

FCC TEST REPORT (Zigbee)

REPORT NO.: RF140515E07A-1

MODEL NO.: Lightify Gateway

FCC ID: DZOLIGHTIFYGW

RECEIVED: May 15, 2014

TESTED: May 20 to 26, 2014

ISSUED: Oct. 27, 2014

APPLICANT: OSRAM SYLVANIA Inc.

ADDRESS: 100 Endicott Street Danvers, Massachusetts

01923 United States

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch Hsin Chu Laboratory

LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

R.O.C.

TEST LOCATION (1): No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

R.O.C.

TEST LOCATION (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

Table of Contents

RELE	ASE CONTROL RECORD	
1.	CERTIFICATION	
2.	SUMMARY OF TEST RESULTS	6
2.1	MEASUREMENT UNCERTAINTY	7
3.	GENERAL INFORMATION	8
3.1	GENERAL DESCRIPTION OF EUT (Zigbee)	
3.2	DESCRIPTION OF TEST MODES	9
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	. 10
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	.12
3.4	DUTY CYCLE OF TEST SIGNAL	
3.5	DESCRIPTION OF SUPPORT UNITS	
3.6	CONFIGURATION OF SYSTEM UNDER TEST	. 14
4.	TEST TYPES AND RESULTS	. 15
4.1	CONDUCTED EMISSION MEASUREMENT	. 15
4.1.1		
4.1.2	TEST INSTRUMENTS	. 15
4.1.3	TEST PROCEDURES	. 16
4.1.4	DEVIATION FROM TEST STANDARD	. 16
4.1.5	TEST SETUP	. 16
4.1.6	EUT OPERATING CONDITIONS	. 17
4.1.7	TEST RESULTS	. 18
4.2	RADIATED EMISSION AND BANDEDGE MEASUREMENT	. 20
4.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	. 20
4.2.2	TEST INSTRUMENTS	. 21
4.2.3	TEST PROCEDURES	. 23
4.2.4	DEVIATION FROM TEST STANDARD	. 23
4.2.5	TEST SETUP	. 24
4.2.6	EUT OPERATING CONDITIONS	. 24
4.2.7	TEST RESULTS	. 25
4.3	6dB BANDWIDTH MEASUREMENT	. 29
_	LIMITS OF 6dB BANDWIDTH MEASUREMENT	_
4.3.2	TEST INSTRUMENTS	. 29
4.3.3	TEST PROCEDURE	. 29
4.3.4	DEVIATION FROM TEST STANDARD	. 29
	TEST SETUP	
4.3.6	EUT OPERATING CONDITIONS	. 29
4.3.7	TEST RESULTS	. 30

4.4	CONDUCTED OUTPUT POWER MEASUREMENT	31
4.4.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	31
4.4.2	INSTRUMENTS	31
4.4.3	TEST PROCEDURES	31
4.4.4	DEVIATION FROM TEST STANDARD	31
4.4.5	TEST SETUP	31
4.4.6	EUT OPERATING CONDITIONS	31
4.4.7	TEST RESULTS	32
4.5	POWER SPECTRAL DENSITY MEASUREMENT	33
4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	33
4.5.2	TEST INSTRUMENTS	33
4.5.3	TEST PROCEDURE	33
4.5.4	DEVIATION FROM TEST STANDARD	33
4.5.5	TEST SETUP	33
4.5.6	EUT OPERATING CONDITION	33
4.5.7	TEST RESULTS	34
4.6	CONDUCTED OUT-BAND EMISSION MEASUREMENT	35
4.6.1	LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT	35
4.6.2	TEST INSTRUMENTS	35
4.6.3	TEST PROCEDURE	35
-	DEVIATION FROM TEST STANDARD	
4.6.5	TEST SETUP	36
4.6.6	EUT OPERATING CONDITION	36
4.6.7	TEST RESULTS	36
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	38
6.	INFORMATION ON THE TESTING LABORATORIES	39
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	

RELEASE CONTROL RECORD

ISSUE NO. REASON FOR CHANGE		DATE ISSUED	
RF140515E07A-1	Original release	Oct. 27, 2014	

CERTIFICATION 1.

