

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Report No.: RFBDKX-WTW-P25080236

FCC ID: EMJKKB726P

Product: Keyboard

Brand: DELL

Model No.: KB726p

Received Date: 2025/8/12

Test Date: 2025/8/19 ~ 2025/9/6

Issued Date: 2025/9/16

Applicant: PRIMAX ELECTRONICS LTD.

Address: No. 669, Ruey Kuang Road, Neihu, Taipei, Taiwan, R.O.C.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

FCC Registration / 198487 / TW2021

Designation Number:

Approved by:

, **Date:**

2025/9/16

Jeremy Lin / Project Engineer

This test report consists of 30 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Annie Chang / Senior Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record	4
1 Certificate.....	5
2 Summary of Test Results	6
2.1 Measurement Uncertainty	6
2.2 Supplementary Information	6
3 General Information	7
3.1 General Description.....	7
3.2 Antenna Description of EUT	7
3.3 Channel List.....	7
3.4 Test Mode Applicability and Tested Channel Detail.....	8
3.5 Duty Cycle of Test Signal.....	8
3.6 Test Program Used and Operation Descriptions.....	9
3.7 Connection Diagram of EUT and Peripheral Devices	9
3.8 Configuration of Peripheral Devices and Cable Connections	9
4 Test Instruments	10
4.1 RF Output Power.....	10
4.2 Power Spectral Density	10
4.3 6 dB Bandwidth	10
4.4 Conducted Out of Band Emissions	10
4.5 Unwanted Emissions below 1 GHz	11
4.6 Unwanted Emissions above 1 GHz.....	12
5 Limits of Test Items.....	13
5.1 RF Output Power.....	13
5.2 Power Spectral Density	13
5.3 6 dB Bandwidth	13
5.4 Conducted Out of Band Emissions	13
5.5 Unwanted Emissions below 1 GHz	13
5.6 Unwanted Emissions above 1 GHz.....	13
6 Test Arrangements.....	14
6.1 RF Output Power.....	14
6.1.1 Test Setup	14
6.1.2 Test Procedure	14
6.2 Power Spectral Density	14
6.2.1 Test Setup	14
6.2.2 Test Procedure	14
6.3 6 dB Bandwidth	15
6.3.1 Test Setup	15
6.3.2 Test Procedure	15
6.4 Conducted Out of Band Emissions	15
6.4.1 Test Setup	15
6.4.2 Test Procedure	15
6.5 Unwanted Emissions below 1 GHz	16
6.5.1 Test Setup	16
6.5.2 Test Procedure	17
6.6 Unwanted Emissions above 1 GHz.....	18
6.6.1 Test Setup	18
6.6.2 Test Procedure	18
7 Test Results of Test Item	19
7.1 RF Output Power.....	19
7.2 Power Spectral Density	20
7.3 6 dB Bandwidth	21
7.4 Conducted Out of Band Emissions	22
7.5 Unwanted Emissions below 1 GHz	23

BUREAU
VERITAS

7.6	Unwanted Emissions above 1 GHz.....	25
8	Pictures of Test Arrangements	29
9	Information of the Testing Laboratories	30

Release Control Record

Issue No.	Description	Date Issued
RFBDKX-WTW-P25080236	Original release.	2025/9/16

1 Certificate

Product: Keyboard

Brand: DELL

Test Model: KB726p

Sample Status: Engineering sample

Applicant: PRIMAX ELECTRONICS LTD.

Test Date: 2025/8/19 ~ 2025/9/6

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Measurement

procedure: ANSI C63.10: 2020

KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)			
Standard / Clause	Test Item	Result	Remark
15.247(b)	RF Output Power	Pass	Meet the requirement of limit.
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.
15.247(a)(2)	6 dB Bandwidth	Pass	Meet the requirement of limit.
15.247(d)	Conducted Out of Band Emissions	Pass	Meet the requirement of limit.
15.207	AC Power Conducted Emissions	N/A	Power supply is from battery.
15.205 / 15.209 / 15.247(d)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -8.7 dB at 38.73 MHz
15.205 / 15.209 / 15.247(d)	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -11.6 dB at 2483.50 MHz
15.203	Antenna Requirement	Pass	No antenna connector is used.

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (\pm)
RF Output Power	-	1.1 dB
Power Spectral Density	-	1.3 dB
6 dB Bandwidth	-	960 Hz
Conducted Out of Band Emissions	9 kHz ~ 40 GHz	2.7 dB
Unwanted Emissions below 1 GHz	9 kHz ~ 30 MHz	2.55 dB
	30 MHz ~ 1 GHz	5.77 dB
Unwanted Emissions above 1 GHz	1 GHz ~ 6 GHz	4.71 dB
	6 GHz ~ 18 GHz	5.3 dB
	18 GHz ~ 40 GHz	4.98 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description

Product	Keyboard
Brand	DELL
Test Model	KB726p
Status of EUT	Engineering sample
Power Supply Rating	3Vdc from batteries
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	1 Mbps
Operating Frequency	2.402 GHz ~ 2.48 GHz
Number of Channel	40
Output Power	1.18 mW (0.72 dBm)

Note:

1. There are Bluetooth and SRD technology used for the EUT.
2. Bluetooth and SRD technology can not transmit at same time.
3. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Antenna Description of EUT

The antenna information is listed as below.

