190MHz											
Temp.	Power	0 minute		2 mir	nute	5 minute		10 minute				
(℃)	supply	Measured	Frequency	Measured	Frequency	Measured	Frequency	Measured	Frequency			
	(Vac)	Frequency	drift (MHz)									
		(MHz)		(MHz)		(MHz)		(MHz)				
	102	5190.0022	0.0022	5190.0023	0.0023	5190.0018	0.0018	5190.0016	0.0016			
20	120	5190.0024	0.0024	5190.0025	0.0025	5190.0018	0.0018	5190.0018	0.0018			
	138	5190.0027	0.0027	5190.0028	0.0028	5190.0020	0.0020	5190.0019	0.0019			

Report No.: FCC12-RTE082104 Page 37 of 39

	Frequency stability versus Temp.											
	Operating Frequency: 5230MHz											
Temp.	Power	0 minute		2 mir		5 minute		10 minute				
		U IIIII	lute	2 11111	lute		lute	10 1111	nute			
(℃)	supply	Measured	Frequency	Measured	Frequency	Measured	Frequency	Measured	Frequency			
	(Vac)	Frequency	drift (MHz)									
		(MHz)		(MHz)		(MHz)		(MHz)				
55	120	5230.0042	0.0042	5230.0037	0.0037	5230.0036	0.0036	5230.0036	0.0036			
50	120	5230.0038	0.0038	5230.0037	0.0037	5230.0034	0.0034	5230.0033	0.0033			
40	120	5230.0037	0.0037	5230.0034	0.0034	5230.0032	0.0032	5230.0032	0.0032			
30	120	5230.0033	0.0033	5230.0032	0.0032	5230.0030	0.0030	5230.0028	0.0028			
20	120	5230.0035	0.0035	5230.0034	0.0034	5230.0031	0.0031	5230.0032	0.0032			
10	120	5230.0033	0.0033	5230.0032	0.0032	5230.0029	0.0029	5230.0028	0.0028			
0	120	5230.0029	0.0029	5230.0028	0.0028	5230.0027	0.0027	5230.0026	0.0026			
-10	120	5230.0031	0.0031	5230.0031	0.0031	5230.0029	0.0029	5230.0029	0.0029			
-20	120	5230.0029	0.0029	5230.0027	0.0027	5230.0028	0.0028	5230.0027	0.0027			

	Frequency stability versus voltage											
	Operating Frequency: 5230MHz											
Temp.	Power	0 minute		2 mir	nute	5 minute		10 minute				
(℃)	supply	Measured	Frequency	Measured	Frequency	Measured	Frequency	Measured	Frequency			
	(Vac)	Frequency	drift (MHz)									
		(MHz)		(MHz)		(MHz)		(MHz)				
	102	5230.0029	0.0029	5230.0029	0.0029	5230.0028	0.0028	5230.0026	0.0026			
20	120	5230.0035	0.0035	5230.0034	0.0034	5230.0031	0.0031	5230.0032	0.0032			
	138	5230.0035	0.0035	5230.0031	0.0031	5230.0030	0.0030	5230.0029	0.0029			




Report No.: FCC12-RTE082104

Page 38 of 39

6 Test Setup Photo

Radiated Emission

Report No.: FCC12-RTE082104

Page 39 of 39

Conducted Emissions

7 EUT Constructional Details

Reference to the test report No.: FCC12-RTE082103

-----end-----