PRODUCT:

Lightify Gateway

BRAND NAME:

Osram

MODEL NO.:

Lightify Gateway

TEST SAMPLE:

ENGINEERING SAMPLE

APPLICANT:

OSRAM SYLVANIA Inc.

TESTED:

May 20 to 26, 2014

STANDARDS:

FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10-2009

The above equipment (Model: Lightify Gateway) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: ________, Date: Oct. 27, 2014 (Midoli Peng, Specialist)

Approved by :___

(May Chen, Manager)

____ **, Date:**__ Oct. 27, 2014

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)							
STANDARD SECTION	TEST TYPE	RESULT	REMARK				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -15.09dB at 0.54844MHz				
15.247(d) 15.209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -8.4dB at 12025.00MHz				
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.				
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.				
15.247(b)	Conducted output power	PASS	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	No antenna connector is used.				

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions	2.86 dB
Radiated emissions (30MHz-1GHz)	5.37 dB
Radiated emissions (1GHz -6GHz)	3.72 dB
Radiated emissions (6GHz -18GHz)	4.00 dB

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT (Zigbee)

PRODUCT	Lightify Gateway
MODEL NO.	Lightify Gateway
POWER SUPPLY	DC 3.3V from internal power supply
MODULATION TYPE	O-QPSK
TRANSFER RATE	250kbps
OPERATING FREQUENCY	2405 ~ 2480MHz
NUMBER OF CHANNEL	16
MAXIMUM OUTPUT POWER	8.75mW
ANTENNA TYPE	Please see NOTE
DATA CABLE	NA
I/O PORTS	Refer to user's manual
ASSOCIATED DEVICES	NA

NOTE:

1. There are WLAN technology and Zigbee technology used for the EUT.

2. The antennas provided to the EUT, please refer to the following table:

Zigbee Antenna Spec.							
Brand	Antenna Type	Antenna Connector	Gain(dBi)	Frequency range (GHz)			
WNC	PIFA	NA	3.24	2.4~2.4835			
WLAN A	WLAN Antenna Spec.						
Brand	Antenna Type	Antenna Connector	Gain(dBi)	Frequency range (GHz)			
WNC	PIFA	NA	2.85	2.4~2.4835			

3. The EUT must be supplied with an internal power supply as below table:

Brand	Model No.	Spec.
KTEC	KSP20A0330100	AC Input: 100~240V, 0.18A, 50/60Hz DC Output: 3.3V, 1.2A

- 4. Spurious emission of the simultaneous operation (WLAN & Zigbee) has been evaluated and no non-compliance was found.
- 5. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

16 channels are provided to this EUT.

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
11	2405	15	2425	19	2445	23	2465
12	2410	16	2430	20	2450	24	2470
13	2415	17	2435	21	2455	25	2475
14	2420	18	2440	22	2460	26	2480

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT		Ai	DECORPTION			
CONFIGURE MODE	PLC	RE < 1G	RE≥1G	APCM	ОВ	DESCRIPTION
-	\checkmark	\checkmark	V	\checkmark	\checkmark	-

Where PLC: Power Line Conducted Emission RE < 1G: Radiated Emission below 1GHz

RE ≥ 1G: Radiated Emission above 1GHz APCM: Antenna Port Conducted Measurement

OB: Conducted Out-Band Emission Measurement

NOTE: 1. The EUT' had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane.