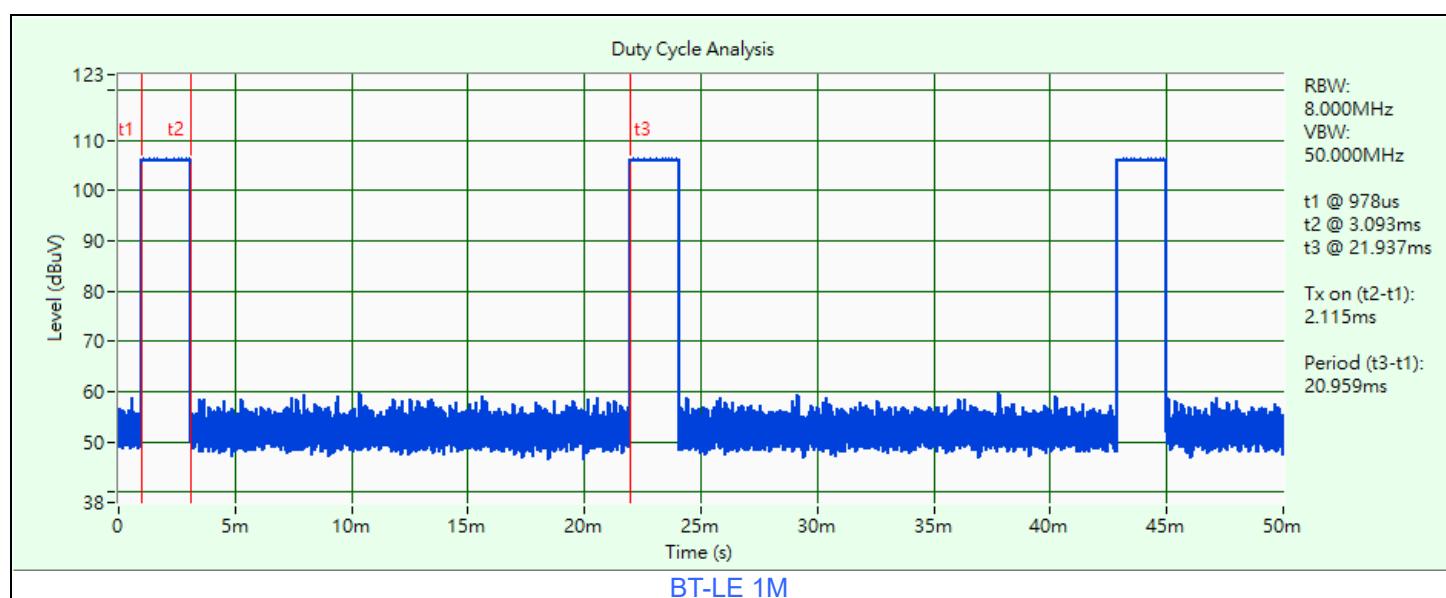
Gain(dBi)	Antenna Type	Connector Type
4.94	PIFA	none

* Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

3.3 Channel List

40 channels are provided for BT-LE:

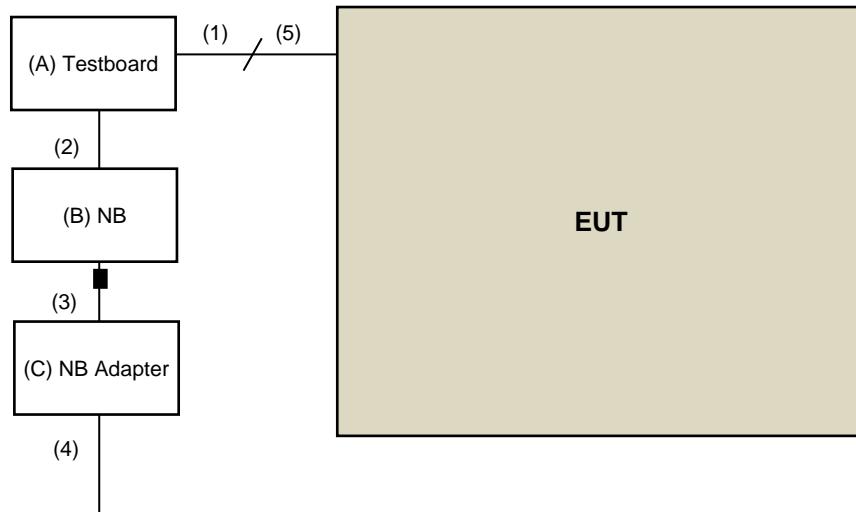
Channel	Frequency (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480


3.4 Test Mode Applicability and Tested Channel Detail

Following channel(s) was (were) selected for the final test as listed below:

Test Item	Mode	Tested Channel	Modulation	Data Rate Parameter
RF Output Power	BT-LE 1M	0, 19, 39	GFSK	1Mb/s
Power Spectral Density	BT-LE 1M	0, 19, 39	GFSK	1Mb/s
6 dB Bandwidth / Conducted Out of Band Emissions	BT-LE 1M	0, 19, 39	GFSK	1Mb/s
Unwanted Emissions below 1 GHz	BT-LE 1M	39	GFSK	1Mb/s
Unwanted Emissions above 1 GHz	BT-LE 1M	0, 19, 39	GFSK	1Mb/s

3.5 Duty Cycle of Test Signal


BT-LE 1M: Duty cycle = $2.115 \text{ ms} / 20.959 \text{ ms} \times 100\% = 10.1\%$

3.6 Test Program Used and Operation Descriptions

Controlling software (uart_cli_v4_20250701 1) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.7 Connection Diagram of EUT and Peripheral Devices