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(kbps)
11 to 26	26	DSSS	O-QPSK	250

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE TESTED CHANNEL		MODULATION	MODULATION	DATA RATE
		TECHNOLOGY	TYPE	(kbps)
11 to 26	26	DSSS	O-QPSK	250

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(kbps)
11 to 26	11, 18, 26	DSSS	O-QPSK	250

Report No.: RF140515E07A-1 Reference No.:140624E02 10 of 40

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(kbps)
11 to 26	11, 18, 26	DSSS	O-QPSK	250

CONDUCTED OUT-BAND EMISSION MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

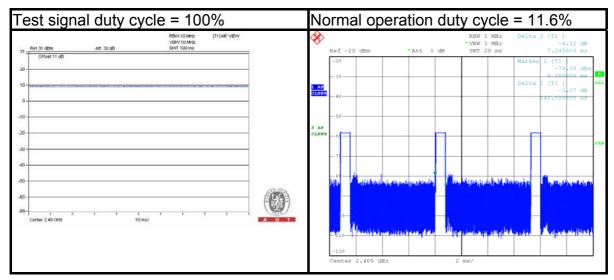
AVAILABLE CHANNEL	TESTED	MODULATION	MODULATION	DATA RATE
	CHANNEL	TECHNOLOGY	TYPE	(kbps)
11 to 26	11, 26	DSSS	O-QPSK	250

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	ENVIRONMENTAL CONDITIONS INPUT POWER	
PLC	26deg. C, 71%RH	120Vac, 60Hz	Ping Liu
RE<1G	22deg. C, 68%RH	120Vac, 60Hz	Tim Ho
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Tim Ho
APCM	25deg. C, 60%RH	120Vac, 60Hz	Robert Cheng
ОВ	25deg. C, 60%RH	120Vac, 60Hz	Robert Cheng

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:


FCC Part 15, Subpart C (15.247) 558074 D01 DTS Meas Guidance v03r02 ANSI C63.10-2009

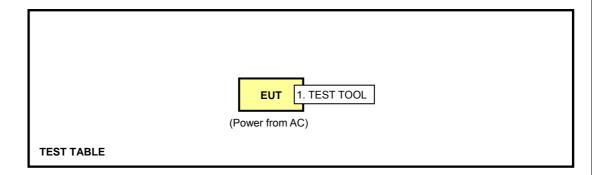
All test items have been performed and recorded as per the above standards.

Note: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DUTY CYCLE OF TEST SIGNAL

NOTE: Duty cycle 15% is the maximum capability of the RF chipset and declare by chip vendor.

3.5 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	TEST TOOL	WNC	NA	NA	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

3.6 CONFIGURATION OF SYSTEM UNDER TEST

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTE	LIMIT (dBµV)
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.1.2 TEST INSTRUMENTS

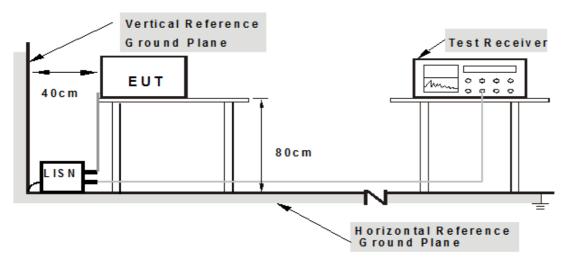
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCS 30	100375	Apr. 29, 2014	Apr. 28, 2015
Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK8127	8127-522	Sep. 05, 2013	Sep. 04, 2014
Line-Impedance Stabilization Network (for Peripheral)	ENV216	100072	June 06, 2013	June 05, 2014
RF Cable (JYEBAO)	5DFB	CONCAB-003	Mar. 07, 2014	Mar. 06, 2015
50 ohms Terminator	50	EMC-03	Sep. 24, 2013	Sep. 23, 2014
Software ADT	BV ADT_Cond_V7.3.7. 3	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. C.
- 3 The VCCI Con C Registration No. is C-3611.
- 4 Tested Date: May 20, 2014

4.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN.
- b. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- c. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- d. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.


NOTE:

1. The resolution bandwidth of test receiver is 9kHz for Quasi-peak detection (QP) & Average detection (AV).

4.1.4 DEVIATION FROM TEST STANDARD

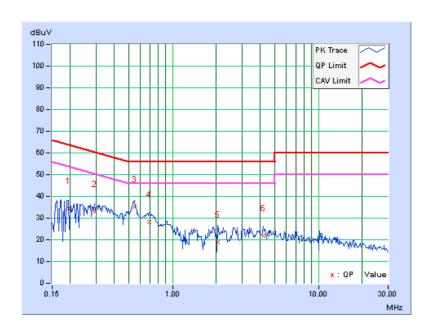
No deviation

4.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS							
. Controlling software (DutApiBridgeUART8782.exe & HyperTerminal paste Zigbee.txt command) has been activated to set the EUT on specific status.							