3.8 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A	Testboard	N/A	N/A	N/A	N/A	Supplied by applicant
B	NB	Dell	P90F	N/A	N/A	Provided by Lab
C	NB Adapter	Dell	LA65NS2-01	N/A	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	Testboard cable	1	0.2	N	0	Supplied by applicant
2	USB cable	1	1	Y	0	Provided by Lab
3	DC cable	1	1.9	N	1	Provided by Lab
4	AC cable	1	0.8	N	0	Provided by Lab
5	DC cable	1	0.1	N	0	Supplied by applicant

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Fixed Attenuator Woken	00800A1K01A-20	00800A1K01A-20-02	2025/5/23	2026/5/22
Pulse Power Sensor Anritsu	MA2411B	0738404	2025/5/20	2026/5/19
RF Power Meter Anritsu	ML2495A	0842014	2025/5/20	2026/5/19
Wideband Power Sensor Keysight	N1923A	MY58020002	2025/1/21	2026/1/20

Notes:

1. The test was performed in LK - Oven
2. Tested Date: 2025/9/6

4.2 Power Spectral Density

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Fixed Attenuator Woken	00800A1K01A-20	00800A1K01A-20-02	2025/5/23	2026/5/22
PXA Signal Analyzer Keysight	N9030A	MY54490260	2025/7/24	2026/7/23
Signal Analyzer R&S	FSV40	101042	2024/9/12	2025/9/11
Software	ADT_RF Test Software V6.6.5.4	N/A	N/A	N/A

Notes:

1. The test was performed in LK - Oven
2. Tested Date: 2025/9/6

4.3 6 dB Bandwidth

Refer to section 4.2 to get the tested date and information of the instruments.

4.4 Conducted Out of Band Emissions

Refer to section 4.2 to get the tested date and information of the instruments.

4.5 Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Bi_Log Antenna Schwarzbeck	VULB 9168	137	2024/10/9	2025/10/8
Coupling / Decoupling Network Schwarzbeck	CDNE-M2	00097	2025/5/28	2026/5/27
	CDNE-M3	00091	2025/3/20	2026/3/19
Loop Antenna TESEQ	HLA 6121	64095	2024/10/17	2025/10/16
MXE EMI Receiver Agilent	N9038A	MY50010158	2024/10/11	2025/10/10
Preamplifier Agilent	8447D	2944A11064	2025/2/14	2026/2/13
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2025/6/24	2026/6/23
Signal Analyzer R&S	FSV40	101544	2025/7/1	2026/6/30
Software BVADT	Radiated_V8.7.08	N/A	N/A	N/A
Tower ADT	AT100	0306	N/A	N/A
Turn Table ADT	TT100	0306	N/A	N/A

Notes:

1. The test was performed in Linkou 966 Chamber 6 (CH 6).
2. Tested Date: 2025/8/19

4.6 Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Boresight antenna tower fixture BV	BAF-02	6	N/A	N/A
High Pass Filter Wainwright	WHK 3.1/18G-10SS	SN 8	2025/5/22	2026/5/21
Horn Antenna EMCO	3115	00028257	2024/11/10	2025/11/9
Horn Antenna ETS-Lindgren	3117-PA	00215857	2024/11/10	2025/11/9
Horn Antenna Schwarzbeck	BBHA 9170	212	2024/10/18	2025/10/17
		BBHA9170190	2024/11/10	2025/11/9
MXE EMI Receiver Agilent	N9038A	MY50010158	2024/10/11	2025/10/10
Notch Filter Micro-Tronics	BRC50703-01	010	2025/5/22	2026/5/21
	BRM17690	005	2025/5/22	2026/5/21
Preamplifier EMCI	EMC0126545	980076	2025/2/14	2026/2/13
	EMC184045B	980175	2024/8/25	2025/8/24
		980235	2025/2/14	2026/2/13
Preamplifier HP	8449B	3008A01201	2025/2/14	2026/2/13
RF Coaxial Cable EMCI	EMC104	190801	2025/7/4	2026/7/3
		190804	2025/7/4	2026/7/3
RF Coaxial Cable EMEC	EM102-KMKM-100	02	2025/7/4	2026/7/3
RF Coaxial Cable HUBER+SUHNER	SF-104	Cable-CH6-01	2025/7/4	2026/7/3
Signal Analyzer R&S	FSV40	101042	2024/9/12	2025/9/11
		101544	2025/7/1	2026/6/30
Software BVADT	Radiated_V7.7.1.1.1	N/A	N/A	N/A
Tower ADT	AT100	0306	N/A	N/A
Turn Table ADT	TT100	0306	N/A	N/A

Notes:

1. The test was performed in Linkou 966 Chamber 6 (CH 6).
2. Tested Date: 2025/8/19

5 Limits of Test Items

5.1 RF Output Power

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

5.2 Power Spectral Density

The Maximum of Power Spectral Density Measurement is 8 dBm in any 3 kHz.

5.3 6 dB Bandwidth

The minimum of 6 dB Bandwidth Measurement is 0.5 MHz.