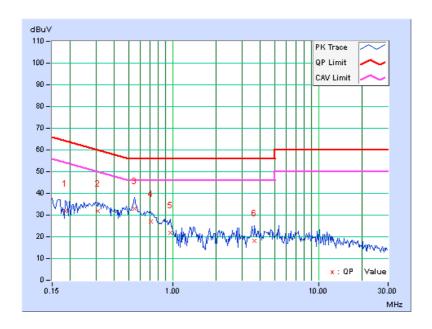

4.1.7 TEST RESULTS

PHASE Line (L)	DETECTOR FUNCTION	Quasi-Peak (QP) / Average (AV)
----------------	-------------------	-----------------------------------

	Freq.	Corr.	Rea Va	ding lue		ssion vel	Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB	(uV)]	[dB ((uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.19297	0.06	34.26	20.68	34.32	20.74	63.91	53.91	-29.59	-33.17
2	0.29453	0.06	32.90	21.88	32.96	21.94	60.40	50.40	-27.43	-28.45
3	0.54844	0.07	35.08	30.84	35.15	30.91	56.00	46.00	-20.85	-15.09
4	0.69297	0.08	28.20	21.25	28.28	21.33	56.00	46.00	-27.72	-24.67
5	2.05078	0.13	18.85	13.88	18.98	14.01	56.00	46.00	-37.02	-31.99
6	4.17578	0.21	21.63	16.25	21.84	16.46	56.00	46.00	-34.16	-29.54

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission Level Limit value
- 4. Correction Factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



PHASE	Neutral (NI)		Quasi-Peak (QP) /
	` '	FUNCTION	Average (AV)

	Freq.	Corr.		ding lue	_	sion vel	Lir	nit	Mai	gin
No		Factor	[dB ((uV)]	[dB	(uV)]	[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.18516	0.06	31.69	16.74	31.75	16.80	64.25	54.25	-32.50	-37.45
2	0.31016	0.07	31.64	17.96	31.71	18.03	59.97	49.97	-28.26	-31.94
3	0.54844	0.07	32.79	27.07	32.86	27.14	56.00	46.00	-23.14	-18.86
4	0.70859	0.08	27.06	18.24	27.14	18.32	56.00	46.00	-28.86	-27.68
5	0.96250	0.09	21.81	15.03	21.90	15.12	56.00	46.00	-34.10	-30.88
6	3.65234	0.19	17.90	10.03	18.09	10.22	56.00	46.00	-37.91	-35.78

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission Level Limit value
- 4. Correction Factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB.

4.2.2 TEST INSTRUMENTS

Below 1GHz test

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
MXE EMI Receiver Agilent	N9038A	MY51210105	Jan. 21, 2014	Jan. 20, 2015
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-03	Nov. 13, 2013	Nov. 12, 2014
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-360	Feb. 26, 2014	Feb. 25, 2015
RF Cable	NA	CHGCAB_001	Oct. 05, 2013	Oct. 04, 2014
Spectrum Analyzer R&S	FSV40	100964	July 15, 2013	July 14, 2014
Horn_Antenna AISI	AIH.8018	0000320091110	Nov. 18, 2013	Nov. 17, 2014
Pre-Amplifier Agilent	8449B	3008A02578	June 25, 2013	June 24, 2014
RF Cable	NA	RF104-201 RF104-203 RF104-204	Dec. 12, 2013	Dec. 11, 2014
Spectrum Analyzer Agilent	E4446A	MY48250253	Aug. 28, 2013	Aug. 27, 2014
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Nov. 13, 2013	Nov. 12, 2014
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Oct. 08, 2013	Oct. 07, 2014
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 3 The test was performed in 966 Chamber No. G.
- 4. The FCC Site Registration No. is 966073.
- 5 The VCCI Site Registration No. is G-137.
- 6 The CANADA Site Registration No. is IC 7450H-2.
- 7 Tested Date: May 20, 2014