5.4 Conducted Out of Band Emissions

Below 20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

5.5 Unwanted Emissions below 1 GHz

Radiated emissions up to 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

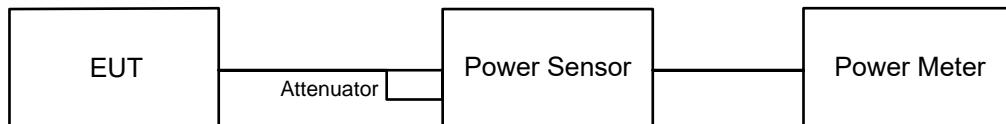
Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

5.6 Unwanted Emissions above 1 GHz

Radiated emissions above 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
Above 960	500	3


Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

6 Test Arrangements

6.1 RF Output Power

6.1.1 Test Setup

6.1.2 Test Procedure

Peak Power:

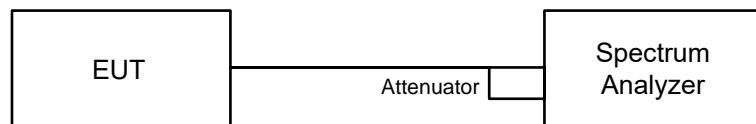
A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average Power:

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

6.2 Power Spectral Density

6.2.1 Test Setup



6.2.2 Test Procedure

- Set analyzer center frequency to DTS channel center frequency.
- Set the span > 1.5 times the DTS bandwidth.
- Set the RBW to: 3 kHz.
- Set the VBW $\geq 3 \times$ RBW.
- Detector = peak.
- Sweep time = No faster than coupled (auto) time.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level within the RBW.

6.3 6 dB Bandwidth

6.3.1 Test Setup

6.3.2 Test Procedure

- Set resolution bandwidth (RBW) = 100 kHz.
- Set the VBW $\geq [3 \times \text{RBW}]$.
- Detector = peak.
- Trace mode = max-hold.
- Sweep = No faster than coupled (auto) time.
- Allow the trace to stabilize.
- Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the “-6 dB down amplitude”. If a marker is below this “-6 dB down amplitude” value, then it shall be as close as possible to this value.

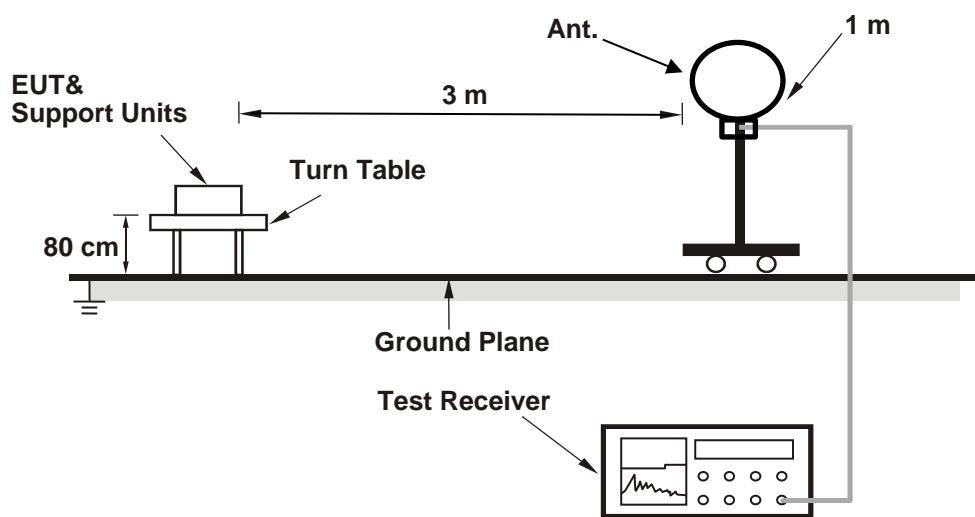
6.4 Conducted Out of Band Emissions

6.4.1 Test Setup

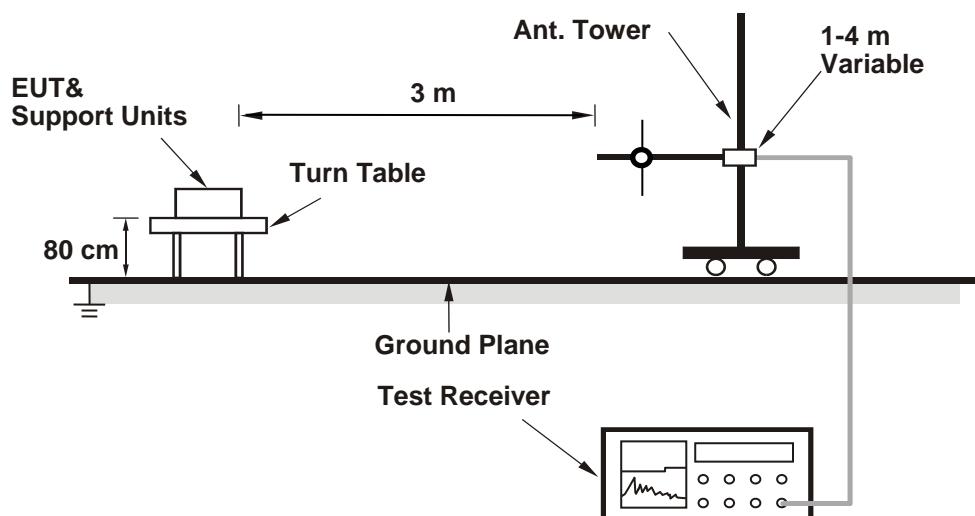
6.4.2 Test Procedure

MEASUREMENT PROCEDURE REF

- Set the RBW = 100 kHz.
- Set the VBW ≥ 300 kHz.
- Detector = peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.


MEASUREMENT PROCEDURE OOB

- Set RBW = 100 kHz.
- Set VBW ≥ 300 kHz.
- Detector = peak.
- Sweep = auto couple.
- Trace Mode = max hold.
- Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level.


6.5 Unwanted Emissions below 1 GHz

6.5.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.5.2 Test Procedure

For Radiated emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-peak(QP) detect function, Average(AV) detect function, Peak(PK) detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
2. All modes of operation were investigated and the worst-case emissions are reported.

6.6 Unwanted Emissions above 1 GHz

6.6.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.6.2 Test Procedure

- The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver/spectrum analyzer was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- For fundamental and harmonic signal measurement, according to KDB 558074 D01 15.247 Meas Guidance v05r02 section 8.1(c)(3). The spectrum analyzer settings meet the requirements of 11.12.2.4 in ANSI C63.10 for making a Peak measurement, the average value = Peak value + duty cycle correction factor. The duty cycle measurement refers to FCC 47 CFR Part 15C section 15.35 (c). For duty cycle correction factor values, see the Test Signal Duty Cycle section in this report.
- All modes of operation were investigated and the worst-case emissions are reported.

7 Test Results of Test Item

7.1 RF Output Power

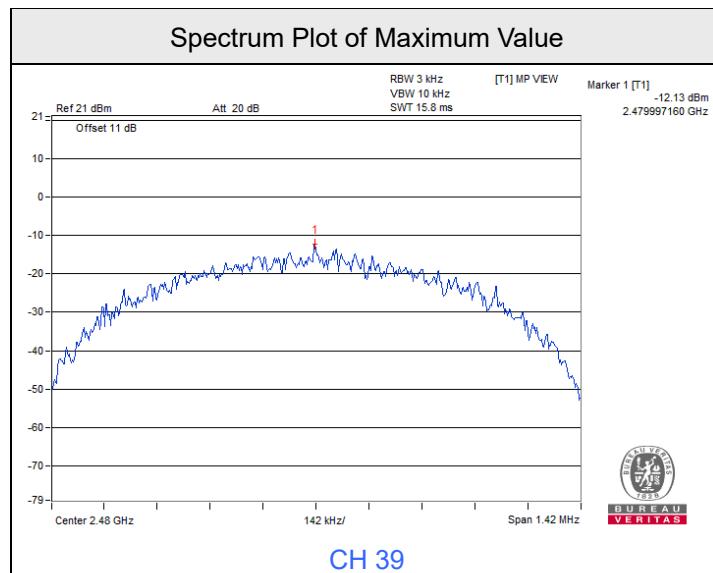
Input Power:	3 Vdc	Environmental Conditions:	25°C, 76% RH	Tested By:	Dalen Dai
--------------	-------	---------------------------	--------------	------------	-----------

For Peak Power

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
0	2402	1.064	0.27	30	Pass
19	2440	1.138	0.56	30	Pass
39	2480	1.18	0.72	30	Pass

Note: The antenna gain is 4.94 dBi <= 6 dBi, so the output power limit shall not be reduced.

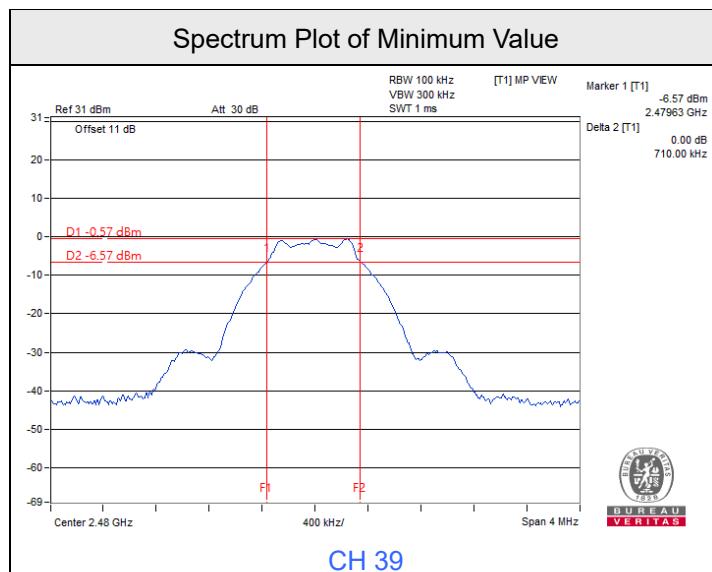
For Average Power


Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	1.009	0.04
19	2440	1.069	0.29
39	2480	1.119	0.49