Above 1GHz test

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
MXE EMI Receiver Agilent	N9038A	MY50010156	Jan. 15, 2014	Jan. 14, 2015
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-04	Nov. 13, 2013	Nov. 12, 2014
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Feb. 27, 2014	Feb. 26, 2015
RF Cable	NA	CHHCAB_001	Oct. 06, 2013	Oct. 05, 2014
Spectrum Analyzer R&S	FSV40	100964	July 15, 2013	July 14, 2014
Horn_Antenna AISI	AIH.8018	0000220091110	Dec. 06, 2013	Dec. 05, 2014
Pre-Amplifier Agilent	8449B	3008A01923	Oct. 29, 2013	Oct. 28, 2014
RF Cable	NA	RF104-205 RF104-207 RF104-202	Dec. 12, 2013	Dec. 11, 2014
Spectrum Analyzer Agilent	E4446A	MY48250253	Aug. 28, 2013	Aug. 27, 2014
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Nov. 13, 2013	Nov. 12, 2014
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Oct. 08, 2013	Oct. 07, 2014
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 3 The test was performed in 966 Chamber No. H.
- 4. The FCC Site Registration No. is 797305.
- 5 The CANADA Site Registration No. is IC 7450H-3.
- 6 Tested Date: May 26, 2014

4.2.3 TEST PROCEDURES

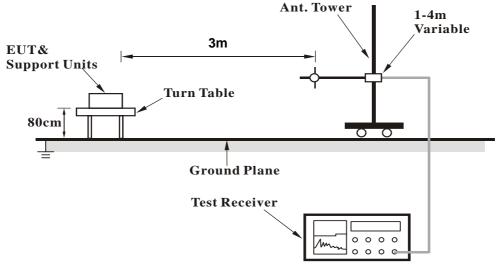
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

Note:

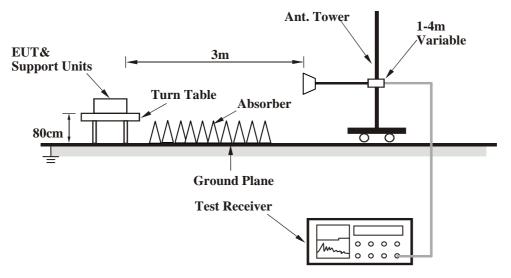
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. For the test signal duty cycle is 100%, the resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. Emission AV = Emission AV Reading(Test signal is continuous wave (Duty cycle 100%), Measured by 1MHz/10Hz) + AV Factor

AV Factor = $20 \log(\text{max.duty cycle}) = 20 \log(15\%) = -16.4 dB$


4.2.4 DEVIATION FROM TEST STANDARD

No deviation



4.2.5 TEST SETUP

<Frequency Range below 1GHz>

<Frequency Range above 1GHz>

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6

4.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

CHANNEL	TX Channel 26	DETECTOR	Ougai Pagis (OP)
FREQUENCY RANGE	Below 1GHz	FUNCTION	Quasi-Peak (QP)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	59.97	15.5 QP	40.0	-24.5	1.00 H	268	29.58	-14.12
2	123.12	33.2 QP	43.5	-10.3	1.50 H	86	48.15	-14.99
3	172.20	24.8 QP	43.5	-18.7	2.00 H	96	38.83	-14.00
4	286.37	17.5 QP	46.0	-28.5	1.50 H	360	30.30	-12.78
5	500.26	21.6 QP	46.0	-24.4	1.50 H	119	28.91	-7.35
6	746.98	24.3 QP	46.0	-21.7	1.50 H	170	26.43	-2.10
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	30.58	20.4 QP	40.0	-19.6	1.50 V	0	34.94	-14.54
2	59.00	21.5 QP	40.0	-18.5	1.00 V	324	35.47	-13.97
3	121.33	23.5 QP	43.5	-20.0	1.00 V	87	38.64	-15.12
4	163.23	26.6 QP	43.5	-17.0	1.00 V	235	39.89	-13.34
5	286.37	16.8 QP	46.0	-29.2	2.00 V	348	29.60	-12.78
6	923.95	27.7 QP	46.0	-18.3	1.50 V	360	27.07	0.65