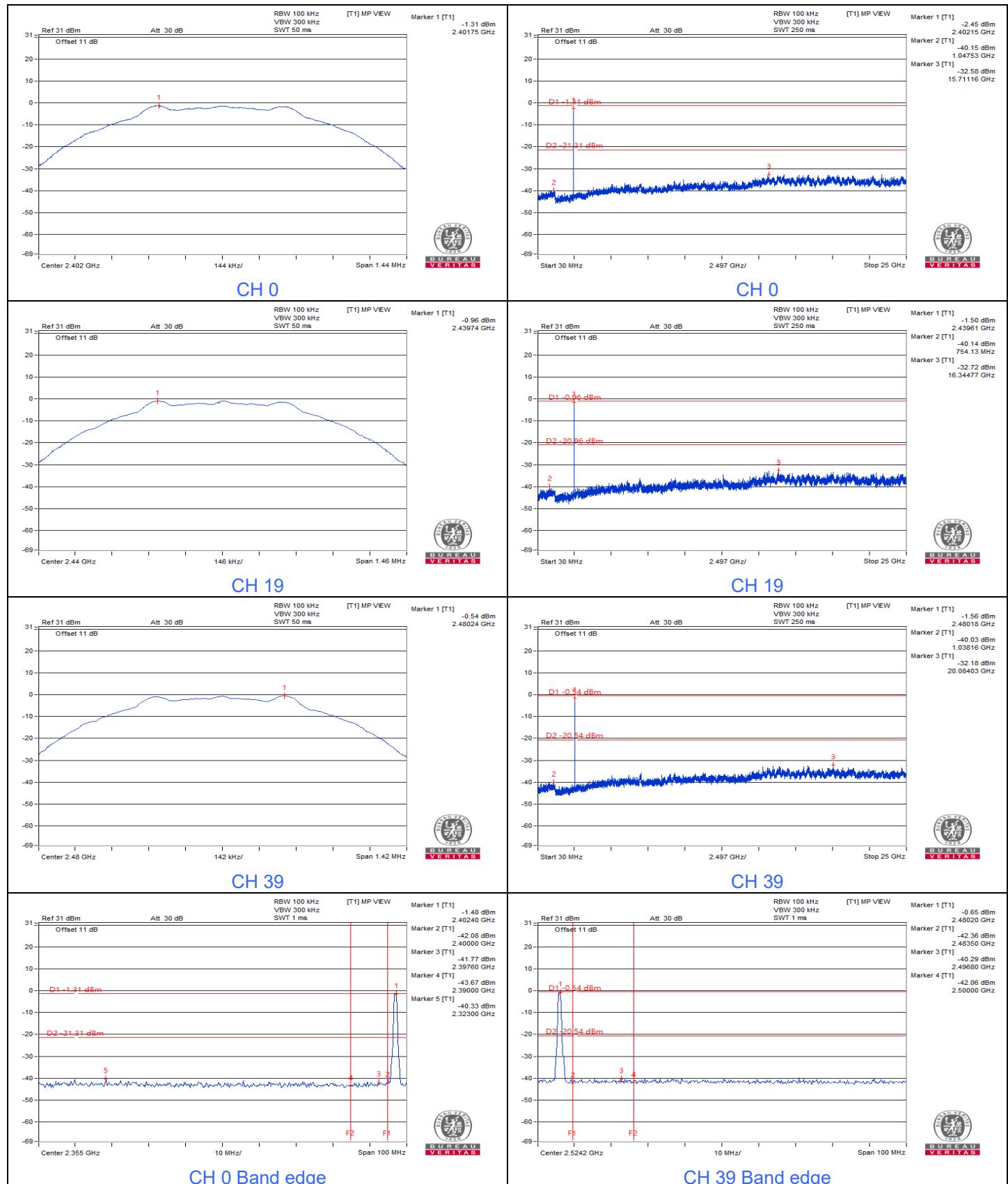
7.2 Power Spectral Density

Input Power:	3 Vdc	Environmental Conditions:	25°C, 76% RH	Tested By:	Dalen Dai
--------------	-------	---------------------------	--------------	------------	-----------

Chan.	Chan. Freq. (MHz)	PSD (dBm/3kHz)	PSD Limit (dBm/3kHz)	Test Result
0	2402	-13.95	8	Pass
19	2440	-13.67	8	Pass
39	2480	-12.13	8	Pass


Note: The antenna gain is 4.94 dBi <= 6 dBi, so the power density limit shall not be reduced.

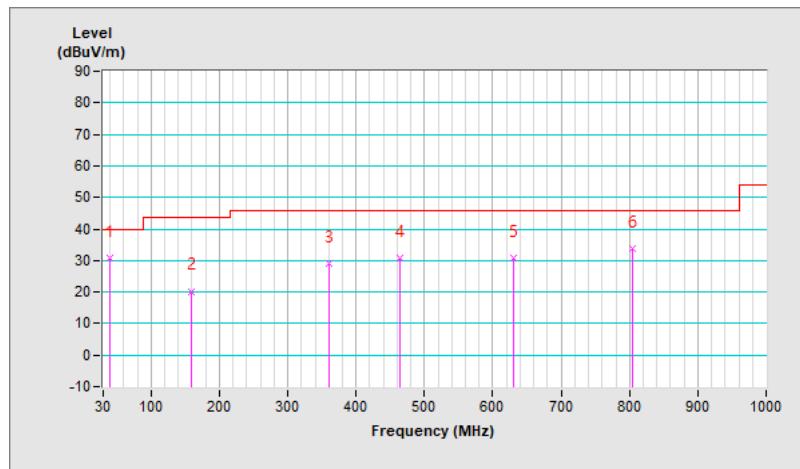
7.3 6 dB Bandwidth


Input Power:	3 Vdc	Environmental Conditions:	25°C, 76% RH	Tested By:	Dalen Dai
--------------	-------	---------------------------	--------------	------------	-----------

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Test Result
0	2402	0.72	0.5	Pass
19	2440	0.73	0.5	Pass
39	2480	0.71	0.5	Pass

7.4 Conducted Out of Band Emissions

Input Power:	3 Vdc	Environmental Conditions:	25°C, 76% RH	Tested By:	Dalen Dai
--------------	-------	---------------------------	--------------	------------	-----------