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

ABOVE 1GHz DATA

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY (& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	48.9 PK	74.0	-25.1	1.05 H	88	54.50	-5.60
2	2390.00	20.8 AV	54.0	-33.2	1.05 H	88	26.40	-5.60
3	*2405.00	103.6 PK			1.05 H	88	109.17	-5.57
4	*2405.00	84.3 AV			1.05 H	88	89.87	-5.57
5	4810.00	57.3 PK	74.0	-16.7	1.37 H	310	53.43	3.87
6	4810.00	30.6 AV	54.0	-23.4	1.37 H	310	26.73	3.87
7	12025.00	61.2 PK	74.0	-12.8	1.08 H	307	50.26	10.94
8	12025.00	34.2 AV	54.0	-19.8	1.08 H	307	23.26	10.94
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	46.4 PK	74.0	-27.6	1.13 V	86	52.00	-5.60
2	2390.00	17.5 AV	54.0	-36.5	1.13 V	86	23.10	-5.60
3	*2405.00	99.7 PK			1.13 V	86	105.27	-5.57
4	*2405.00	80.1 AV			1.13 V	86	85.67	-5.57
5	4810.00	56.4 PK	74.0	-17.6	1.41 V	10	52.53	3.87
6	4810.00	29.8 AV	54.0	-24.2	1.41 V	10	25.93	3.87
	10005.00						= 4.00	40.04
7	12025.00	65.6 PK	74.0	-8.4	1.11 V	284	54.66	10.94

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 18	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	104.1 PK			1.08 H	94	109.51	-5.41
2	*2440.00	83.9 AV			1.08 H	94	89.31	-5.41
3	4880.00	55.5 PK	74.0	-18.5	1.42 H	308	51.70	3.80
4	4880.00	30.4 AV	54.0	-23.6	1.42 H	308	26.60	3.80
5	7320.00	56.9 PK	74.0	-17.1	1.22 H	318	48.63	8.27
6	7320.00	29.3 AV	54.0	-24.7	1.22 H	318	21.03	8.27
7	12200.00	61.5 PK	74.0	-12.5	1.14 H	221	50.11	11.39
8	12200.00	34.0 AV	54.0	-20.0	1.14 H	221	22.61	11.39
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	99.5 PK			1.13 V	96	104.91	-5.41
2	*2440.00	79.8 AV			1.13 V	96	85.21	-5.41
3	4880.00	54.7 PK	74.0	-19.3	1.34 V	297	50.90	3.80
4	4880.00	29.6 AV	54.0	-24.4	1.34 V	297	25.80	3.80
5	7320.00	58.7 PK	74.0	-15.3	1.25 V	124	50.43	8.27
6	7320.00	33.0 AV	54.0	-21.0	1.25 V	124	24.73	8.27
7	12200.00	63.5 PK	74.0	-10.5	1.10 V	215	52.11	11.39
8	12200.00	37.8 AV	54.0	-16.2	1.10 V	215	26.41	11.39