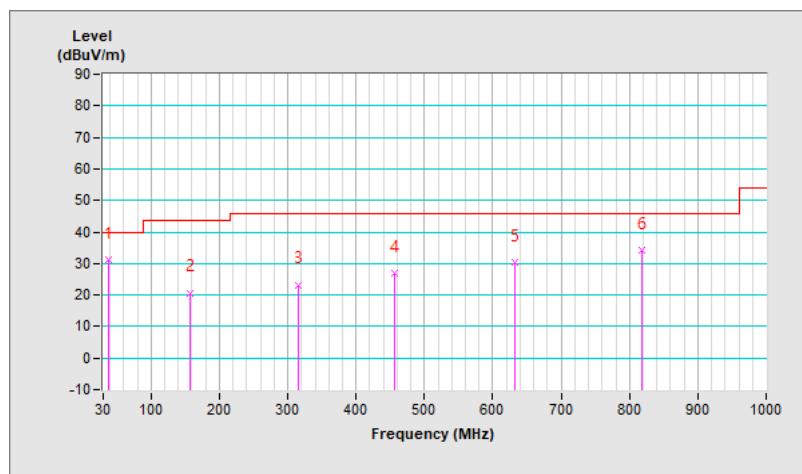

7.5 Unwanted Emissions below 1 GHz

RF Mode	BT-LE 1M	Channel	CH 39 : 2480 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120 kHz, DET=Quasi-Peak
Input Power	3 Vdc	Environmental Conditions	23 °C, 66% RH
Tested By	Dalen Dai		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	39.70	30.8 QP	40.0	-9.2	1.14 H	30	40.3	-9.5
2	159.98	20.3 QP	43.5	-23.2	1.08 H	165	27.9	-7.6
3	359.80	28.9 QP	46.0	-17.1	1.37 H	346	33.2	-4.3
4	463.59	30.9 QP	46.0	-15.1	1.55 H	319	32.7	-1.8
5	629.46	30.7 QP	46.0	-15.3	1.27 H	144	28.5	2.2
6	804.06	33.6 QP	46.0	-12.4	1.40 H	57	27.9	5.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



RF Mode	BT-LE 1M	Channel	CH 39 : 2480 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120 kHz, DET=Quasi-Peak
Input Power	3 Vdc	Environmental Conditions	23 °C, 66% RH
Tested By	Dalen Dai		

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	38.73	31.3 QP	40.0	-8.7	1.58 V	286	40.9	-9.6
2	158.04	20.7 QP	43.5	-22.8	1.71 V	56	28.4	-7.7
3	316.15	23.3 QP	46.0	-22.7	1.39 V	132	28.3	-5.0
4	455.83	26.9 QP	46.0	-19.1	1.92 V	111	28.8	-1.9
5	631.40	30.2 QP	46.0	-15.8	1.45 V	190	28.0	2.2
6	818.61	34.1 QP	46.0	-11.9	2.17 V	3	28.2	5.9

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

7.6 Unwanted Emissions above 1 GHz

RF Mode	BT-LE 1M	Channel	CH 0 : 2402 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS
Input Power	3 Vdc	Environmental Conditions	23 °C, 66% RH
Tested By	Dalen Dai		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	52.7 PK	74.0	-21.3	1.53 H	265	53.4	-0.7
2	2390.00	41.9 AV	54.0	-12.1	1.53 H	265	42.6	-0.7
3	*2402.00	97.5 PK			1.53 H	265	98.1	-0.6
4	*2402.00	77.6 AV			1.53 H	265	78.2	-0.6
5	4804.00	49.1 PK	74.0	-24.9	1.29 H	151	42.0	7.1
6	4804.00	29.2 AV	54.0	-24.8	1.29 H	151	22.1	7.1
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	52.3 PK	74.0	-21.7	3.67 V	270	53.0	-0.7
2	2390.00	41.2 AV	54.0	-12.8	3.67 V	270	41.9	-0.7
3	*2402.00	95.6 PK			3.67 V	270	96.2	-0.6
4	*2402.00	75.7 AV			3.67 V	270	76.3	-0.6
5	4804.00	48.6 PK	74.0	-25.4	2.64 V	285	41.5	7.1
6	4804.00	28.7 AV	54.0	-25.3	2.64 V	285	21.6	7.1

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:

$$20 \log(\text{Duty cycle}) = 20 \log(2.115 \text{ ms} / 20.959 \text{ ms}) = -19.9 \text{ dB}$$

BUREAU
VERITAS

RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS
Input Power	3 Vdc	Environmental Conditions	23 °C, 66% RH
Tested By	Dalen Dai		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	98.0 PK			1.46 H	261	98.5	-0.5
2	*2440.00	78.1 AV			1.46 H	261	78.6	-0.5
3	4880.00	49.5 PK	74.0	-24.5	1.22 H	145	42.0	7.5
4	4880.00	29.6 AV	54.0	-24.4	1.22 H	145	22.1	7.5
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	95.9 PK			3.71 V	265	96.4	-0.5
2	*2440.00	76.0 AV			3.71 V	265	76.5	-0.5
3	4880.00	48.9 PK	74.0	-25.1	2.59 V	282	41.4	7.5
4	4880.00	29.0 AV	54.0	-25.0	2.59 V	282	21.5	7.5

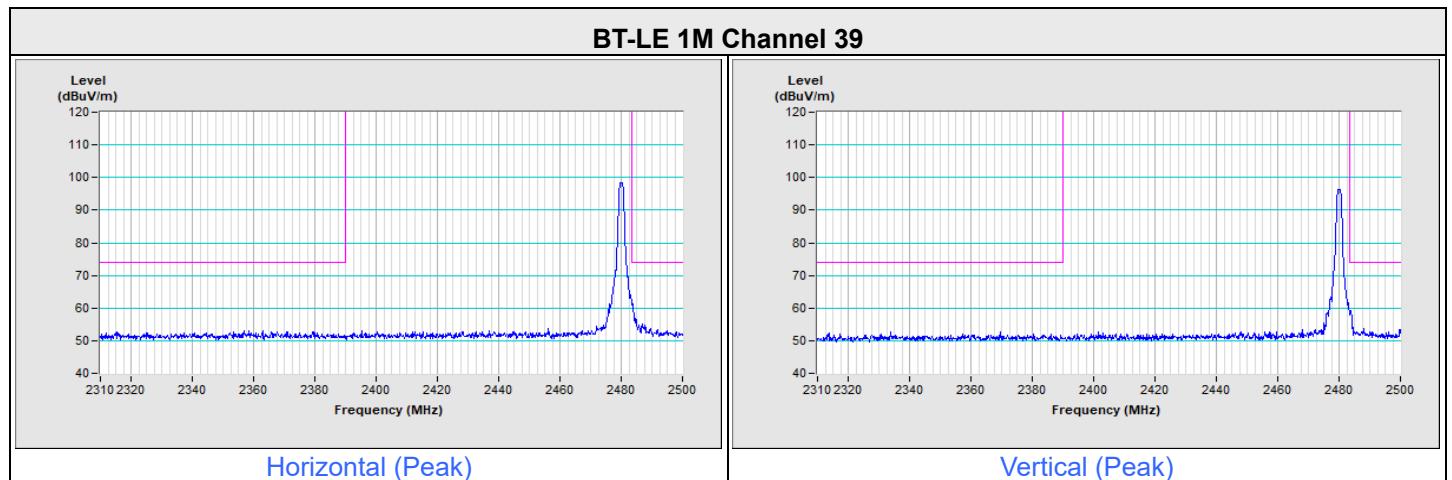
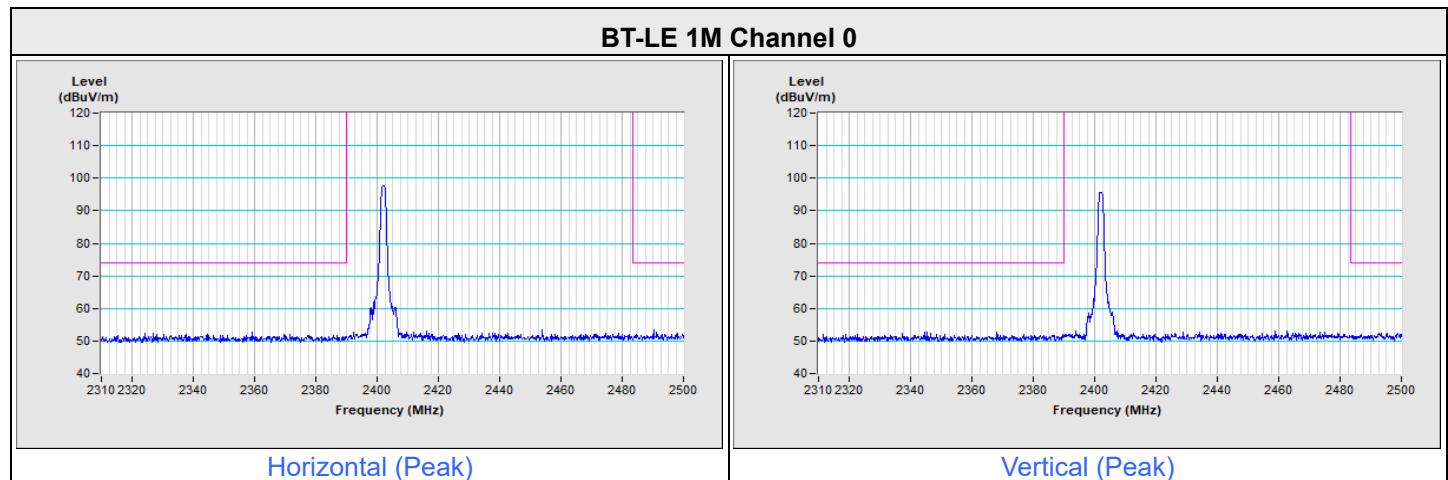
Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:

$$20 \log(\text{Duty cycle}) = 20 \log(2.115 \text{ ms} / 20.959 \text{ ms}) = -19.9 \text{ dB}$$

RF Mode	BT-LE 1M	Channel	CH 39 : 2480 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS
Input Power	3 Vdc	Environmental Conditions	23 °C, 66% RH
Tested By	Dalen Dai		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	98.3 PK			1.53 H	259	98.4	-0.1
2	*2480.00	78.4 AV			1.53 H	259	78.5	-0.1
3	2483.50	62.3 PK	74.0	-11.7	1.53 H	259	62.4	-0.1
4	2483.50	42.4 AV	54.0	-11.6	1.53 H	259	42.5	-0.1
5	4960.00	49.7 PK	74.0	-24.3	1.18 H	142	42.2	7.5
6	4960.00	29.8 AV	54.0	-24.2	1.18 H	142	22.3	7.5
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	96.3 PK			3.63 V	268	96.4	-0.1
2	*2480.00	76.4 AV			3.63 V	268	76.5	-0.1
3	2483.50	59.9 PK	74.0	-14.1	3.63 V	268	60.0	-0.1
4	2483.50	40.0 AV	54.0	-14.0	3.63 V	268	40.1	-0.1
5	4960.00	48.8 PK	74.0	-25.2	2.61 V	293	41.3	7.5
6	4960.00	28.9 AV	54.0	-25.1	2.61 V	293	21.4	7.5



Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:

$$20 \log(\text{Duty cycle}) = 20 \log(2.115 \text{ ms} / 20.959 \text{ ms}) = -19.9 \text{ dB}$$

Plot of Band Edge

Frequency Range	2.31 GHz ~ 2.5 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak
-----------------	--------------------	-------------------------------	----------------------------------

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@bureauveritas.com

Web Site: <http://ee.bureauveritas.com.tw>

The address and road map of all our labs can be found in our web site also.

--- END ---