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 26	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANITENINIA	DOL ADITY	P TECT DIC	TANCE, UO	DIZONTAL	AT 2 M	
		ANIENNA	PULAKITY	X IESI DIS	TANCE: HO	KIZUN I AL	AI 3 IVI	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	104.4 PK			1.26 H	94	109.63	-5.23
2	*2480.00	83.9 AV			1.26 H	94	89.13	-5.23
3	2483.50	55.2 PK	74.0	-18.8	1.26 H	94	60.40	-5.20
4	2483.50	26.9 AV	54.0	-27.1	1.26 H	94	32.10	-5.20
5	4960.00	55.0 PK	74.0	-19.0	1.34 H	321	51.17	3.83
6	4960.00	30.9 AV	54.0	-23.1	1.34 H	321	27.07	3.83
7	7440.00	56.7 PK	74.0	-17.3	1.24 H	328	48.02	8.68
8	7440.00	29.7 AV	54.0	-24.3	1.24 H	328	21.02	8.68
9	12400.00	61.4 PK	74.0	-12.6	1.15 H	222	49.76	11.64
10	12400.00	33.6 AV	54.0	-20.4	1.15 H	222	21.96	11.64
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	100.3 PK			4 44 17	76	405.50	-5.23
2					1.11 V	76	105.53	-5.23
	*2480.00	79.5 AV			1.11 V 1.11 V	76 76	84.73	-5.23 -5.23
3	*2480.00 2483.50	79.5 AV 52.8 PK	74.0	-21.2				
3			74.0 54.0	-21.2 -30.7	1.11 V	76	84.73	-5.23
H	2483.50	52.8 PK	-		1.11 V 1.11 V	76 76	84.73 58.00	-5.23 -5.20
4	2483.50 2483.50	52.8 PK 23.3 AV	54.0	-30.7	1.11 V 1.11 V 1.11 V	76 76 76	84.73 58.00 28.50	-5.23 -5.20 -5.20
4 5	2483.50 2483.50 4960.00	52.8 PK 23.3 AV 55.7 PK	54.0 74.0	-30.7 -18.3	1.11 V 1.11 V 1.11 V 1.37 V	76 76 76 76 301	84.73 58.00 28.50 51.87	-5.23 -5.20 -5.20 3.83
4 5 6	2483.50 2483.50 4960.00 4960.00	52.8 PK 23.3 AV 55.7 PK 29.5 AV	54.0 74.0 54.0	-30.7 -18.3 -24.5	1.11 V 1.11 V 1.11 V 1.37 V 1.37 V	76 76 76 301 301	84.73 58.00 28.50 51.87 25.67	-5.23 -5.20 -5.20 3.83 3.83
4 5 6 7	2483.50 2483.50 4960.00 4960.00 7440.00	52.8 PK 23.3 AV 55.7 PK 29.5 AV 59.4 PK	54.0 74.0 54.0 74.0	-30.7 -18.3 -24.5 -14.6	1.11 V 1.11 V 1.11 V 1.37 V 1.37 V 1.23 V	76 76 76 301 301 110	84.73 58.00 28.50 51.87 25.67 50.72	-5.23 -5.20 -5.20 3.83 3.83 8.68

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

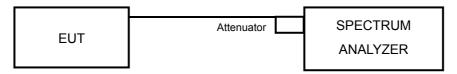
The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER R&S	FSV 40	100964	July 15, 2013	July 14, 2014

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: May 23, 2014

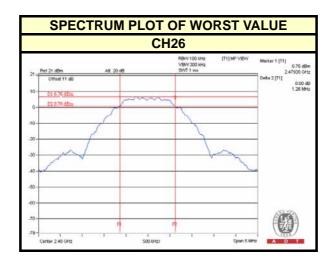

4.3.3 TEST PROCEDURE

- 1. Set resolution bandwidth (RBW) = 100kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Sweep = auto couple.
- 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 TEST SETUP


4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
11	2405	1.29	0.5	PASS
18	2440	1.31	0.5	PASS
26	2480	1.26	0.5	PASS

4.4 CONDUCTED OUTPUT POWER MEASUREMENT

4.4.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Power Meter Anritsu	ML2495A	1014008	Apr. 30, 2014	Apr. 29, 2015
Power Sensor Anritsu	MA2411B	0917122	Apr. 30, 2014	Apr. 29, 2015

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date: May 23, 2014

4.4.3 TEST PROCEDURES

The peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the peak power level.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation.

4.4.5 TEST SETUP

4.4.6 EUT OPERATING CONDITIONS

Same as Item 4.3.6

4.4.7 TEST RESULTS

FOR PEAK POWER

CHANNEL	FREQUENCY (MHz)	PEAK POWER (mW)	PEAK POWER (dBm)	LIMIT (dBm)	PASS/FAIL
11	2405	7.362	8.67	30	PASS
18	2440	8.241	9.16	30	PASS
26	2480	8.75	9.42	30	PASS

FOR AVERAGE POWER

CHANNEL	FREQUENCY (MHz)	AVERAGE POWER (mW)	AVERAGE POWER (dBm)
11	2405	6.823	8.34
18	2440	7.691	8.86
26	2480	8.166	9.12

4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

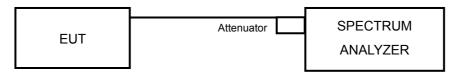
The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER R&S	FSV 40	100964	July 15, 2013	July 14, 2014

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: May 23, 2014

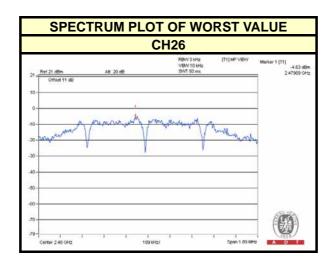

4.5.3 TEST PROCEDURE

- 1. Set the RBW = 3 kHz, VBW =10 kHz, Detector = peak.
- 2. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- 3. Use the peak marker function to determine the maximum amplitude level.

4.5.4 DEVIATION FROM TEST STANDARD

No deviation

4.5.5 TEST SETUP


4.5.6 EUT OPERATING CONDITION

Same as Item 4.3.6

4.5.7 TEST RESULTS

Channel	FREQUENCY (MHz)	PSD (dBm)	Limit (dBm)	PASS /FAIL
11	2405	-5.91	8	PASS
18	2440	-4.66	8	PASS
26	2480	-4.63	8	PASS

4.6 CONDUCTED OUT-BAND EMISSION MEASUREMENT

4.6.1 LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER R&S	FSV 40	100964	July 15, 2013	July 14, 2014

Note:

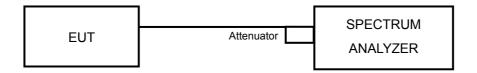
- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: May 23, 2014

4.6.3 TEST PROCEDURE

Measurement Procedure - Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

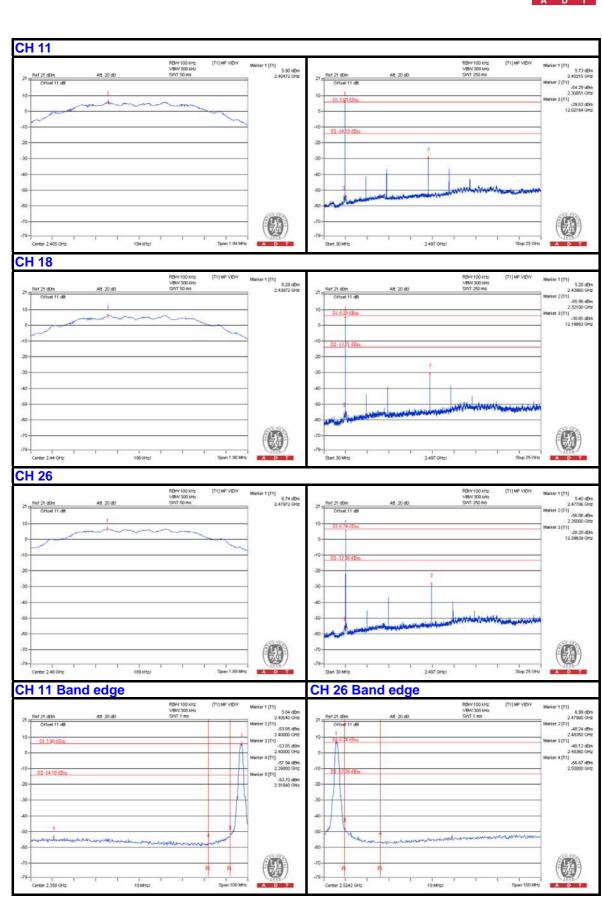
Measurement Procedure – Unwanted Emission Level


- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP


4.6.6 EUT OPERATING CONDITION

Same as Item 4.3.6

4.6.7 TEST RESULTS

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26052943 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com **Web Site**: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.
END